Exercise OF-2. Set Theory [5 points|. This answer should appear after the first page of your
submission and may be shared during class peer review.

This exercise is meant to help you refresh your knowledge of set theory and functions. Let
X and Y be sets. Let P(X) denote the powerset of X (the set of all subsets of X). There is
a 1-1 correspondence (i.e., a bijection) between the sets A and B, where A = X — P(Y) and
B =P(X xY). Note that A is a set of functions and B is a (or can be viewed as a) set of relations.
This correspondence will allow us to use functional notation for certain sets in class. This is Exercise
1.4 from page 8 of the Winskel textbook.

Demonstrate the correspondence between A and B by presenting an appropriate function and
proving that it is a bijection. For example, you might construct a function f : B — A and prove
that f is an injection and a surjection.

Define function f: B — A as:
for set M € B, f(M) = h, where function h : X — P(Y) is defined as h(x) = {y|(z,y) € M}
for Ve € X

Define function g : A — B as:
for function s € A, g(s) = {(z,y)|y € s(z),Vzr € X}

We’ll prove that the correspondence between A and B is a bijection by proving both f and g
are injective.

Suppose there exists two elements in B, set M and N, such that f(M) = f(N). Let m = f(M),
n = f(N) (m, n are functions). For Vx € X, m(x) = n(x). Since m(xz) = {y|(z,y) € M},
n(z) = {y|(z,y) € N} for all x € X, and M, N € B, we must have M = N. So f is an
injection.

Similarly, suppose there exists two elements in A, function s and ¢, such that g(s) = g(¢). That
is, {(z,y)|ly € s(z),Vz € X} = {(z,y)|y € t(z),Vz € X}. So s(x) = t(z) for all z € X. We
know that the domain of both s and ¢ are X, so s =t. g is also an injection.

Therefore, we've proved the correspondence between A and B is a bijection.

Exercise 0F-3. Model Checking [10 points|. This answer should appear after the first page
of your submission and may be shared during class peer review.

Download the CPAChecker software model-checking tool using the instructions on the homework
web-page. Read through enough of the manual to run the tool on the tcas.i testcase provided on
the homework web-page. Check the three properties given. For each command, copy or screenshot
the last ten non-empty lines of output from CPAChecker and include them as part of your answer to
this question.

It is your responsibility to find a machine on which CPAChecker works properly (but feel free to
check the class forum if you are getting stuck).

Hint: CPAChecker 2.0 should find a violation for Propertyla, verify that Propertylb is safe,
and find a violation for Property2b. If your output does not match that and you are using version
2.0 then you may not have not set things up correctly.

What is going on when you run CPAChecker using the commands listed? In at most three
paragraphs, summarize your experience with the CPAChecker tool. What does Propertyla mean?
Is tcas.i a reasonable test suite? What has been proved? Did you find CPAChecker to be a usable
tool? You may find the graphical reporting option of CPAChecker to be helpful here. For full credit,

dp hetgestaleryy destysesn countar-example, ghidad abstragtion refinement; fnsfead, discuss your

2

thoughts and experience using this tool. Focus on threats to validity (e.g., imagine that you were
writing a paper and using this as an experiment) over usability.

Both your ideas and also the clarity with which they are expressed (i.e., your English prose)
matter. A reader should be able to identify your main claim, the arguments you are making, and
your conclusion.

I ran CPAChecker with macOS. When reading the CPAChecker readme file, I noticed that
it mentioned possible configuration problems because of MathSAT binaries. So I tried the
example commands first, and it failed with "Error: Invalid configuration” as expected. I
did some research (on piazza) and finally installed docker to run CPAChecker. The updated
command is:

docker run -v "$(pwd) :/workdir" -u $UID:$GID
< registry.gitlab.com/sosy-lab/software/cpachecker:2.0 -predicateAnalysis
—~ —spec Propertyla.spc tcas.i

Commands for Propertylb.spc and Property2b.spc are similar. When running the commands,
the -predicateAnalysis tells CPAChecker to enable predicate analysis and the -spec tells it
to expect a specification file (instead of a configuration file, either should be given). Then it
looks for our specification file (Propertyla.spc, Propertylb.spc or Property2b.spc) and verifies
our source code (tcas.i) with the corresponding specification.

Propertyla is checking if variable Down Separation is under threshold while variable
Up_Separation < threshold. If so, this path leads to an error state.

tcas.i is a reasonable test suite because it verifies both cases: model check reaches a "no
error” state, and model check finds counter examples.

It is proved that Propertylb (error case: (Up_Separation < thresh) A (Down_Separation <
thresh) A (Up_Separation < Down_Separation)) will never be violated.

CPAChecker is usable with the graphical report. It shows all the states, and highlights related
states when a counterexample is reached for further verification. However, according to my
experience with CPAChecker in this question, tools are needed to relate each node in the graph
to its corresponding variable state in the source code. Current labels in the report graph (like
"N183”) don’t make sense to me.

Submission. Turn in your assignment as a single PDF document via the gradescope website.
Your name and Michigan email address must appear on the first page of your PDF submission but
may not appear anywhere else.

Peer Review ID: 62059929 — enter this when you fill out your peer evaluation via gradescope

3

1HWO
- 0 pts Correct

Peer Review ID: 62059929 — enter this when you fill out your peer evaluation via gradescope

Page 5

