Exercise OF-2. Set Theory [5 points|. -

T.S. "Show there is a 1-to-1 correspondence between the sets A and B, where
A=X—>PY)and B=P(X xY).”

The proof proceeds by example. We will define two functions: f: A — B and
g : B — A. and prove that they are inverses of each other. Specifically, that
a=g(f(a)) Ya € A and b = f(g(b))Vb € B. By showing this, we prove that

there is a 1-to-1 correspondence between A and B.

fla) : A= B ={(zi,y;) | V(zi,Y]) €a, Vy; €Y/, Y #{}}
T.S f is a function from A to B.
By inspection, we can see that f takes in an element from A and pro-
duces an element in B.

(9(0)) () : B = A ={ (z,{y;|V(z,y;) € b})}
T.S. g is a function from B to A.
By inspection, we can see that g takes in an element from B and pro-
duces and element in A.

Now we need to show that these two functions are inverses of each other. We’ll
start by showing a = ¢g(f(a)) Va € A.

T.S.a=g(f(a)) Vae A
The proof proceeds directly. We will produce a’ = g(f(a)) for an
arbitrary a and show that a = a'.

b = fla) = { (i, y;) [V(z:,Y]) € a, Vy; €Y, Y £ {}}

In ¥ every pair, (x,y) € b, containing z; has a y that originated
from Y/ in a. Any z; that was mapped to the null set in a does not
get included in the set of pairs ¥'.

a' = (g(0)(x) = { (z,{y;[V(z,y;) € V'})}

In o/, any z that’s get passed in to the function only gets mapped
to the set of y’s that it was paired with in &. However, when we
constructed ', we paired each x only with the y’s it was mapped to
in a. For those x elements that weren’t mapped to any y element in
b, they get mapped to the null set in @’. However, in order for a x
to not appear in b’ it must have originally been mapped to the null
set in a. With these facts in mind, we can see that a'(z) = a(z),
which shows that a = g(f(a)).

Peer Review ID: 62013676 — enter this when you fill out your peer evaluation via gradescope

T.S b= f(g(b))Vb € B.
The proof proceeds directly. Once again, we will produce b/ =
f(g(b)) for an arbitrary b and show that b = 0'.

a' = (g(b))(z) ={ (z,{y;|V(z,y;) €b})}
V=g(d)={(zs,y;) | V(z;,Y/) €d, Vy; €Y/, Y # {}}
One thing we can see here is that, for the Y’ # {},

Y’ = {y;|V(zi,y;) € b}, since that’s how the (z,Y”) in @' pairs were
formed. If we make this substitution:

V=g(d)={ (zi,y;) | V(z;,Y]) € d, Vy; € {y; | V(zs,9;) € b}}

From here we can see that the function is reconstructing the original
(z,y) pairs from b. Which means that b’ and b are the same, and
therefore that b = f(g(b))Vb € B.

Now that we have shown that a = g(f(a)) Ya € Aand b = f(g(b))Vb € B,

we can conclude that the functions f and g are inverses of each other, and
that there is a 1-to-1 correspondence between sets A and B.

Peer Review ID: 62013676 — enter this when you fill out your peer evaluation via gradescope

Exercise 0F-3. Model Checking [10 points|. -
Propertyla:

Using the fol g ce limits: CPU-time limit of 900 urceLimitChecker.fromConfiguration, INFO)
[CPAchecker 2.0 / pred en)DK 64-Bit Server VM 11.0.9.1) started (CPAchecker.run, INFO)
\ from fi
JFactory 1.21. (eCPA: eCPA.<init>, INFO)
>, INFO)
.runAlgorithm, INFO)

. (CPAchecker.runAlgorithm, INFO)

g the following resource limits: CPU-time limit of 90@s (ResourcelimitChecker.fromConfiguration, INFO)

cker 2.0 / pred sis (O -Bit Se / started (CPAchecker.run, INFO)

, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PrédicateCPA.<init>, INFO)
er.<init>, INFO)
, INFO)
» INFO)

found by cho
in the c

CPU-time limit of 900 imitC fromConfi ion, INFO)

s (Open]DK 64-Bit Serve M 11.0.9.1) st
parse, INFO)
/9 2020 09:0 gmp 6.1.2, gcc 7.5.0; 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)
»stractionRefinementStr strategy. (PredicateCPA: teCPARefiner.<init>, INFO)
.runAlgorithm, INF
\lgorithm, I

found by chosen configuration.

In tcas.i there are a collection of properties added into the code: Propertyla,
Propertylb, Property 2b, etc. Each of these properties checks a certain con-
dition for certain integer variables used in the program, such as Up_Separation,
Down_Separation, Own_Track_Alt. If the condition isn’t met then the code would
throw an error. When we run the command for a specific property, we are checking
to see if it is at all possible for the error state for that property to ever be reached.
For example, Propertyla is checking to see if Up_Separation is greater than or equal
to a threshold value and if Down_Separation is less than that threshold. If so, an
error is reached. When we run the CPAChecker on Propertyla, we are checking to
see if it’s ever possible for the Propertila error to ever be reached.

Even though tcas.i contains many different properties that can be used to test

CPAChecker’s performance, I don’t believe that this file on its own is a comprehensive
Peer Regdew i, 63HSGt8sont s thits iieBaciull tHeyproperticg thbeexidtitftiierle only

4

check very simple boolean expressions for integer values. All that has been proven
with tcas.1i is that CPAChecker can validate these straightforward conditions. But
what about something that is a little more complicated? For example, in lecture we
covered the example of a program that calls lock() and unlock() on some resource,
and we wanted to make sure the program never reaches a state where it tries to
call lock()/unlock() when it shouldn’t. This property is much more complex than
simple integer comparisons, so if we really wanted to ensure that CPACheckers was
a comprehensive tool for model checking then more test files should be included in
the testing suite that contain these more complicated properties.

In regards to how CPAChecker performs as a tool for model checking, I think it’s
incredibly powerful. One of the key aspects of model checking is not just being able
to detect validity but to also showcase a potential error scenario. This is one of the
key features of CPAChecker that really stood out to me. The tool produces a very
clean graphical representation of the CFA and it shows the exact path it determined
to be a counterexample to the validity of the property (highlighted in red). If that’s
still to vague for the user, the tool also highlights the lines of code it followed to
produce the counterexample path so they can see exactly how the program could
reach the error state. This allows to user to verify the counterexample if they still
have any doubts in CPAChecker’s accuracy.

Peer Review ID: 62013676 — enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62013676 — enter this when you fill out your peer evaluation via gradescope

Page 7

