Recursive Types and Subtyping
One-Slide Summary

• **Recursive types** (e.g., \(\tau \) list) make the typed lambda calculus as powerful as the untyped lambda calculus.

• If \(\tau \) is a **subtype** of \(\sigma \) then any expression of type \(\tau \) can be used in a context that expects a \(\sigma \); this is called **subsumption**.

• A **conversion** is a function that converts between types.

• A subtyping system should be **coherent**.
Recursive Types: Lists

- We want to define **recursive data structures**
- Example: **lists**
 - A list of elements of type τ (a τ list) is *either empty or it is a pair of a τ and a τ list*

 $$\tau \text{ list} = \text{unit} + (\tau \times \tau \text{ list})$$

 - This is a **recursive equation**. We take its solution to be the smallest set of values L that satisfies the equation
 $$L = \{ * \} \cup (T \times L)$$
 where T is the set of values of type τ
 - Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism
Recursive Types

- We introduce a **recursive type constructor** \(\mu \) (mu):

\[
\mu t. \tau
\]

- The type variable \(t \) is bound in \(\tau \)
- This stands for the solution to the equation
 \(t \simeq \tau \) (t is isomorphic with \(\tau \))
- Example: \(\tau \) list = \(\mu t. (\text{unit} + \tau \times t) \)
- This also allows “unnamed” recursive types

- We introduce syntactic (sugary) operations for the conversion between \(\mu t.\tau \) and \([\mu t.\tau/t]\tau\)

- e.g. between “\(\tau \) list” and “unit + (\(\tau \times \tau \) list)”

 \[
 e ::= \ldots \mid \text{fold}_{\mu t.\tau} e \mid \text{unfold}_{\mu t.\tau} e
 \]

 \[
 \tau ::= \ldots \mid \text{t} \mid \mu t.\tau
 \]
Example with Recursive Types

- Lists
 \[\tau \text{ list } = \mu t. \ (\text{unit} + \tau \times t) \]
 \[\text{nil}_\tau = \text{fold}_{\tau \text{ list}} (\text{injl } *) \]
 \[\text{cons}_\tau = \lambda x: \tau. \lambda L: \tau \text{ list}. \ \text{fold}_{\tau \text{ list}} \text{ injr} \ (x, L) \]

- A list length function
 \[\text{length}_\tau = \lambda L: \tau \text{ list}. \]
 \[\text{case } (\text{unfold}_{\tau \text{ list}} \ L) \text{ of } \]
 \[\text{ injl}\ x \Rightarrow 0 \]
 \[\mid \text{ injr}\ y \Rightarrow 1 + \text{length}_\tau \text{ (snd } y) \]

- (At home ...) Verify that
 - \(\text{nil}_\tau : \tau \text{ list} \)
 - \(\text{cons}_\tau : \tau \rightarrow \tau \text{ list} \rightarrow \tau \text{ list} \)
 - \(\text{length}_\tau : \tau \text{ list} \rightarrow \text{int} \)
Type Rules for Recursive Types

\[\Gamma \vdash e : \mu t.\tau \]

\[\Gamma \vdash \text{unfold}_{\mu t.\tau} e : [\mu t.\tau/t]\tau \]

\[\Gamma \vdash e : [\mu t.\tau/t]\tau \]

\[\Gamma \vdash \text{fold}_{\mu t.\tau} e : \mu t.\tau \]

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder
Dynamics of Recursive Types

• We add a new form of values

\[v ::= \ldots \mid \text{fold}_{\mu t.\tau} v \]

- The purpose of fold is to ensure that the value has the recursive type and not its unfolding

• The evaluation rules:

\[
\begin{align*}
\text{fold}_{\mu t.\tau} e & \Downarrow \text{fold}_{\mu t.\tau} v \\
\hline
\text{fold}_{\mu t.\tau} e & \Downarrow \text{fold}_{\mu t.\tau} v \\
\hline
\end{align*}
\]

• The folding annotations are for type checking only
• They can be dropped after type checking
Recursive Types in ML

- The language ML uses a *simple syntactic trick* to avoid having to write the explicit fold and unfold.
- In ML recursive types are *bundled with union types*:

 \[
 \text{type } t = C_1 \text{ of } \tau_1 \mid C_2 \text{ of } \tau_2 \mid \ldots \mid C_n \text{ of } \tau_n
 \]

 (* \(t\) can appear in \(\tau_i\)*)

 - e.g., “type intlist = Nil of unit \mid Cons of int * intlist”

- When the programmer writes `Cons (5, l)`
 - the compiler treats it as `fold_{\text{intlist}} (\text{injr} (5, l))`

- When the programmer writes
 - case `e` of Nil ⇒ … | Cons (h, t) ⇒ …
 the compiler treats it as
 - case `unfold_{\text{intlist}}` `e` of Nil ⇒ … | Cons (h, t) ⇒ …
Encoding Call-by-Value
\(\lambda \)-calculus in \(F_1^\mu \)

- So far, \(F_1 \) was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the \(\lambda x.x \ x \) (self-application)
- The addition of recursive types makes typed \(\lambda \)-calculus as expressive as untyped \(\lambda \)-calculus!
- We could show a conversion algorithm from call-by-value untyped \(\lambda \)-calculus to call-by-value \(F_1^\mu \)
Smooth Transition

- And now, on to subtyping ...
Introduction to Subtyping

- We can view **types** as denoting *sets of values*
- **Subtyping** is a relation between types induced by the *subset relation between value sets*
- Informal intuition:
 - If τ is a subtype of σ then any expression with type τ also has type σ (e.g., $\mathbb{Z} \subseteq \mathbb{R}$, $1 \in \mathbb{Z} \Rightarrow 1 \in \mathbb{R}$)
 - If τ is a subtype of σ then any expression of type τ can be used in a context that expects a σ
 - We write $\tau < \sigma$ to say that τ is a subtype of σ
 - Subtyping is reflexive and transitive
Cunning Plan For Subtyping

- Formalize **Subtyping Requirements**
 - Subsumption

- Create **Safe Subtyping Rules**
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong

- Subtyping **Coercions**
 - When is a subtyping system correct?
Subtyping Examples

• FORTRAN introduced `int < real`
 - `5 + 1.5` is well-typed in many languages

• PASCAL had `[1..10] < [0..15] < int`

• Subtyping is a fundamental property of object-oriented languages
 - If S is a subclass of C then an instance of S can be used where an instance of C is expected
 - “subclassing ⇒ subtyping” philosophy
Subsumption

- Formalize the requirements on subtyping
- Rule of subsumption
 - If $\tau < \sigma$ then an expression of type τ has type σ

 \[
 \Gamma \vdash e : \tau \quad \tau < \sigma
 \]

 \[
 \Gamma \vdash e : \sigma
 \]

- But now type safety may be in danger:
 - If we say that int < (int → int)
 - Then we can prove that “11 8” is well typed!

- There is a way to construct the subtyping relation to preserve type safety
Subtyping in POPL 20

- Decidable Subtyping for Path Dependent Types
- Graduality and Parametricity: Together Again for the First Time
 - By UM's Max New!
- Partial Type Constructors: Or, Making Ad Hoc Datatypes Less Ad Hoc
- What Is Decidable about Gradual Types?
- ... (out of space)

Subtyping in POPL/PLDI 14

- Backpack: Retrofitting Haskell with Interfaces
- Getting F-Bounded Polymorphism into Shape
- Optimal Inference of Fields in Row-Polymorphic Records
- Polymorphic Functions with Set-Theoretic Types (Part 1: Syntax, Semantics, and Evaluation)
- ... (out of space)
Defining Subtyping

• The formal definition of subtyping is by derivation rules for the judgment $\tau < \sigma$

• We start with subtyping on the base types
 - e.g. int < real or nat < int
 - These rules are language dependent and are typically based directly on types-as-sets arguments

• We then make subtyping a preorder (reflexive and transitive)

\[
\begin{align*}
\tau_1 < \tau_2 \quad \tau_2 < \tau_3 \quad \Rightarrow \quad \tau_1 < \tau_3 \\
\tau < \tau \\
\end{align*}
\]

• Then we build-up subtyping for “larger” types
Subtyping for Pairs

• Try

\[
\frac{\tau < \sigma \quad \tau' < \sigma'}{
\tau \times \tau' < \sigma \times \sigma'}
\]

• Show (informally) that whenever a \(s \times s' \) can be used, a \(t \times t' \) can also be used:

• Consider the context \(H = H'[\text{fst } \bullet] \) expecting a \(s \times s' \)
 • Then \(H' \) expects a \(s \)
 • Because \(t < s \) then \(H' \) accepts a \(t \)
 • Take \(e : t \times t' \). Then \(\text{fst } e : t \) so it works in \(H' \)
 • Thus \(e \) works in \(H \)
• The case of “\(\text{snd } \bullet \)” is similar
Subtyping for Records

- Several subtyping relations for records
 - **Depth** subtyping
 \[\tau_i < \tau_i' \]
 \[
 \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} < \{ l_1 : \tau'_1, \ldots, l_n : \tau'_n \}
 \]
 - e.g., \{f1 = int, f2 = int\} < \{f1 = real, f2 = int\}
 - **Width** subtyping
 \[n \geq m \]
 \[
 \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} < \{ l_1 : \tau_1, \ldots, l_m : \tau_m \}
 \]
 - E.g., \{f1 = int, f2 = int\} < \{f2 = int\}
 - Models subtyping in OO languages
 - Or, a **combination** of the two
Subtyping for Functions

\[\tau \prec \sigma \quad \tau' \prec \sigma' \]

\[\tau \to \tau' \prec \sigma \to \sigma' \]

Example Use:

- \texttt{rounded_sqrt} : \mathbb{R} \to \mathbb{Z}
- \texttt{actual_sqrt} : \mathbb{R} \to \mathbb{R}

Since \(\mathbb{Z} \prec \mathbb{R} \), \texttt{rounded_sqrt} < \texttt{actual_sqrt}

So if I have code like this:

```c
float result = rounded\_sqrt(5); // 2
```

... I can replace it like this:

```c
float result = actual\_sqrt(5); // 2.23
```

... and everything will be fine.
This semi-autobiographical novel is one of China's Four Great Classic Novels. It mirrors the rise and fall of the author's family and is presented as a memorial to the women he knew in his youth. It describes 18th-century Chinese society using many characters, including the compassionate Jia Baoyu (賈寶玉) and the sickly and spiritual Lin Daiyu (林黛玉). It also features a sentient stone and romantic rivalry.
This numerical technique for finding solutions to boundary-value problems was initially developed for use in structural analysis in the 1940's. The subject is represented by a model consisting of a number of linked simplified representations of discrete regions. It is often used to determine stress and displacement in mechanical systems.
Computer Science

- This American Turing-award winner is known for his visionary and pioneering contributions to Computer Graphics, and for Sketchpad, an early predecessor to the GUI. He created the first virtual reality display, and a graphics line clipping algorithm. His students include Alan Kay (Smalltalk), Henri Gouraud (shading), Frank Crow (anti-aliasing), and Edwin Catmull (Pixar). When asked, "How could you possibly have done the first interactive graphics program, the first non-procedural programming language, the first object oriented software system, all in one year?" He replied: "Well, I didn't know it was hard."
Subtyping for Functions

\[\tau < \sigma \quad \tau' < \sigma' \]

\[\tau \rightarrow \tau' < \sigma \rightarrow \sigma' \]

• What do you think of this rule?
Subtyping for Functions

\[\tau < \sigma \quad \tau' < \sigma' \]

\[\tau \rightarrow \tau' < \sigma \rightarrow \sigma' \]

- This rule is **unsound**
 - Let \(\Gamma = f : \text{int} \rightarrow \text{bool} \) (and assume \text{int} < \text{real})
 - We show using the above rule that \(\Gamma \vdash f \ 5.0 : \text{bool} \)
 - But this is wrong since 5.0 is *not a valid argument* of \(f \)

\[\begin{align*}
\text{int} < \text{real} & \quad \text{bool} < \text{bool} \\
\Gamma \vdash f : \text{int} \rightarrow \text{bool} & \quad \text{int} \rightarrow \text{bool} < \text{real} \rightarrow \text{bool} \\
\Gamma \vdash f : \text{real} \rightarrow \text{bool} & \quad \Gamma \vdash 5.0 : \text{real} \\
\hline
\Gamma \vdash f \ 5.0 : \text{bool} &
\end{align*} \]
Correct Function Subtyping

\[
\sigma < \tau \quad \tau' < \sigma' \\
\tau \rightarrow \tau' < \sigma \rightarrow \sigma'
\]

We say that \(\rightarrow\) is **covariant** in the result type and **contravariant** in the argument type.

Informal correctness argument:

- Pick \(f : \tau \rightarrow \tau'\)
- \(f\) expects an argument of type \(\tau\)
- It also accepts an argument of type \(\sigma < \tau\)
- \(f\) returns a value of type \(\tau'\)
- Which can also be viewed as a \(\sigma'\) (since \(\tau' < \sigma'\))
- Hence \(f\) can be used as \(\sigma \rightarrow \sigma'\)
More on Contravariance

Consider the subtype relationships:

\[\text{int} \rightarrow \text{real} \]
\[\text{real} \rightarrow \text{real} \]
\[\text{int} \rightarrow \text{int} \]
\[\text{real} \rightarrow \text{int} \]

In what sense \((f \in \text{real} \rightarrow \text{int}) \Rightarrow (f \in \text{int} \rightarrow \text{int})\) ?

- “real \rightarrow int” has a larger domain!
- (recall the set theory \((\text{arg}, \text{result})\) pair encoding for functions)

This suggests that “subtype-as-subset” interpretation is not straightforward

- We’ll return to this issue (after these commercial messages ...)
Subtyping References

- Try covariance

\[
\frac{\tau < \sigma}{\tau \text{ ref} < \sigma \text{ ref}}
\]

Wrong!

- Example: assume \(\tau < \sigma \)
- The following holds (if we assume the above rule):

\[
x : \sigma, \ y : \tau \text{ ref}, \ f : \tau \rightarrow \text{int} \vdash y := x; \ f(!y)
\]

- Unsound: \(f \) is called on a \(\sigma \) but is defined only on \(\tau \)
- Java has covariant arrays!

- If we want covariance of references we can recover type safety with a runtime check for each \(y := x \)
- The actual type of \(x \) matches the actual type of \(y \)
- But this is generally considered a bad design
Subtyping References (Part 2)

- Contravariance?

\[
\frac{\tau < \sigma}{\sigma \text{ ref} < \tau \text{ ref}}
\]

- Example: assume \(\tau < \sigma\)
- The following holds (if we assume the above rule):

\[
x : \sigma, \ y : \sigma \text{ ref}, \ f : \tau \rightarrow \text{int} \vdash y := x; \ f(!y)
\]

- Unsound: \(f\) is called on a \(\sigma\) but is defined only on \(\tau\)

- References are invariant
 - No subtyping for references (unless we are prepared to add run-time checks)
 - hence, arrays should be invariant
 - hence, mutable records should be invariant
Subtyping Recursive Types

• Recall $\tau \text{ list} = \mu t. (\text{unit} + \tau \times t)$
 - We would like $\tau \text{ list} < \sigma \text{ list}$ whenever $\tau < \sigma$

• Covariance?
 $$\frac{\tau < \sigma}{\mu t. \tau < \mu t. \sigma}$$

Wrong!

• This is wrong if t occurs contravariantly in τ
• Take $\tau = \mu t. t \rightarrow \text{int}$ and $\sigma = \mu t. t \rightarrow \text{real}$
• Above rule says that $\tau < \sigma$
• We have $\tau \sim \tau \rightarrow \text{int}$ and $\sigma \sim \sigma \rightarrow \text{real}$
• $\tau < \sigma$ would mean covariant function type!
• How can we get safe subtyping for lists?
Subtyping Recursive Types

- The correct rule:
 \[
 t < s \\
 \vdash \\
 \tau < \sigma \\
 \mu t. \tau < \mu s. \sigma
 \]
 Means assume \(t < s \) and use that to prove \(\tau < \sigma \)

- We add as an assumption that the type variables stand for types with the desired subtype relationship
 - Before we assumed they stood for the same type!

- Verify that now subtyping works properly for lists

- There is no subtyping between \(\mu t. t \rightarrow \text{int} \) and \(\mu t. t \rightarrow \text{real} \) (recall:
 \[
 \tau < \sigma \\
 \mu t. \tau < \mu t. \sigma
 \]
 Wrong!\]
Conversion Interpretation

- The **subset interpretation** of types leads to an **abstract modeling** of the operational behavior
 - e.g., we say int < real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns)
 - The int needs to be converted to a real

- We can get closer to the “machine” with a **conversion interpretation** of subtyping
 - We say that $\tau < \sigma$ when there is a **conversion function** that converts values of type τ to values of type σ
 - Conversions also help explain issues such as contravariance
 - But: must be careful with conversions
Conversions

• Examples:
 - nat < int with conversion λx.x
 - int < real with conversion 2’s comp → IEEE

• The subset interpretation is a special case when all conversions are identity functions

• Write “τ < σ ⇒ C(τ, σ)” to say that C(τ, σ) is the conversion function from subtype τ to σ
 - If C(τ, σ) is expressed in F₁, then C(τ, σ) : τ → σ
Issues with Conversions

- Consider the expression “printreal 1” typed as follows:

\[
\begin{align*}
\text{printreal} &: \text{real} \to \text{unit} \\
1 &: \text{int} \quad \text{int} < \text{real} \\
\text{printreal} 1 &: \text{unit}
\end{align*}
\]

we convert 1 to real: printreal \((C(\text{int,real}) \ 1) \)

- But we can also have another type derivation:

\[
\begin{align*}
\text{printreal} &: \text{real} \to \text{unit} \\
\text{real} &: \text{unit} < \text{int} \to \text{unit} \\
\text{printreal} &: \text{int} \to \text{unit} \\
1 &: \text{int} \\
\text{printreal} 1 &: \text{unit}
\end{align*}
\]

with conversion “(C(real -> unit, int -> unit) printreal) 1”

- Which one is right? What do they mean?
Introducing Conversions

• We can compile a language with subtyping into one without subtyping by introducing conversions.

• The process is similar to type checking:

\[\Gamma \vdash e : \tau \Rightarrow e \]

- Expression \(e \) has type \(\tau \) and its conversion is \(e \).

• Rules for the conversion process:

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \Rightarrow e_1 \quad & \quad \Gamma \vdash e_2 : \tau_2 \Rightarrow e_2 \\
\hline
\Gamma \vdash e_1 \ e_2 : \tau \Rightarrow e_1 \ e_2 \\
\Gamma \vdash e : \tau \Rightarrow \underline{e} \quad & \quad \tau < \sigma \Rightarrow C'(\tau, \sigma) \\
\hline
\Gamma \vdash e : \sigma \Rightarrow C'(\tau, \sigma)\underline{e}
\end{align*}
\]
Coherence of Conversions

• Questions and Concerns:
 - Can we build *arbitrary subtype relations* just because we can write conversion functions?
 - Is `real < int` just because the “floor” function is a conversion?
 - *What is the conversion* from “real→int” to “int→int”?

• What are the restrictions on conversion functions?

• A system of conversion functions is *coherent* if whenever we have \(\tau < \tau' < \sigma \) then
 - \(C(\tau, \tau) = \lambda x. x \)
 - \(C(\tau, \sigma) = C(\tau', \sigma) \circ C(\tau, \tau') \) (*= composed with*)
 - Example: if `b` is a bool then `(float)b == (float)((int)b)`
 - otherwise we end up with confusing uses of subsumption
Example of Coherence

• We want the following subtyping relations:
 - int < real ⇒ \(\lambda x : \text{int}. \ \text{toIEEE} \ x \)
 - real < int ⇒ \(\lambda x : \text{real}. \ \text{floor} \ x \)

• For this system to be coherent we need
 - \(C(\text{int, real}) \circ C(\text{real, int}) = \lambda x. x \), and
 - \(C(\text{real, int}) \circ C(\text{int, real}) = \lambda x. x \)

• This requires that
 - \(\forall x : \text{real}. \ (\text{toIEEE} (\text{floor} x) = x) \)
 - which is not true
Building Conversions

- We start from conversions on basic types

\[
\begin{align*}
\tau < \tau & \Rightarrow \lambda x : \tau. x \\
\tau_1 < \tau_2 & \Rightarrow \text{C}(\tau_1, \tau_2) \\
\tau_2 < \tau_3 & \Rightarrow \text{C}(\tau_2, \tau_3) \\
\tau_1 < \tau_3 & \Rightarrow \text{C}(\tau_2, \tau_3) \circ \text{C}(\tau_1, \tau_2) \\
\tau_1 < \sigma_1 & \Rightarrow \text{C}(\tau_1, \sigma_1) \\
\sigma_2 < \sigma_2 & \Rightarrow \text{C}(\tau_2, \sigma_2) \\
\tau_1 \times \tau_2 < \sigma_1 \times \sigma_2 & \Rightarrow \lambda x : \tau_1 \times \tau_2. (\text{C}(\tau_1, \sigma_1)(\text{fst}(x)), \text{C}(\tau_2, \sigma_2)(\text{snd}(x))) \\
\tau_1 \times \tau_2 < \tau_1 & \Rightarrow \lambda x : \tau_1 \times \tau_2. \text{fst}(x) \\
\sigma_1 < \tau_1 & \Rightarrow \text{C}(\sigma_1, \tau_1) \\
\sigma_2 < \sigma_2 & \Rightarrow \text{C}(\tau_2, \sigma_2) \\
\tau_1 \rightarrow \tau_2 < \sigma_1 \rightarrow \sigma_2 & \Rightarrow \lambda f : \tau_1 \rightarrow \tau_2. \lambda x : \sigma_1. \text{C}(\tau_2, \sigma_2)(f(\text{C}(\sigma_1, \tau_1)(x)))
\end{align*}
\]
Comments

- With the conversion view we see why we do not necessarily want to impose antisymmetry for subtyping
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - $\tau < \tau'$ and also $\tau' < \tau$ (are interconvertible) but not necessarily $\tau = \tau'$
 - e.g., Modula-3 has packed and unpacked records

- We’ll encounter subtyping again for object-oriented languages
 - Serious difficulties there due to recursive types
Homework

- Homework 5, Homework 6, etc.