Exercise 0F-2. Set Theory [5 points].

e First we write out the elements b; ; which belongs to set B; € B
- B=P{(z,y) |z e X,yeY})
let b; j = (2:5,Yij), wherez;; € X,y,; €Y
e Next compose a mapping from B to A.
VB; € B, f(B;) =¢; : {X; — Yi}
where z;; = {yir | (Tig, Yix) € Biy T = 45}

e Now let’s prove g; € A: X — P(Y)
By definition X; = Uj z; ; where z; ; € X, thus X; C X
Yi=Uvix | (®ig:Yir) € Bi, ip = xi;} where y;; € Y, thus ¥; C P(Y)
Having both X; € X and Y; C P(Y), we proved g is also X — P(Y)

e Now we show the injection of function f
Suppose set P # Q, P € B, € B; 3by, = (vk, yx) where by, € P, by, ¢ Q
Let f(P) = gp, [(Q) = 94

Since (xx, yx) € P, yr € gp(xr); while (2, yx) ¢ Q, thus yx & gq(xk)
Thus g, # g4, the injection is proved

e Now we prove subjection of function f

For any function h € A, let’s write out its mapping:

Lo > {y0,07 Yo,15 - - - 7y0,no}

T > {ym,07 ym,h .o 7ym,nm}
Construct set P = "o { (24, ¥i0), (@5, ¥i1), - - - (Tis Yims) }
It is trivial to check that f(P) = h and P C B, thus we have proved subjection

By combining injection and subjection f is a bijection between sets A and B

3

Peer Review ID: 62073347 — enter this when you fill out your peer evaluation via gradescope

Exercise 0F-3. Model Checking [10 points].

e Outputs

(base) = hwd docker run -v $(pwd):/workdir registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Propertyla.spc tcas.i
Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.

Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.

Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

Using the following resource limits: CPU-time limit of 90@s (ResourcelLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (Open]DK 64-Bit Server W 11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (
PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INF0O)
Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.

More details about the verification run can be found in the directory "./output".

Graphical representation included in the file "./output/Counterexample.l.html”.

(base) = hwd docker run -v $(pwd):/workdir registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Propertylb.spc tcas.i
Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.

Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.

Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

Using the following resource limits: CPU-time limit of 90@s (ResourcelLimitChecker.from figuration, INFO)

CPAchecker 2.0 / predicateAnalysis (Open]DK 64-Bit Server W 11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (
PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)
Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: TRUE. No property violation found by chosen configuration.

More details about the verification run can be found in the directory "./output”.

Graphical representation included in the file "./output/Report.html”.

(base) + hwd docker run -v $(pwd):/workdir registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Property2b.spc tcas.i
Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.

Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.

Language C detected and set for analysis (CPAMain.detectFrontendLanguagelfNecessary, INFO)

Using the following resource limits: CPU-time limit of 9@@s (ResourcelLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (Open]JDK 64-Bit Server W 11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSATS version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (
PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)
Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.
More details about the verification run can be found in the directory "./output".

Graphical representation included in the file
(base) » o ||

*./output/Counterexample.l.html".

4

Peer Review ID: 62073347 — enter this when you fill out your peer evaluation via gradescope

e My thoughts

Propertyla.spec means any reachable labels in the program that matches
[Pp\][Rr\][Oo\][Pp\|[Ee\|[Rr\][Tt\][Yy\][1\][Aa\]] means the program is in USEFIRST
state and should print out a error message of ”error label in [?] location”

In the case of tcas.i, it is a reasonable proof-of-concept test case. On one side, it has
a reasonable complex branches that shows CPAChecher is able to distinguish reachable
and non-reachable branches; on the other side, it is not too complicated so that we can
manually check the result. In the specific case of Propertyla.spec, CPAChecker proves
PROPERTY1A is reachable at line 1963, thus print out the corresponding message. But
tcas.i can definitely be extended with more complicated branches along with more dynamic
variables, to show more power from CPAChecker.

From my experience, CPAChecker is definitely useful. I can conveniently check whether
an undesired state can be reached and what is the exact execution path. The spec I need to
write is straight forward and easy to write. The command-line output message is clear and
concise. But it would be better to specify which property it violates. In the graph report
it show detailed execution path in both graphical way and textual way. The graphical CFA
facilitates the understanding of the control flow, and the ”path section” makes it easier to
track the critical variables. The report is super awesome.

5

Peer Review ID: 62073347 — enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62073347 — enter this when you fill out your peer evaluation via gradescope

Page 6

