Question 2:
Notes:
I'll notate elements of X x Y as (z,y), wherez € Xandy €Y

x € S, where S € Bis slight notational abuse, but | mean if z exists as the first element in any
pairs of S.

We begin our proof by defining our function f : B — A as follows:
foreachz € X,if z € S:
zmapstoallyeY | (z,y) €S
ife ¢S

z mapsto ()

We'll start by proving that this function f is injective. Let S7, Sy € Bs.t. f(S1) = f(S2). we'll
show that S; = Sy by proving that §; C S, and Sy C 55.

Let (:c, y) €5
= f(51) includes a function that maps z to a set including y
= f(S2) includes a function that maps z to a set including y as we know f(S;) = f(S2)

— (z,y) € S> as thisis the only way £ maps to a set including y by our function
definition

Thus, we have S; C Ss. By a symmetric proof, we get Sy C Sy. Thus, we have S; = Sy and f
must be injective.

Now, let us prove that f must be surjective. Let g be an arbitrary function from A. Then g maps
elements of X to sets of elements of Y. Now, we construct the following set

S:{(a:,y),V:I:GX,yGY|yeg(:c)}

Clearly, S € Bas {(z,y),Vz € X,y € Y} =X x Y. Then, S C X x Y and trivially,

S € P(X x Y) by the definition of power set. All that remains to be shown is that f(S) = g.
When fruns on S, it will map each z to a set including every y where y € g(x), faithfully
recreating the sets that each x should map to. Similarly, it accurately map each z that does not
appear to the empty set. Thus, we have shown that f is surjective.

Since we have shown that f is injective and surjective, then we have constructed a bijection
between B and A.

Peer Review ID: 62038075 — enter this when you fill out your peer evaluation via gradescope



Question 3:

When the CPAChecker tool is run using the commands listed, it is using predicate analysis to
verify whether the corresponding property specified is being violated. Property1a is defined in
the code of the tcas.i file as a violation when up_Separation >= thresh && Down_Separation <
thresh.

CPAChecker claims to have proven that the program provided will never violate property 1b, but
can in some cases violate property 1a and property 2b. For properties 1a and 2b, the CPAChecker
provides counterexamples that violate these properties. In the html files for the
counterexamples, CPAChecker provides control flow graphs that display the path the program will
take to arrive at the property violation. Furthermore, CPAChecker generates an assignment file
that shows the variable assignments that lead to the error path. In the case where CPAChecker
gives us counterexamples, it'd be very easy to verify whether these counterexamples actually
allow us to violate the property given that we have deterministic code—we can just run the code
on the counterexample provided. In the case where CPAChecker tells us that the property is not
violated, we can trust that the property will hold insofar as we can trust CPAChecker and the
tcas.i file written. In a brief read-through of the tcas code, the actual functionality seems to be
fairly straightforward, making the contents of the file easy to trust. CPAChecker has additionally
been validated by other verification tools in many cases and appears fairly trustworthy as a piece
of software.

All'in all, CPAChecker seems to be a pretty usable tool as it provides so much information. The
CFG and Reachability graphs help to detail counterexample cases. Furthermore, the statistics it
provides gives clear insight to the end-user on how CPAChecker is operating. The combination of
information it provides makes it a trustworthy tool.

Terminal Outputs:

Propertyla
Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.
Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.
Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)
sing the following resource limits: CPU-time limit of 9@@s (ResourcelLimitChecker.fromConfiguration, INFO)
PAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.8.5) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

sing predicate analysis with MathSATS version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.9, 64-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

tarting analysis ... (CPAchecker.runAlgorithm, INFO)

topping analysis ... (CPAchecker.runAlgorithm, INFO)

erification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.
More details about the verification run can be found in the directory "./output".
raphical representation included in the file "./output/Counterexample.l.html".

Property1b

Peer Review ID: 62038075 enter this when you fill out your peer evaluation via gradescope



Running CPAchecker with default heap size (1206M). Specify a larger value with -heap if you have more RAM.
Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.
Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

sing the following resource limits: CPU-time limit of 9@@s (ResourcelLimitChecker.fromConfiguration, INFO)
PAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.5) started (CPAchecker.run, INFO)
Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.09, 64-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

tarting analysis ... (CPAchecker.runAlgorithm, INFO)
topping analysis ... (CPAchecker.runAlgorithm, INFO)
erification result: TRUE. No property violation found by chosen configuration.

More details about the verification run can be found in the directory "./output".
raphical representation included in the file "./output/Report.html".

Property2b

Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.
Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.

Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

Using the following resource limits: CPU-time limit of 9@@s (ResourceLimitChecker.fromConfiguration, INFO)
CPAchecker 2.8 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.5) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.8, 64-bit,
reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPA
Refiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Peer Review ID: 62038075 enter this when you fill out your peer evaluation via gradescope



1HWO
- 0 pts Correct

Peer Review ID: 62038075 — enter this when you fill out your peer evaluation via gradescope

Page 6



