Exercise OF-2. Set Theory [5 points]. Let f: B — A such that for any b € P(X xY),
f(b) returns the function g : X — P(Y'), where g is a piecewise function defined as follows:

() {y; : (z,y;) € b} if z is in one of b’s coordinate pairs
€L} =
g 0 if x € X, but x is not one of b’s coordinate pairs

Claim: f is a bijection. We prove this by showing that it is both injective and surjective.

Injectivity: Suppose f(b1) = f(b2) for b1,b, € P(X xY). Then f(b1) = g1 : X = P(Y) such
that gl(xi € bl) = {yj : (xi,yj) € bl} and gl(xi ¢ by Nzx; € X) = (. Simﬂarly, f(bg) = g9 :
X — P(Y) such that go(z; € be) = {y; : (z4,y;) € b} and go(x; ¢ b Ax; € X) = (. Since
all g(z;) = () mappings are the same between g; and go, b; and by, must have the same x;
coordinates. Since the g(x;) = {y; : (z,y;) € b.} mappings are the same between ¢; and g,
b and by must also have the same y; coordinates. Hence, by = by as they must be the same
element of the P(X x Y'). Therefore, f is injective.

Surjectivity: Let a € X — P(Y). a is a function mapping every = € X to an element
of P(Y). Suppose we want to have a particular function a such that a(x;) = z1,a(zs) =
29, ...,a(T,) = 2z,, where z; € P(Y') are particular elements of the power set of Y7 i.e.,
particular subsets of Y. We can construct a by choosing b € P(X x Y') such that for each
a(xy) = 2k, we include (g, 21), (Tk, 22), - - -, (Tk, 2n) in b, (If a(zg) = 2z, = 0, we don’t add
any (zy, z;) elements to b.) We see by construction that f(b) = a because the set b contains
all the coordinate pairs necessary to make f output our desired a by the piecewise method
described above. Hence, f is surjective.

Exercise 0F-3. Model Checking [10 points].

Property 1a Run Output:

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.9, 64-bit,
eentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARe
iner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

erification result: FALSE. Property violation (error label in line 1963) found by chosen configuration.
More details about the verification run can be found in the directory "./output".
raphical representation included in the file "./output/Counterexample.l.html".

2

Peer Review ID: 62087282 enter this when you fill out your peer evaluation via gradescope

Property 1b Run Output:

Using predicate analysis with MathSATS5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, r
eentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARe|
finer.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)
Verification result: TRUE. No property violation found by chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

Property 2b Run Output:

sing predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c) (Nov 9 2020 ©9:01:58, gmp 6.1.2, gcc 7.5.8, 64-bit,
pentrant) and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

sing refinement for predicate analysis with PredicateAbstractionRefinementStrategy strategy. (PredicateCPA:PredicateCPARd
iner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

erification result: FALSE. Property violation (error label in line 1997) found by chosen configuration.
lore details about the verification run can be found in the directory "./output".
raphical representation included in the file "./output/Counterexample.l.html"”.

I found CPAChecker to be a very usable and intuitive program without any configuration
issues on WSL, and I think that the tcas.i program is a representative, though incomplete,
test suite illustrating CPAChecker’s usefulness. Although my knowledge of Traffic Collision
Avoidance Systems and airplanes is virtually non-existance, I've deduced that the (a) prop-
erties flag violations where the TCAS mistakenly directs a plane to fly upwards, and the
(b) properties flag violations where the TCAS mistakenly directs a plane to fly downwards.
In particular, Propertyla is violated if the system decides a downward Resolution Advi-
sory (RA) is necessary and (Up_Separation > thresh && Down Separation < thresh
); i.e., we've ordered the plane to fly down but the downward separation to the next plane is
below some safety threshold, whereas the upward separation exceeds the allowed threshold.
Propertylb measures the same thing as Propertylb, but with the downward and upward
threshholds switched, while Property2a (and Property2b, respectively) are violated when a
downward (or upward, respectively) RA is ordered and both directions are below the safety
threshhold, but the downward (or upward, respectively) direction has even less space be-
tween planes.

Providing counterexamples showing that Propertyla and Property2b can be violated demon-
strate both CPAChecker’s competence as a software verification program and tcas.i’s use-

fulness as a test suite — detecting a potentially fatal error in a collision avoidance system and

giving the developers an opportunity to correct this pre-deployment is an incredible benefit.

Seeing CPAChecker validate Property1b establishes further confidence in CPAChecker and

the tcas.1i test suite, as the checker correctly verifies that this property holds.

However, we should be wary of preemptively calling CPAChecker a correct verifier or of con-

3

Peer Review ID: 62087282 enter this when you fill out your peer evaluation via gradescope

sidering tcas.i a comprehensive test suite. It’s possible other tests could cause CPAChecker
to run without bound/until terminated, and the tcas.i test suite doesn’t verify all of the
potentially important properties one could potentially verify in a collission avoidance system
(e.g. horizontal distance threshholds, distance thresholds when descending on the landing
strip, etc.). CPAChecker can provide strong evidence of errors in (and later correctness of)
the tcas.i system, and it’s good that this test suite provides good coverage of verficiation
of “correct” software and of exposing bugs in incorrect software. However, many and varied
test suites will be necessary to provide enough compelling evidence to support a claim that
CPAChecker verifies software correctly.

4

Peer Review ID: 62087282 — enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62087282 — enter this when you fill out your peer evaluation via gradescope

Page 6

