Exercise OF-2. Set Theory [5 points]. This answer should appear after the first page
of your submission and may be shared during class peer review.

This exercise is meant to help you refresh your knowledge of set theory and functions.
Let X and Y be sets. Let P(X) denote the powerset of X (the set of all subsets of X'). There
is a 1-1 correspondence (i.e., a bijection) bewteen the sets A and B, where A = X — P(Y)
and B = P(X xY). Note that A is a set of functions and B is a (or can be viewed as a) set
of relations. This correspondence will allow us to use functional notation for certain sets in
class. This is Exercise 1.4 from page 8 of the Winskel textbook.

Demonstrate the correspondence between A and B by presenting an appropriate function
and proving that it is a bijection. For example, you might construct a function f: B — A
and prove that f is an injection and a surjection.

Answer: All b € B has the form {(z,v), ..., (z;,y;)|r € X,y € Y)}. And since A is a set
of functions of type X — P(Y), all a € A has the form {(z,{y...,y;}), (i, {y....,y;})|z €
X,y € Y}. In other words, f(b)(z) = Az.{b'[1] € b|t/[0] = z}. This can be stated as a set
union instead of a lambda via the definition of functions as a form of relations over sets,
something like f(b) = Ve {(¢[0], {¢[1]|¢[0] = t})}.

The function f is injective. By contradiction.

Proof. For the function f : B — A to be injective, the following must hold: Y, ycp, f(b) =
f(t') = b=10. Towards contradiction, assume our f is not injective, i.e. Fppyepf(b) =
F(O')Ab # . This means some b and b’ differ in at least one element, b = {..., (z;,y;), ...}, b’ =
{- (#},y5), ...} but both f(b) and f(b') produced {..., (zi,{...,y;,--}), ... }. If @3 # x} or/and
y; # y; then the resulting partition would also be different in f, and thus f(b) # f(¥'), which
is a contradiction. O

The function f is surjective. By contradiction.

Proof. For the function f : B — A to be surjective, the following must hold: V,c 43y f(b) =
a. Towards contradiction, assume J,c4Vpep f(b) # a. This means a is such {...(z;, {y, ..., y;})...}
such that there is no b that has {...(x;,v), ..., (i, y;), ...}. We can take this ¢ and form a set
of form B by “distributing” the z; into the corresponding y; set, to create pairs. Then given
B =P(X xY) this bis in B. O

Thus f is bijective.

Exercise OF-3. Model Checking [10 points|. This answer should appear after the first
page of your submission and may be shared during class peer review.

Download the CPAChecker software model-checking tool using the instructions on the
homework webpage. Read through enough of the manual to run the tool on the tcas.i
testcase provided on the homework webpage. Check the three properties given. For each
command, copy or screenshot the last ten non-empty lines of output from CPAChecker and
include them as part of your answer to this question.

2

Peer Review ID: 62010989 — enter this when you fill out your peer evaluation via gradescope

It is your responsibility to find a machine on which CPAChecker works properly (but feel
free to check the class forum if you are getting stuck).

Hint: CPAChecker 2.0 should find a violation for Propertyla, verify that Property1lb is
safe, and find a violation for Property2b. If your output does not match that and you are
using version 2.0 then you may not have not set things up correctly.

What is going on when you run CPAChecker using the commands listed? In at most three
paragraphs, summarize your experience with the CPAChecker tool. What does Propertyla
mean? Is tcas.i a reasonable test suite? What has been proved? Did you find CPAChecker
to be a usable tool? You may find the graphical reporting option of CPAChecker to be
helpful here. For full credit, do not restate my lecture on counter-example guided abstraction
refinement; instead, discuss your thoughts and experience using this tool. Focus on threats
to validity (e.g., imagine that you were writing a paper and using this as an experiment)
over usability.

Both your ideas and also the clarity with which they are expressed (i.e., your English
prose) matter. A reader should be able to identify your main claim, the arguments you are
making, and your conclusion.

1, INFO)

thm, INFO)

: FALSE. Property violation (error label in line 1963) found b
ion.
Mo details it the verification run can be found in the direc "./output".
Graphical representation included in the file "./output/Counterex. .1.html".

ith MathSATS i (6 (Nov 9 2020
.0, 64-bit, r t t) and 1. (PredicateC

Predicat tractionRefinementStrate
er.<init>, INFO)
orithm, INFO)
orithm, INFO)
ult: TRUE. No pro ound by chosen guration.

bout the verifica nd in the di sy G o TS
Graphical representation included in the fi /output/Report.html".

Figure 2: Spec 1b

Answer: CPAChecker performers verification of properties of software artifacts by using a
combination of data-flow analysis and verification techniques. These techniques can be con-
figured by the user depending on the precision and scalability desired, as well as dynamically
by the tool itself. The base analysis technique is a dataflow algorithm used for reachability
analysis. Additionally, CEGAR is enabled by default. The outputs above are produced by

3

Peer Review ID: 62010989 enter this when you fill out your peer evaluation via gradescope

Figure 3: Spec 2b

running CPA with the predicateAnalysis flag enabled as well. The command passes the
specification and the program to be verified under this configuration.

Propertyla is the property that UP_separation is above the threshold and the Down_separation
is under the same threshold. The program is a traffic collision avoidance system, so it can
be safely inferred that Propertyla is ensuring the distance between vehicles, in the up and
down direction, is large enough, and specifically under the threshold distance. CPAChecker
found a violation for this property, so it’s proven by counter-example that the traffic control
system does not always prevent vehicles from getting too close. Although CPAChecker was
able to easily verify all the three properties here, I don’t think the program tcas.i is a
good test suite for CPAChecker because the program state size is too small. This can be
observed from the statistics reported by CPAChecker: only two abstractions used, one pred-
icate discovered, and the BDD constructed had only 202 nodes. The program also doesn’t
have any loops as can be seen from the source code and the report from CPAChecker. A
reasonable test suite should emulate industry applications, both in scale and characteristics,
since the goal is to provide useful tools that software engineers can utilize to build correct
applications.

However, CPAChecker was a fairly usable tool in general. The documentation was com-
prehensive and well organized. The tool itself was straightforward to use thanks to the
automating scripts provided. Although we did not have to do it, writing the properties in
the specification language seems trivially easy as well. However, by the same token I am
concerned about the usability of the specification language if the property was not as easily
expressible, as is the case in most industry-scale applications. Additionally, CPAChecker
offers a lot of configuration options with various trade-offs, such as precision and scalability.
Configuring the tool for a specific program thus becomes the software engineer’s responsi-
bility. This additional workload on the software engineer seems too high and likely to be
misused without further guidance from the tool, either through automatic configuration or
thorough documentation.

Submission. Turn in your assignment as a single PDF document via the gradescope

website. Your name and Michigan email address must appear on the first page of your PDF
submission but may not appear anywhere else.

4

Peer Review ID: 62010989 enter this when you fill out your peer evaluation via gradescope

1HWO
- 0 pts Correct

Peer Review ID: 62010989 — enter this when you fill out your peer evaluation via gradescope

Page 6

