
Advanced Programming Languages
Homework Assignment 6F and 6C

EECS 590

Optional Partners. You may optionally work with exactly one partner of your choice. If
you do work with exactly one partner, the two of you together must complete 150% as much
as a single person. The assignment details explain how much is required for one person.
If you work with a partner, do half again as much (which is defined formally below in the
assignment description and often involves picking some other aspect). Choose one of the
following:

1. Work alone, completing the assignment as described below.

2. Work with exactly one partner, collectively completing 150% as much as a single person.
Each element of the assignment below has a concluding note about what is expected
for partners.

The course staff cannot be responsible for partners that disappear or drop the course at
the last minute. If your partner becomes unavailable, you can fall back on submitting the
standard singleton 100% of the assignment.

Logistics. The previous homework assignment was largely theoretical. This homework
assignment is largely practical. There is no peer review component for this homework as-
signment.

In class we have covered operational semantics (large- and small-step), axiomatic seman-
tics (including verification condition generation) and some abstract interpretation. You are
now qualified to pull ideas from many of those techniques together and create a non-trivial
program analysis.

This analysis will target off-the-shelf C programs. We will use the CIL library to parse and
process C programs into an IMP-like OCaml representation. We will use the Z3 automated
theorem prover of de Moura and Bjorner to reason about infeasible paths or otherwise decide
questions of logic.

Our analysis will automatically generate test inputs that will force the subject program
to cover all of its branches. This is undecidable in general (by direct reduction with the
halting problem). Automated test input (and test case) generation is a research problem
that is receiving quite a bit of attention; see the papers on the course webpage for more

1



information. This problem is also known as program reachability, the same issue we discussed
in the context of software model checking.

I have provided an introductory analysis. It performs flow-sensitive, path-sensitive,
context-insensitive, intraprocedural path enumeration, symbolic execution, and constraint
generation to create test inputs. Unlike previous assignments, for this assignment you may
change anything in the main file you like.

Initial steps:

1. Compile tigen, our test-input generation program. See the file README-GradPL.txt in
the code archive for details. Reproducing the systems research results of others is a
key part of modern research. Getting the code up and running is explicitly part of this
assignment and is your responsibility. Talk to your friends, post on the forum, scour
the Internet — do whatever it takes to make it happen.

2. Take a look at some of the included small subject programs. Think about how you
would generate test inputs to reach and cover all of their branches. Then run tigen
and inspect the test cases it actually creates.

As a sanity check, on my machine, the report.txt output is:

array-1.i.c : reached 0 / 4

array-2.i.c : reached 8 / 8

array-3.i.c : reached 0 / 10

array-4.i.c : reached 1 / 4

balanced.i.c : reached 4 / 8

bsearch-1.i.c : reached 4 / 8

bsearch-2.i.c : reached 6 / 8

bubblesort.i.c : reached 5 / 6

conway.i.c : reached 6 / 6

dotprod.i.c : reached 2 / 2

eq-index.i.c : reached 6 / 6

fibo.i.c : reached 6 / 6

float-1.i.c : reached 2 / 6

float-2.i.c : reached 7 / 8

float-3.i.c : reached 5 / 8

float-4.i.c : reached 4 / 14

float-5.i.c : reached 1 / 4

gcd.i.c : reached 4 / 4

hailstone.i.c : reached 5 / 6

leven.i.c : reached 7 / 10

many-features.i.c : reached 0 / 8

matmul.i.c : reached 3 / 6

matrix-path.i.c : reached 0 / 8

mymin-1.i.c : reached 7 / 8

roman.i.c : reached 21 / 28

selsort.i.c : reached 6 / 6

2



simple-1.i.c : reached 2 / 2

simple-2.i.c : reached 4 / 4

simple-3.i.c : reached 8 / 8

simple-4.i.c : reached 5 / 6

string.i.c : reached 0 / 8

struct-1.i.c : reached 3 / 10

struct-2.i.c : reached 0 / 8

struct-3.i.c : reached 0 / 18

struct-float.i.c : reached 0 / 16

subseqsum.i.c : reached 0 / 12

Your output may be slightly different, but if you are reaching significantly fewer
branches, you may be encountering a local setup or installation concern.

3. Read some of the papers associated with this homework on the course webpage.

This exercise is open-ended. You must do something to convince me that you have
an integrated understanding of the theory and practice of using PL research techniques to
analyze programs. More concretely, you must modify tigen.ml so that it is “better” in a
way of your choosing. As a rough estimate, I would expect a diff of your modified source
to indicate at least 200 changed lines. Then you must write up a formal three- or four-
paragraph explanation of what you did and why it was worthwhile. Your explanation should
motivate your changes and explain why the problem you tackled is important.

Any of the following could suffice:

• Modify tigen so that it handles string-valued data by integrating with the DPrle external
decision procedure.

• Modify tigen so that it handles loops in an intelligent manner. For example, you might
use a dataflow-style join – if it is to possible reach the loop head knowing x = 0∧y = 55
and it is also possible to reach the loop head knowing x = 5∧y = 55, you should process
the loop in a state where y = 55 (or, better yet, x ≥ 0 ∧ y = 55).

• Modify tigen so that it handles arrays. Note that Z3 already has built-in handling for
the McCarthy select and update axioms, but you’ll have to integrate it.

• Modify tigen so that it handles the heap (i.e., dynamic pointers) more precisely. For
example, you might introduce an explicit handling of malloc (which either returns 0
or a new non-zero address that is distinct from all previous addresses) and free.

• Modify tigen so that it uses computed alias information. CIL comes with John Kodu-
mal’s implementation of Manuvir Das’ One-Level Flow alias analysis to aid in reasoning
about pointers, but it is not currently used in this project. As a hint, alias analysis in-
formation leads directly to “distinctness” constraints. This would be a relatively short
change, so you should also do something else and/or provide compelling examples to
show that the alias analysis really helps.

3



• Modify tigen so that its performance and scalability are non-trivially improved. This
typically requires more “engineering” than “theory”, but getting an analysis to run
on millions of lines of code (e.g., the Linux kernel, SQL Server) is very difficult. Your
modified version should run significantly faster on large benchmarks of your choosing.

• Modify or post-process tigen so that the performance of its generated test inputs is
non-trivially improved. That is, perform test suite selection or test suite reduction or
even time-aware test suite prioritization. Ideally we would like the smallest number
of test cases that require the smallest amount of wall-clock time to execute but still
covert the greatest fraction of the subject programs. This is a reasonable project if
you are more interested in CS theory than in systems hackery.

• Modify tigen to handle record data types (e.g., structures and/or unions).

• Modify tigen to handle floating-point data types. In practice, this ends up being
insufficient for full credit for most students, as they “merely” use Z3’s Real datatype
without considering the differences between real numbers in mathematics and IEEE
floating point numbers. Think carefully before you select this option.

• Modify tigen to accept additional constraints provided by the user (e.g., pre- and post-
conditions on the subject program, an external constraint language that you parse at
the beginning, or whatever you like). For example, you may want to specify that you’re
only interested in test inputs involving negative numbers. Part of a larger project might
be to have tigen output multiple diverse test inputs that cover the same path.

• Modify tigen to be context-sensitive. You might compute the call graph and analyze the
functions in reverse dependency order. You might do a full-blown CFL reachability
analysis. Or you might just start in the target function and take very long paths
through the entire reachable program. Handling recursion is a related topic.

• Modify tigen so that it implements key ideas from Godefroid et al.’s DART project.
This would presumably involve some notion of random test input generation (see their
paper).

• Modify tigen so that it implements key ideas from Sen et al.’s CUTE project. This
would presumably involve some notion of concolic testing (see their paper).

• Modify tigen so that it implements key ideas from Lakhotia et al.’s AUSTIN project.
This would presumably involve some of the empirical optimizations and best practices
described in their paper.

If you work with a partner, the two of you must do 150% of the code changing described
above. This may involve fully completing one big task and also completing one small task.
This may instead involve fully completing one big task and partially completing another big
task.

4



Exercise 6C. Coding. Submit your modified tigen.ml file. In addition, submit two new
subject programs in the style of the subject programs already included. Your homework
should perform well on those new subject programs.

If you work with a partner, the two of you must do 150% of the work described above
for 6C.

Exercise 6F-1. Bookkeeping [4 points].

1. How did this assignment go? What were the high points and the low points? We’re
interested in hearing your opinions, and this is also an opportunity to speak directly
about any meta-level concerns that arose during this assignment. For example, if you
ran out of time, you might feel more comfortable mentioning that here than in the
formal section of the report.

If you work with a partner, the two of should either answer separately or give a longer
joint answer for 6F-1.

Exercise 6F-2. Report [22 points]. Provide a multi-paragraph report describing your
changes (as above) as well as any other compelling figures or charts relevant to supporting
your case.

Recall that you should demonstrate that you did something useful with respect to this
homework’s goals of using program analysis techniques either (1) in your research or (2) to
understand programs or (3) to find bugs or (4) to verify properties of programs or (5) to
make related tools more usable.

If you work with a partner, the two should do 150% of the work described above (which
necessitates a commensurately longer report, etc.).

Exercise 6F-3. Research Communication [4 points]. Compose a brief (one- or two-
paragraph) email to one of the authors of the tools or papers you used in this homework and
include the text of it in your submission. In addition, indicate whether you are willing to
use your name or whether you would like to be portrayed as an anonymous student in my
class. I will check off the fact that you wrote something and potentially forward it along.
You can comment on any aspect of your experience with their work — your comments need
not be positive. For example, you might ask Bjorner why Z3 doesn’t handle multiplication,
complain to Kodumal or Das that OLF isn’t precise enough for C programs, or tell Necula
or McPeak that you find CIL’s memory lvalue semantics unintuitive. You might even write
to Lakhotia and ask him how he managed to scale to large programs given all the difficulties
you observed when wrestling with C. If you do offer criticism, strive to make it constructive
by commenting on what you would have liked to have seen instead or how you might like to
see things improved if the time were available. If you absolutely cannot think of anything
to say, thank them for making their tools available and let them know that you used them
with success. Even minor comments about documentation or a fresh-eyed perspective on
usability can be helpful.

5



The purpose of this non-standard exercise is two-fold.

• First, I have observed multiple instances in this class of a student being unwilling to
contact the author of some publicly-available project. While I realize that you don’t
want to be known as a whiny grad student who didn’t bother to read the manual, it’s
also not worth wasting your time to try to decipher a research prototype when the
author is only an email away. I think it would legitimately be good practice for many
of you to correspond with a random researcher. You may not get a response, but the
sky won’t fall. (In addition, I know the people involved in all of this software and they
are all quite friendly.)

• Second, internships are not the only way to build up contacts and networks. It is en-
tirely reasonable to grow a friendship or collaboration with someone over time, starting
with a lowly email about research, moving on to chatting a conferences, and eventually
working together on new research. You’re rarely certain of exactly where you will end
up or what you will be working on, so it behooves you to know as many people out
there as possible.

If you work with a partner, the two should still only do one email, but it will be held to
a higher standard of diplomacy (since you will have two people to double-check it).

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

If you work with a partner, you should indicate the partner via the website interfaces as
well as on your PDF and in a code comment. (We would really hate to miss the partner bit
and think someone didn’t turn it in.)

6


