Exercise 2. Consider the following functions f : A — B that maps (¢ : X — P(Y)) € A
to fp) = {(z,y) : v € X,y € p(x)} € P(X xY) = B, and g : B — A that maps
peB=PXxY)to(g(p): X =P ),z—{y:(z,y) € f}) € A. It can be verified that
f, g are inverses of each other:

f(g(B) ={(z,y) 1z € X,y € g(B)(z)}
={(z,y) v € X,y € {y: (z,y) € B}}
={(z,y) 1z € X, (z,y) € B}
=B
z—={y:(z,y) € fl)})
z={y:(z,y) € {(«,y) 2’ € X,y € p(a")}})
z—={y:zeX,y€p)})
T = ¢(z))
QO .

9(f(p)) = (
(
(
(

Hence f, g are bijections between A and B, which demonstrates the correspondence between
A and B.

Exercise 3. (I used the Docker image of version 2.0.)
Outputs for Propertyla:

Using the following resource limits: CPU-time limit of 900s (
ResourcelLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM
11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63
ef7602814c) (Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-
bit, reentrant) and JFactory 1.21. (PredicateCPA:
PredicateCPA.<init>, INFO0)

Using refinement for predicate analysis with
PredicateAbstractionRefinementStrategy strategy. (
PredicateCPA:PredicateCPARefiner .<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

2

Peer Review ID: 61717876 — enter this when you fill out your peer evaluation via gradescope



Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in
line 1963) found by chosen configuration.

More details about the verification run can be found in the
directory "./output"”.

Graphical representation included in the file "./output/
Counterexample.1l.html".

Outputs for Propertylb:

Using the following resource limits: CPU-time limit of 900s (
ResourcelimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM
11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63
ef7602814c) (Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-
bit, reentrant) and JFactory 1.21. (PredicateCPA:
PredicateCPA.<init>, INFO0)

Using refinement for predicate analysis with
PredicateAbstractionRefinementStrategy strategy. (
PredicateCPA:PredicateCPARefiner .<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO0)

Verification result: TRUE. No property violation found by
chosen configuration.

More details about the verification run can be found in the
directory "./output".

Graphical representation included in the file "./output/Report.
html".

Outputs for Property2b:

3

Peer Review ID: 61717876 — enter this when you fill out your peer evaluation via gradescope



Using the following resource limits: CPU-time limit of 900s (
ResourcelimitChecker.fromConfiguration, INF0)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM
11.0.9.1) started (CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63
ef7602814c) (Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-
bit, reentrant) and JFactory 1.21. (PredicateCPA:
PredicateCPA.<init>, INFO0)

Using refinement for predicate analysis with
PredicateAbstractionRefinementStrategy strategy. (
PredicateCPA:PredicateCPARefiner .<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in
line 1997) found by chosen configuration.

More details about the verification run can be found in the
directory "./output"”.

Graphical representation included in the file "./output/
Counterexample.1l.html".

With the given commands, the CPAChecker verifies the program tcas.i against the
properties specified in the files Property{1a,1b,2b}.spc; in particular, by inspecting the
specification files, the CPAChecker checks whether the labels PROPERTY{1A 1B,2B} respec-
tively are reachable in the program (where the results show that la, 2b are reachable
while 1b is non-reachable). By further examining the program, it turns out that the pro-
gram has the structure of first initializing a bunch of integer variables Up_Separation,
Down_Separation, etc. nondeterministically, and then executing through a bunch of integer
comparisons and branchings, some of which locates inside function calls, that are com-
plexly related to each other. As an example, property la requires it to never be the case
that Up_Separation >= thresh && Down_Separation < thresh, under the condition that
need_downward_RA and not need_upward_RA, where need_downward_RA then refers to the
condition Non_Crossing_Biased_Climb()&& Own_Below_Threat(), and where ...

4

Peer Review ID: 61717876 — enter this when you fill out your peer evaluation via gradescope



This kind of verification against a complex mixture of comparisons and branchings over
nondeterministic integers is a perfect task for CPAChecker, who is able to handle the “in-
finite” state space of the integers via abstraction that is refined adaptively. Nevertheless
this test suite tcas.i seems too limited to demonstrate the full spectrum of the capacity of
CPAChecker. E.g. there seems to be no recursion in the tested program, and even no arith-
metic (only comparisons) among the integers; there are only if-else branchings and no loop;
there is no array, pointer, etc. In fact in this setting (where there are only comparisons and
branchings), it is conceivable that merely one pass of direct application of theorem solver, or
maybe more specifically something similar to topological sorting, would suffice to solve the
verification problem.

That being said, the CPAChecker indeed did a great job on the test suite despite the
“simplicity” of the test. It ran fast enough, cost only multiple seconds to verify each property
(though this is definitely far from being a satisfactory time one would expect for some more
specialized, say, “topological sorting solver” as there are only tens of variables to sort over),
and e.g. in the case of property la, produced concrete counterexample Up_Separation
= 4294967284U, Down_Separation = 88U, ..., along with reasonably simplified (there is
literally a “simplified” mode for displaying the Abstract Reachability Graph!) and readable
visualizations of the results.

5

Peer Review ID: 61717876 — enter this when you fill out your peer evaluation via gradescope



1HWO
- 0 pts Correct

Peer Review ID: 61717876 — enter this when you fill out your peer evaluation via gradescope

Page 7



