Them's fightin' words, mister...unless 'n, o'course, them's just semantics.
Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics
 - Reductions, Redexes, and Contexts
• Applications and Recent Research
Bookkeeping

- Hookkeeper (wire ring that holds a fly-fishing hook in place)
- Tattooee
- Sweettooth
- Any others?
60 Second Summary - Semantics

• A **formal semantics** is a system for assigning **meanings** to **programs**.
• For now, programs are IMP commands and expressions.
• In **operational semantics** the meaning of a program is “what it evaluates to”
• Any opsem system gives **rules of inference** that tell you how to evaluate programs
Summary - Judgments

- Rules of inference allow you to derive judgments ("something that is knowable") like
 \[\langle e, \sigma \rangle \Downarrow n \]
 - In state \(\sigma \), expression \(e \) evaluates to \(n \)
 \[\langle c, \sigma \rangle \Downarrow \sigma' \]
 - After evaluating command \(c \) in state \(\sigma \) the new state will be \(\sigma' \)

- State \(\sigma \) maps variables to values (\(\sigma : L \rightarrow Z \))
- Inferences equivalent up to variable renaming:
 \[\langle c, \sigma \rangle \Downarrow \sigma' \quad === \quad \langle c', \sigma_7 \rangle \Downarrow \sigma_8 \]
Notation: Rules of Inference

- We express the evaluation rules as **rules of inference** for our judgment
 - called the **derivation rules** for the judgment
 - also called the **evaluation rules** (for operational semantics)
- In general, we have **one rule for each language construct**:

\[
\begin{align*}
<e_1, \sigma> & \Downarrow n_1 & <e_2, \sigma> & \Downarrow n_2 \\
<e_1 + e_2, \sigma> & \Downarrow n_1 + n_2
\end{align*}
\]

This is the only rule for \(e_1 + e_2 \)
Evaluation By Inversion

- We must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively
- If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp.
Summary - Rules

- **Rules of inference** list the hypotheses necessary to arrive at a **conclusion**

\[
\begin{align*}
\langle x, \sigma \rangle \downarrow \sigma(x) & \quad \langle e_1, \sigma \rangle \downarrow n_1 \quad \langle e_2, \sigma \rangle \downarrow n_2 \\
\langle e_1 - e_2, \sigma \rangle \downarrow n_1 \text{ minus } n_2
\end{align*}
\]

- A **derivation** involves interlocking (well-formed) instances of rules of inference

\[
\begin{align*}
\langle 4, \sigma_3 \rangle \downarrow 4 & \quad \langle 2, \sigma_3 \rangle \downarrow 2 \\
\langle 4 \times 2, \sigma_3 \rangle \downarrow 8 & \quad \langle 6, \sigma_3 \rangle \downarrow 6 \\
\langle (4 \times 2) - 6, \sigma_3 \rangle \downarrow 2
\end{align*}
\]
Operational Semantics

Small-Step Semantics

Sherlock saw the man using binoculars.
Provability

• Given an opsem system, \(\langle e, \sigma \rangle \Downarrow n \) is **provable if there exists** a well-formed derivation with \(\langle e, \sigma \rangle \Downarrow n \) as its conclusion

 - “well-formed” = “every step in the derivation is a valid instance of one of the rules of inference for this opsem system”

 - “\(\vdash \langle e, \sigma \rangle \Downarrow n \)” = “it is provable that \(\langle e, \sigma \rangle \Downarrow n \)”

• We would like truth and provability to be closely related
• “A Vorlon said understanding is a three-edged sword. Your side, their side and the truth.”
 - Sheridan, Babylon 5, Into The Fire

• We will not formally define “truth” yet

• Instead we appeal to your intuition
 - $<2+2, \sigma> \downarrow 4$ -- should be true
 - $<2+2, \sigma> \downarrow 5$ -- should be false
Completeness

• A proof system (like our operational semantics) is **complete** if every true judgment is provable.

• If we *replaced* the subtract rule with:

\[
\begin{align*}
\langle e_1, \sigma \rangle \Downarrow n & \quad \langle e_2, \sigma \rangle \Downarrow 0 \\
\langle e_1 - e_2, \sigma \rangle & \Downarrow n
\end{align*}
\]

• Our opsem would be **incomplete**:
\[
\langle 4 - 2, \sigma \rangle \Downarrow 2 \quad -- \text{true but not provable}
\]
Consistency

• A proof system is consistent (or sound) if every provable judgment is true.

• If we replaced the subtract rule with:

\[
\begin{align*}
<e_1, \sigma> &\Downarrow n_1 & <e_2, \sigma> &\Downarrow n_2 \\
<e_1 - e_2, \sigma> &\Downarrow n_1 + 3
\end{align*}
\]

• Our opsem would be inconsistent (or unsound):

- \(<6-1, \sigma> \Downarrow 9\) -- false but provable

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.”

-- Ralph Waldo Emerson, "Essays. First Series. Self-Reliance."
Desired Traits

• Typically a system (of operational semantics) is always **complete** (unless you forget a rule)

• If you are not careful, however, your system may be **unsound**

• Usually that is **very bad**
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however

• In this class **your work should be complete and consistent** (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"?

Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.
With That In Mind

• We now return to opsem for IMP

\[
\text{Def: } \sigma[x:=n](x) = n \\
\sigma[x:=n](y) = \sigma(y)
\]

\[
\begin{align*}
<e, \sigma> & \Downarrow n \\
<x := e, \sigma> & \Downarrow \sigma[x := n]
\end{align*}
\]

\[
\begin{align*}
<b, \sigma> & \Downarrow \text{false} \\
<\text{while } b \text{ do } c, \sigma> & \Downarrow \sigma
\end{align*}
\]

\[
\begin{align*}
<b, \sigma> & \Downarrow \text{true} \\
<c; \text{while } b \text{ do } c, \sigma> & \Downarrow \sigma' \\
<\text{while } b \text{ do } c, \sigma> & \Downarrow \sigma'
\end{align*}
\]
Command Evaluation Notes

• The order of evaluation is important
 - c_1 is evaluated before c_2 in $c_1; c_2$
 - c_2 is not evaluated in “if true then c_1 else c_2”
 - c is not evaluated in “while false do c”
 - b is evaluated first in “if b then c_1 else c_2”
 - this is explicit in the evaluation rules

• Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time
Command Evaluation Trials

• The evaluation rules are not syntax-directed
 - See the rules for while, \(\wedge\)
 - The evaluation might not terminate

• Recall: the evaluation rules suggest an interpreter

• Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

• It is hard to talk about commands whose evaluation does not terminate
 - When there is no \(\sigma' \) such that \(<c, \sigma> \downarrow \sigma'\)
 - But that is true also of ill-formed or erroneous commands (in a richer language)!

• It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)
Semantics Solution

- **Small-step semantics** addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states
- Not quite as easy as large-step natural semantics, though
- **Contextual semantics** is a small-step semantics where the atomic execution step is a rewrite of the program
Contextual Semantics

• We will define a relation \(<c, \sigma> \rightarrow <c', \sigma'>\)
 - \(c'\) is obtained from \(c\) via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 • one from which we cannot make further progress
 - For IMP the terminal command is “skip”
 - As long as the command is not “skip” we can make further progress
 • some commands never reduce to skip (e.g., “while true do skip”)

#20
Contextual Derivations

• In small-step contextual semantics, derivations are not tree-structured

• A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[<x+(7-3), \sigma> \rightarrow <x+(4), \sigma> \rightarrow <5+4, \sigma> \rightarrow <9, \sigma>\]
What is an Atomic Reduction?

- What is an atomic reduction step?
 - Granularity is a choice of the semantics designer
- How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue
Columbian Spanish Literature

• This Columbian novelist received the Nobel Prize for Literature and is viewed as one of the most significant authors in the 20th century. His works include *Cien años de soledad*, *Crónica de una muerte anunciada* and *El amor en los tiempos del cólera*. He helped popularize the magical realism literary style.

• Bonus: What is Macondo?
Correcting English Prose

4. Lizzy drank in the sight of him like a thirst craven man consumes water.

421. "I go here, silly," said Kimi with a proud expression. "And how I might ask? Your scores were not legible for this school."

312. Every member of the Thespians, or anyone who has ever acted in one of our school plays was a pre-Madonna, mellow-dramatic; over-actor and I didn't want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence evil. But Livvy doesn't she see's something no one else does.
Q: Computer Science

• This American computer scientist won the 2009 Turing award for her work on design of programming languages and software methodology that led to the development of object-oriented programming. In addition to the first high-level language to support distributed programs and notable results on Byzantine fault tolerance, she is perhaps best known for her formulation of object-oriented subtyping.

• Bonus: What is her eponymous principle?
Redexes

- A **redex** is a syntactic expression or command that can be reduced (transformed) in one atomic step.
- Redexes are defined via a grammar:
 \[r ::= x \quad (x \in L) \]
 \[| \ n_1 + n_2 \]
 \[| \ x := n \]
 \[| \ \text{skip;} \ c \]
 \[| \ \text{if true then } c_1 \ \text{else } c_2 \]
 \[| \ \text{if false then } c_1 \ \text{else } c_2 \]
 \[| \ \text{while } b \ \text{do } c \]
- For brevity, we mix exp and command redexes.
- Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is.
Local Reduction Rules for IMP

- One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'>\)
 - means that in state \(\sigma\), the redex \(r\) can be replaced in one step with the expression \(e\)

\(<x, \sigma> \rightarrow <\sigma(x), \sigma>\>

\(<n_1 + n_2, \sigma> \rightarrow <n, \sigma>\>

where \(n = n_1\) plus \(n_2\)

\(<n_1 = n_2, \sigma> \rightarrow <true, \sigma>\>

if \(n_1 = n_2\)

\(<x := n, \sigma> \rightarrow <skip, \sigma[x := n]>\>

\(<\text{skip}; c, \sigma> \rightarrow <c, \sigma>\>

\(<\text{if true then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_1, \sigma>\>

\(<\text{if false then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_2, \sigma>\>

\(<\text{while } b \text{ do } c, \sigma> \rightarrow\>

\(<\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip}, \sigma>\>
The Global Reduction Rule

• General idea of contextual semantics
 - Decompose the current expression into the redex-to-reduce-next and the remaining program
 • The remaining program is called a context
 - Reduce the redex “r” to some other expression “e”
 - The resulting (reduced) expression consists of “e” with the original context
As A Picture (1)

(Context)
...
x := 2+2 ;
print x

Step 1: Find The Redex
As A Picture (2)

(Context)

... x := 2+2 (redex) ; print x

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (3)

(Context)
...
\(x := 2+2 \) (redex) ;
print \(x \)

4 (reduced)

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (4)

(Context)

...

x := 4 ;

print x

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

• We use H to range over contexts
• We write H[r] for the expression obtained by placing redex r in context H
• Now we can define a small step

\[
\text{If } <r, \sigma> \rightarrow <e, \sigma'> \text{ then } <H[r], \sigma> \rightarrow <H[e], \sigma'>
\]
Contexts

• A context is like an expression (or command) with a marker • in the place where the redex goes

• Examples:
 - To evaluate “(1 + 3) + 2” we use the redex 1 + 3 and the context “• + 2”
 - To evaluate “if x > 2 then c₁ else c₂” we use the redex x and the context “if • > 2 then c₁ else c₂”
Context Terminology

• A context is also called an “expression with a hole”

• The marker • is sometimes called a hole

• H[r] is the expression obtained from H by replacing • with the redex r

“Avoid context and specifics; generalize and keep repeating the generalization.”
-- Jack Schwartz
Contextual Semantics Example

• \(x := 1 ; x := x + 1 \) with initial state \([x := 0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td><(x := 1; x := x+1, [x := 0])></td>
<td>(x := 1)</td>
<td>•; (x := x+1)</td>
</tr>
<tr>
<td><(\text{skip}; x := x+1, [x := 1])></td>
<td>(\text{skip}; x := x+1)</td>
<td>•</td>
</tr>
<tr>
<td><(x := x+1, [x := 1])></td>
<td>(x)</td>
<td>(x := \bullet + 1)</td>
</tr>
</tbody>
</table>

What happens next?
Contextual Semantics Example

- $x := 1 ; x := x + 1$ with initial state $[x := 0]$

<table>
<thead>
<tr>
<th>$<\text{Comm, State}>$</th>
<th>Redex \bullet</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<x := 1; x := x+1, [x := 0]>$</td>
<td>$x := 1$</td>
<td>$\bullet; x := x+1$</td>
</tr>
<tr>
<td>$<\text{skip}; x := x+1, [x := 1]>$</td>
<td>$\text{skip}; x := x+1$</td>
<td>\bullet</td>
</tr>
<tr>
<td>$<x := x+1, [x := 1]>$</td>
<td>x</td>
<td>$x := \bullet + 1$</td>
</tr>
<tr>
<td>$<x := 1 + 1, [x := 1]>$</td>
<td>$1 + 1$</td>
<td>$x := \bullet$</td>
</tr>
<tr>
<td>$<x := 2, [x := 1]>$</td>
<td>$x := 2$</td>
<td>\bullet</td>
</tr>
<tr>
<td>$<\text{skip}, [x := 2]>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More On Contexts

• **Contexts** are defined by a grammar:

\[
H ::= \bullet \mid n + H \\
| H + e \\
| x := H \\
| \text{if } H \text{ then } c_1 \text{ else } c_2 \\
| H; c
\]

• A context has **exactly one** \(\bullet \) marker

• A redex is never a value
What’s In A Context?

- Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
- In the last two cases the decomposition is done recursively
- Check that in each case the solution is unique
Unique Next Redex: Proof By Handwaving Examples

• Suppose $c = \text{"}c_1; c_2\text{"}$. Then either
 - $c_1 = \text{skip}$ and then $c = H[\text{skip}; c_2]$ with $H = \bullet$
 - or $c_1 \neq \text{skip}$ and then $c_1 = H[r]$; so $c = H'[r]$ with $H' = H; c_2$

• Suppose $c = \text{"}if \ b \ then \ c_1 \ else \ c_2\text{"}$. Then
 - either $b = \text{true}$ or $b = \text{false}$ and then $c = H[r]$ with $H = \bullet$
 - or b is not a value and $b = H[r]$; so $c = H'[r]$ with $H' = \text{if } H \ then \ c_1 \ else \ c_2$
Context Decomposition

• Decomposition theorem:

 If c is not “skip” then there exist unique H and r such that c is H[r]

 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of \land?
 - Define the following contexts, redexes and local reduction rules
 \[
 H ::= ... \mid H \land b_2
 \]
 \[
 r ::= ... \mid \text{true} \land b \mid \text{false} \land b
 \]
 \[
 <\text{true} \land b, \sigma> \rightarrow <b, \sigma>
 \]
 \[
 <\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>
 \]
 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

• Can view \bullet as representing the **program counter**

• The advancement rules for \bullet are non-trivial
 - At each step the **entire command** is decomposed
 - This makes contextual semantics **inefficient to implement directly**

• The major advantage of contextual semantics: it allows a **mix** of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study **memory allocation**, etc.
Reading **Real-World Examples**

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

 \[
 P \vdash \langle E[\text{obj.fd}], S \rangle \leftrightarrow \langle E[\mathcal{F}(fd)], S \rangle \\
 \text{where } \mathcal{F} = \text{fields}(S(\text{obj})) \text{ and } fd \in \text{dom}(\mathcal{F})
 \]

 \[
 P \vdash \langle E[\text{obj.fd}], S \rangle \rightarrow \langle E[\mathcal{F}(fd)], S \rangle \\
 \text{where } \mathcal{F} = \text{fields}(S(\text{obj})) \text{ and } fd \in \text{dom}(\mathcal{F})
 \]

- They use “E” for context, we use “H”
- They use “S” for state, we use “σ”
Lost In Translation

- \(P \vdash <H[\text{obj.f}d], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 - Where \(F=\text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)

- They have “\(P \vdash \)”, but that just means “it can be proved in our system given \(P \)”

- \(<H[\text{obj.f}d], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 - Where \(F=\text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)
Lost In Translation 2

- $\langle H[\text{obj}.fd], \sigma \rangle \rightarrow \langle H[F(fd)], \sigma \rangle$
 - Where $F =$ fields($\sigma(obj)$) and $fd \in \text{dom}(F)$

- They model objects (like obj), but we do not (yet) - let’s just make fd a variable:

- $\langle H[fd], \sigma \rangle \rightarrow \langle H[F(fd)], \sigma \rangle$
 - Where $F = \sigma$ and $fd \in L$

- Which is just our variable-lookup rule:

- $\langle H[fd], \sigma \rangle \rightarrow \langle H[\sigma(fd)], \sigma \rangle$ (when $fd \in L$)
“Sleep On It”

“The Semantics Pillow”

1. \[e_0 \rightarrow e'_0 \]
 \[e_0 + e_1 \rightarrow e'_0 + e_1 \]

2. \[e_1 \rightarrow e'_1 \]
 \[m_0 + e_1 \rightarrow m_0 + e'_1 \]

3. \[m_0 + m_1 \rightarrow m_2 \]

“Learn while you sleep!”

Only $19.95
Homework

- HW0 Peer Review Due Today
- Homework 1 Due soon
- Reading!