Exercise OF-2. Set Theory [5 points]. Let P(X) denote the powerset of X (the set of
all subsets of X). There is a 1-1 correspondence (i.e., a bijection) bewteen the sets A and
B, where A= X — P(Y) and B =P(X xY). Note that A is a set of functions and B is a
(or can be viewed as a) set of relations. This correspondence will allow us to use functional
notation for certain sets in class. This is Exercise 1.4 from page 8 of the Winskel textbook.

Demonstrate the correspondence between A and B by presenting an appropriate function
and proving that it is a bijection. For example, you might construct a function f: B — A
and prove that f is an injection and a surjection.

Solution:

Consider the following function:
f(b) = fs: X = P(Y) such that b € B, fi(z) = {y|(z,y) € b}, and x € X.

To prove the above function is a bijection we will show that it is one-to-one and onto.

One-to-one: We will assume that the function f is not one-to-one, which means should be
able to find two distinct inputs b and b’ that map to the same output. This would mean

that f(b) = f(¥).

f) = f)
fo=1
fo(z) = fi(z) for all z € X

{l(z,y) € b} = {y|(z,y) € V'}

Let x € X,y €Y, and (2/,¢y) €b
(", y)yeb=vy e{y|(z',y) € b} =y € {y|(a,y) € b} = (2, ¢) €V

Therefore, we can conclude that if (z/,y") € b then (2/,y') € b'.
WLOG, if (2/,y) € b/ then (2/,y') € b.

Therefore we can show that b = ¢'. Our initial condition however was that b and ¢ are
distinct. Since we have arrived at a contradiction, our initial assumption must be false, and
so we can state that this function is one-to-one.

Onto: For some arbitrary output a € A, we will provide an input b € B that maps to
a.

Let z € X and b= {(z,y)|y € f(z)}.
F0) = folz) = {yl(z,y) € b} ={yl(z,y) € {(z,y)ly € f(z)}} = f(z) = a

Therefor we have shown that the function is onto. Since the function is both one-to-one
and onto, it is bijective.

2

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

Exercise OF-3. Model Checking [10 points]. This answer should appear after the first
page of your submission and may be shared during class peer review.

Download the CPAChecker software model-checking tool using the instructions on the
homework webpage. Read through enough of the manual to run the tool on the tcas.i
testcase provided on the homework webpage. Check the three properties given. For each
command, copy or screenshot the last ten non-empty lines of output from CPAChecker and
include them as part of your answer to this question.

It is your responsibility to find a machine on which CPAChecker works properly (but feel
free to check the class forum if you are getting stuck).

Hint: CPAChecker 2.0 should find a violation for Propertyla, verify that Property1lb is
safe, and find a violation for Property2b. If your output does not match that and you are
using version 2.0 then you may not have not set things up correctly.

What is going on when you run CPAChecker using the commands listed? In at most three
paragraphs, summarize your experience with the CPAChecker tool. What does Propertyla
mean? Is tcas.i a reasonable test suite?” What has been proved? Did you find CPAChecker
to be a usable tool? You may find the graphical reporting option of CPAChecker to be
helpful here. For full credit, do not restate my lecture on counter-example guided abstraction
refinement; instead, discuss your thoughts and experience using this tool. Focus on threats
to validity (e.g., imagine that you were writing a paper and using this as an experiment)
over usability.

Both your ideas and also the clarity with which they are expressed (i.e., your English
prose) matter. A reader should be able to identify your main claim, the arguments you are
making, and your conclusion.

3

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

Output for first command:

[N J @ HWO0 — -bash —193x22

$ docker run -v "$(pwd):/workdir" -u $UID:$GID registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Propertyla.spc tcas.i
Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.
Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.
Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

Using the following resource limits: CPU-time limit of 90@s (ResourceLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server WM 11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSATS version 5.6.5 (63ef7602814c) (Nov 9 2020 @9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)
Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html”.

Output for second command:

([X i HWO0 — -bash — 193x22
$ docker run -v "$(pwd):/workdir" -u $UID:$GID registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Propertylb.spc tcas.i

Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.

Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.

Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)

Using the following resource limits: CPU-time limit of 90@s (ResourcelLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VWM 11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSATS version 5.6.5 (63ef7602814c) (Nov 9 2020 @9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)
Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: TRUE. No property violation found by chosen configuration.
More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

Output for third command:

4

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

(N J i HWO — -bash — 193x22
$ docker run -v "$(pwd):/workdir" -u $UID:$GID registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis -spec Property2b.spc tcas.i

Running CPAchecker with default heap size (1200M). Specify a larger value with -heap if you have more RAM.
Running CPAchecker with default stack size (1024k). Specify a larger value with -stack if needed.
Language C detected and set for analysis (CPAMain.detectFrontendLanguageIfNecessary, INFO)
Using the following resource limits: CPU-time limit of 90@s (ResourcelLimitChecker.fromConfiguration, INF0)
CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server WM 11.0.9.1) started (CPAchecker.run, INFO)
Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSATS version 5.6.5 (63ef7602814c) (Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Running CPAChecker with the listed commands causes the CPAChecker program to ana-
lyze the code using whatever properties are specified on the command line as command line
arguments. The CPAChecker program took tcas.i as an input and produced a flow chart
for control. Using this control chart it can check for certain areas of the code, specifically
the error portions, and see if the model it has created allows for code to reach those error
portions. Propertyla itself refers to whether or not the control flow graph allows for a viable
path to an error part of code with the Propertyla label. The tcas.i test suite itself seemed to
provide decent as it tests edge cases using specific boolean variables to check. In this case,
CPAChecker found violations for Propertyla and Property2b but not for Propertylb. This
means that we can be confident that the real program model never reaches an error state
for Propertylb but could reach errors for Propertyla and Property2b.

I found CPAChecker to be a tool with many setup requiremnts and issues, but once the
setup was done it was very easy to run on programs. I was running this on a Mac which
meant [had to get the right version of Java running as well as run CPAChecker using Docker
to get it to work. Omnce running, the output provided in the command line was brief yet
informative and easy to read. The program also outputs the control flow graphs in an html
file which is automatically saved. These graphs are highly detailed and have a lot of infor-
mation but it was hard to truly understand and grasp what all the different states meant.
The html output is also overwritten after every run which is a mild inconvenience.

I feel that CPAChecker is actually a highly useful tool. As a model checker it does ev-
erything it says it does and everything expected from a model checker. Any threats to
validity in my opinion do not stem from CPAChecker specifically but rather from the idea
of having model checkers that we accept may not always produce correct information about
our programs. Reaching error states in the model are a good indication that our program
might be faulty but this is not 100% accurate. Additionally, CPAChecker works well with

5

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

C programs only, but many programs and code bases in the modern world use different
languages that might not even be object oriented. In those situations CPAChecker may not
be useful and we would need to find a model checker for all the different languages which

may not be possible yet.

6

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62042948 — enter this when you fill out your peer evaluation via gradescope

Page 8

