Exercise OF-2. Set Theory [5 points]. To Show: There is a 1-1 correspondence, or
bijection between A and B, where A =X — P(Y) and B=P(X xY)

Proceed by proof by example

Define function f: B — A = {(b,{(z,{y|(-,y) € b})|x € X})|b € B}

Function f maps elements in B to elements in A by mapping each set in B, b to a function,
and that function maps all of the elements of x to a set which contains the elements of y for
which that value of x appears in a pair with in b.

To Show: f is an injection
Proceed by proof by contradiction

Define two sets, by, by such that by, by € B, by # by, and f(by) = f(b2)
Since by, by € B, then by definition of B and of powersets, by C (X x Y') and by C (X xY)

Since by # by, then there exists a pair (2/,y') such that either (z',y") € by and (2/,y') ¢ bs
or (z',y') ¢ by and (2/,y') € by. The names by and by are arbitrary, define (2/,y’) such that
(',y) € by and (2, ) & by

Define f;,, as f(b1) = f, such that ¥’ € f;, (2) by definition of f
Define fy, as f(b2) = fu,. Since (2',y') ¢ b, then 3/ ¢ fi, (2').

Because ¢y ¢ fi,(2') and ¢ € fp, ('), then fp,(z') # fio,(2'), and fy, # f,. This means
f(by1) # f(by). This contradicts the statment ”Define two sets, by, by such that by, by € B,
by # be, and f(by) = f(b2)”. Because this statement has been contradicted, this means if
bi,bo € B and by = by, f(b1) = f(b2). This is the definition of an injection. f has been
proved to be an injection.

To Show: f is a surjection
Proceed by proof by contradiction

Define a such that @ € A and a ¢ f(B). Since B is defined as P(X x Y), then there
exists a set in B that includes every subset of {(z,y)|z € X&y € Y}

A consists of the set of all functions that map values of X to P(Y)

The function f maps all elements in B to a value in A such that the value in A is a function
that maps all of the values in X to a subset of Y that includes all values that appear in a
pair with that given value in X in the given value in B.

Since B includes all possible subsets of (X x Y), it includes all possible combinations of

values of y appearing or not appearing in a pair with all possible values of X. Thus, all
possible functions that map values in X to a value in P(Y) must appear as an output

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope



from f, by the definition of f. Because of the previous statement, a cannot exist. Thus,
Va.(a € A&a € f(B) is true. This is the definition of surjection, so f is a surjection.

f has been proven to be both an injection and surjection above. A bijection is a func-
tion that is both an injection and surjection. By the definition of bijection, f is a bijection.
Because f has proven to be a bijection, there does exist a 1-1 correspondence between A and
B.

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope



Exercise 0F-3. Model Checking [10 points]. Propertyla.spc output:

Using the following resource limits: CPU-time limit of 900s
(ResourceLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started
(CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c)
(Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant)

and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy
strategy. (PredicateCPA:PredicateCPARefiner.<init>, INF0)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)

Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1963) found by
chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Propertylb.spc output:

Using the following resource limits: CPU-time limit of 900s
(ResourceLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started
(CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c)
(Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant)

and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy
strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)

4

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope



Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: TRUE. No property violation found by chosen configuration.
More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Report.html".

Property2b.spc output:

Using the following resource limits: CPU-time limit of 900s
(ResourceLimitChecker.fromConfiguration, INFO)

CPAchecker 2.0 / predicateAnalysis (OpenJDK 64-Bit Server VM 11.0.9.1) started
(CPAchecker.run, INFO)

Parsing CFA from file(s) "tcas.i" (CPAchecker.parse, INFO)

Using predicate analysis with MathSAT5 version 5.6.5 (63ef7602814c)
(Nov 9 2020 09:01:58, gmp 6.1.2, gcc 7.5.0, 64-bit, reentrant)
and JFactory 1.21. (PredicateCPA:PredicateCPA.<init>, INFO)

Using refinement for predicate analysis with PredicateAbstractionRefinementStrategy
strategy. (PredicateCPA:PredicateCPARefiner.<init>, INFO)

Starting analysis ... (CPAchecker.runAlgorithm, INFO)
Stopping analysis ... (CPAchecker.runAlgorithm, INFO)

Verification result: FALSE. Property violation (error label in line 1997) found by
chosen configuration.

More details about the verification run can be found in the directory "./output".
Graphical representation included in the file "./output/Counterexample.l.html".

Response:
When I run the CPA checker tool, it is checking if the input program has the ability
to violate the given property. It checks if this property can be violated on any possi-
ble path. More specifically, the given properties are checking if the Up_Separation and
Down_Separation variables are set properly according to the given threshold. propertyla
checks if any possible path includes the error path in the function propertyla. The error
path in propertyla is only reachable if the Up_Separation is greater than or equal to the
threshold and the Down_Separation is below the threshold. Since propertyla results in

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope



a violation, there is a possible path where Up_Separation is greater than or equal to the
threshold and Down_Separation is below the threshold.

Besides propertyla, I was also given propertylb and property2b. Looking at all three
of these properties, I have found that tcas.i is a reasonable test suite. These properties
are aiming to confirm that the Down_Separation and Up_Separation variables have been
set correctly. Using this test suite to verify that there is no possible path that leads to
these improper values for Up_Separation and Down_Separation is reasonable. Even though
propertylb errors when Up_Separation is greater than Down_Separation and property2b
errors when Up_Separation is less than Down_Separation, tcas.1i is still reasonable because
property2a is in a different conditional block than property2b, so any execution path that
includes property2a could not include proeprty2b. This means the two properties do not
violate each other, and the test suite remains reasonable. As a whole, tcas.i is a reason-
able test suite for CPA Checker. The properties illustrate how CPA Checker can guarantee
that a certain value is constrained in all paths according to these properties. CPA checker
can also uses this test suite to illustrate how it shows a counter example when the prop-
erty on this variable is violated. tcas.i is able to demonstrate the ability of CPA checker
to validate a property and demonstrate a counterexample when a property has been violated.

CPA Checker has proved that there are possible paths in the code in which Up_Separation
and Down_Separation violate the expected values relative to a threshold and each other
with respect to propertyla and property2b, but there are no possible paths that violate
propertylb and that property can be considered safe. Specific paths have also been found
that violates propertyla and property2b respectively. This information is helpful in de-
bugging this code, as it lays out a specific case that results in the violated property, and
a developer can use this trace to find the bug. CPA Checker can then be used iteratively
until no possible paths exist that violate propertyla and property2b. CPA Checker has
proved to be a very helpful tool in debugging tcas.i since the properties confirm the val-
ues of member values before they are used elsewhere for functionality relevant to the traffic
collision avoidance. On the whole, CPA Checker is a useful tool, as it can be used to ensure
mission critical variables conform to the expected values. It can be used to ensure that a
developer fixes all possible edge cases for a given property.

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope



1HWO
- 0 pts Correct

Peer Review ID: 62074809 — enter this when you fill out your peer evaluation via gradescope

Page 8



