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One-Slide Summary
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• Model Checking is an algorithmic method in software engineering used to 
verify if a finite-state model of a system meets specific requirements.

• Formal Verification refers to the process of using mathematical techniques 
to prove or disprove the correctness of a system concerning a formal 
specification. 

• Formal Methods utilize mathematical techniques to specify, develop, 
analyze, and verify software and hardware systems.

• Theoretical Aspects of Software Engineering (TASE) involve studying and 
applying mathematical and logical foundations to understand, model, and 
enhance software engineering processes and systems.

Model Checking ⊂ Formal Verification ⊂ Formal Methods ⊂	TASE
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Learning Objectives: by the end of today’s 
lecture, you should be able to…
1. (Knowledge) Review the foundations of software 

engineering
2. (Value) Understand the concept of formal methods and its 

relation to software engineering
3. (Skill) Review formal verification and model checking
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Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)
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Motivation
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What is Model Checking?

• Model checking is a formal verification technique in software 
engineering that algorithmically verifies if a finite-state model 
of a system satisfies a given specification, usually expressed 
in temporal logic.

• It systematically explores all possible states of the system to 
ensure correctness and identify potential errors.
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The potential of model checking

• Model checking is particularly valuable for safety-critical systems 
because it can rigorously verify that these systems meet their 
specifications and do not exhibit undesirable behaviors. 

• Model checking helps ensure the reliability and safety of these 
systems by exhaustively exploring all possible states and 
transitions to detect errors early in the development process.

11/21/2024 EECS 481  F24 - Modeling Checking 7



Model checking Prospects

• Theoretically speaking, model checking of large language 
models (LLMs) may even be possible!!!

• The operational semantics of an LLM may be represented as a 
transition system. 

• In this framework, each state represents a specific configuration 
of the model's parameters and memory, while transitions 
correspond to the model's responses to inputs or internal 
updates.

11/21/2024 EECS 481  F24 - Modeling Checking 8



Too big a transition system!
Why?

• Parameter Space: LLMs have billions of parameters, each of which 
can take on a wide range of values.

• Input Combinations: The variety of possible inputs (words, 
sentences, contexts) further multiplies the number of potential 
states.

• Internal Memory: The model's internal memory and context tracking 
add another layer of complexity.

• Given these factors, the total number of states can be on the order 
of (10100) or more, depending on the specific architecture and 
application of the LLM.
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Symbolic Model Checking

• Symbolic Model Checking using data structures such as OBDDs has been able 
to  verify transition systems with more than 10120 states. 

• Model Checking =
—mechanical, push-button technology
—performed without human intervention

1051 atoms10120 states
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https://sciencenotes.org/how-many-atoms-are-in-the-world/
https://education.jlab.org/qa/mathatom_05.html
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Model Checking Approach
• An approach for verifying the temporal behavior of a 

system.
• Primarily fully automated (“push-button”) techniques.
• Model

• Representation of the system
• Need to decide the right level of granularity.

• Specification
• High-level desired property of a system
• Considers infinite sequences.

• PSPACE-complete w.r.t. size of the specification model 
and linear w.r.t. size of the transition system model.

What is Model Checking?

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model
▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification
▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-
Example

Proof
(optional)
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Conventional software engineering
• From requirements to a software system

• apply design and validation methodologies
• code directly in a programming language
• validation mainly via testing, code walkthroughs, etc.

Design & 
Validation

System
Informal 

requirements
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But my program works!
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• True, there are many successful large-scale complex computer systems…
• online banking, electronic commerce
• information services, online libraries, business processes
• supply chain management
• mobile phone networks

• Yet many new potential application domains with far greater complexity and
higher expectations
• automotive drive-by-wire
• medical sensors: heart rate & blood pressure monitors
• intelligent buildings and spaces, environmental sensors

• Learning from mistakes is costly…11/21/2024 13



Toyota Prius
• Toyota Prius

• first mass-produced hybrid vehicle

• February 2010
• software “glitch” found in anti-lock braking system
• in response to numerous complaints/accidents

• Eventually fixed via software update
• in total 185,000 cars were recalled, at a huge cost
• handling of the incident prompted much criticism, bad publicity
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Ariane 5
• ESA(European Space Agency) Ariane 5 launcher

• shown here in maiden flight on 4th
June 1996

• 37secs later self-destructs

• uncaught exception: numerical overflow
in a conversion routine results in incorrect
altitude sent by the on-board computer

Expensive, embarrassing…
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The London Ambulance Service
• London Ambulance Service computer-aided

despatch system
• Area 600sq miles
• Population 6.8million
• 5000 patients per day
• 2000-2500 calls per day

• Introduced October 1992
• Severe system failure:

• position of vehicles incorrectly recorded
• multiple vehicles sent to the same location
• 20-30 people estimated to have died as a result
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Smart Vehicles
• Safety-critical systems

• Airplanes
• Space shuttles
• Railways

• Expensive mistakes
• Chip design
• Critical software

• Want to guarantee safe behavior over
     unbounded time
• https://web.eecs.umich.edu/~movaghar/Software Model Checking-CACM2010.pdf Smart vehicles
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What do these stories have in common?
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• Programmable computing devices
• conventional computers and networks
• software embedded in devices

• airbag controllers, mobile phones, etc.
• Programming error direct cause of failure
• Software critical

• for safety
• for business
• for performance

• High costs incurred: not just financial
• Failures avoidable…
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Model Checking
Automated formal verification for finite-state models

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬∃ à fail

Model checker
e.g. SMV, Spin

3
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Model checking in practice
• Model checking now routinely applied to real-life systems

• not just “verification”…
• model checkers used as a debugging tool

• at IBM, bugs detected in arbiter that could not be found with simulations
• Now widely accepted in industrial practice

• Microsoft, Intel, Cadence, Bell Labs, IBM,...
• Many software tools, both commercial and academic

• NuSmv, PRISM, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
• software, hardware, protocols, …

• Extremely active research area
• 2008 Turing Award won by Edmund Clarke, Allen Emerson, and Joseph Sifakis for

their work on model-checking. https://web.eecs.umich.edu/~movaghar/Model Checking-Turing Award2007-CACM.pdf
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Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)
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Background and Basic Concepts
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Software Engineering

•IEEE, in its standard 610.12-1990, defines 
software engineering as the application of a 
systematic, disciplined, which is a 
computable approach for the development, 
operation, and maintenance of software, 
that is, the application of engineering to 
software.
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What is Software?

•We will present a philosophical definition 
of software (hardware) as follows.

•Accordingly, we find that:
•Software is more complex than hardware.
•Software is a complex system.
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Philosophical Definition of Hardware
• Hardware refers to the tangible, physical components 

of a computer system. 
• Philosophically, hardware can be seen as the 

material substrate that provides the necessary 
infrastructure for computational processes. 

• It is the physical embodiment of the machine's 
capabilities, constrained by its material properties 
and design.
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Philosophical Definition of Software

• Software, on the other hand, is intangible. 
• It consists of the instructions and data that tell the 

hardware how to perform tasks. 
• From a philosophical perspective, software 

represents a computer system's logical and 
functional essence. 

• It is the abstract set of rules and instructions that 
govern the behavior of the hardware, enabling it to 
perform complex operations.
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Philosophical Distinction
• Tangibility: Hardware is defined by its physical 

presence, while software is independent of a 
particular physical form.

• Functionality: Hardware's primary purpose is 
physical functions, whereas software's is to execute 
logical functions, manipulating symbols and data.

• Malleability: Hardware is relatively difficult to change 
once manufactured, while software can be easily 
modified and updated.
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Brain versus Mind

• The philosophical distinction between the hardware 
and the software  is often compared to the 
relationship between the brain and the mind in the 
philosophy of mind, where: 
• the brain is the physical hardware and 
• the mind is the software or the set of processes 

and functions that the brain performs.
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The theoretical aspects of software 
engineering (TASE)
•The theoretical aspects of software 
engineering focus on the underlying principles 
and formal methods that guide the 
development, verification, and maintenance of 
software systems. 
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Key Areas of TASE (1/2)

•   Formal Methods: Techniques like model checking, 
theorem proving, and formal verification to ensure 
software correctness and reliability.
 
•  Program Semantics: Understanding the meaning of 
programs through formal languages and logic.

•   Type Systems: Ensuring program correctness by 
defining and enforcing rules about how data types are 
used.
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Key areas of TASE (2/2)

•  Abstract Interpretation: A theory used to analyze 
programs by approximating their behaviors.

•  Automata Theory: The study of abstract machines and 
the problems they can solve, which is fundamental in 
designing compilers and interpreters.
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Formal Methods in Software Engineering

•Formal methods in software engineering are 
mathematically rigorous techniques used for the 
specification, development, analysis, and 
verification of software and hardware systems.

•These methods involve the use of formal 
languages, logic, and mathematical models to 
ensure the correctness and reliability of software 
systems.
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Formal Methods: Key Areas
• Formal Specification: Creating precise and unambiguous 
descriptions of software behavior and properties.

•  Formal Verification: Using mathematical proofs to verify 
that software meets its specifications.

•  Model Checking: Automatically verifying finite-state 
models of software against desired properties.
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Formal Methods: Applications
•Formal methods are particularly valuable in safety-
critical and security-critical systems, such as avionics 
and medical devices, where reliability is paramount.

•Formal methods can be considered as research works 
in software engineering. This research contributes to 
advancing the theoretical foundations of software 
engineering and enhancing practical applications.

https://github.com/ligurio/practical-fm
https://web.eecs.umich.edu/~movaghar/Formal Methods Manifesto 2023.pdf
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Amazon
Amazon is actively involved in research related to formal verification, particularly 
through its Amazon Web Services (AWS) division. Here are a few notable examples:
• Cryptographic Software: Amazon's Automated Reasoning group has used formal 

verification to improve the efficiency and security of cryptographic algorithms, such 
as RSA, on their Graviton2 chips. This ensures that the cryptographic software 
behaves correctly and securely.

• Amazon s2n: This is an open-source implementation of the TLS (Transport Layer 
Security) protocol used by many Amazon services. Formal verification is 
continuously applied to s2n to ensure its correctness and security throughout its 
lifecycle.

• Cloud Infrastructure: Formal verification tools are used within AWS to enhance the 
security of its cloud infrastructure, helping to secure both the infrastructure itself and 
the customers using it.
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Microsoft
Microsoft is actively involved in research related to formal verification across 
various projects and divisions. Here are a few notable examples:
• The Research in Software Engineering (RiSE) group at Microsoft focuses on 

formal methods, automated reasoning, and proof-oriented programming to 
ensure the correctness and security of their systems.

• VeriSol: This is a formal verification tool developed by Microsoft Research for 
verifying smart contracts written in the Solidity programming language. VeriSol 
helps ensure the correctness and security of smart contracts used in Azure 
Blockchain.

• Verus: This project focuses on creating a practical foundation for systems 
verification. It aims to eliminate bugs at compile time, ensuring that software is 
correct before it ships.

• Practical System Verification: This initiative explores methods to make formal 
verification more practical and scalable for system software. It addresses the 
challenges of verifying complex systems with minimal developer effort.
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Meta (formerly Facebook)
Meta is involved in research related to formal verification. 
• One notable project involves applying formal verification to microkernel 

inter-process communication (IPC). This research uses Iris, a concurrent 
separation logic implemented in the Coq proof assistant, to verify queue 
data structures used for IPC in an operating system under development at 
Meta.  The project has successfully identified and corrected bugs, leading 
to more reliable and efficient code.

• Meta's efforts in formal verification are part of a broader initiative to 
enhance the reliability and security of its software systems. This includes 
using formal methods to verify the correctness of algorithms and improve 
the overall robustness of their infrastructure.
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Airbus
Airbus is actively involved in research related to formal verification, particularly for 
its avionics software. Here are some key points:
• Avionics Software: Airbus has been integrating formal verification techniques into 

the development process of avionics software since 2001. These techniques 
include abstract interpretation, theorem proving, and model-checking.

• DO-178B Compliance: The formal verification methods used by Airbus comply 
with the stringent requirements of the DO-178B standard, which governs the 
development of avionics software.

• Collaborations: Airbus collaborates with academic and industrial labs, such as 
ONERA (the French aerospace lab), to advance formal verification methods and 
their application in critical embedded systems.

• Tools and Techniques: Airbus has developed and transferred several formal 
verification tools to its operational teams, including Caveat, aiT, and Stack 
analyzer, which are used to achieve DO-178B verification objectives.
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NASA
NASA is deeply involved in research related to formal verification, particularly to 
ensure the safety and reliability of its aerospace systems. Here are some key 
areas of their work:
• Flight Critical Software: NASA has applied formal verification techniques to 

flight critical software, such as the Flight Control Systems (FCS) used in 
aircraft. This involves using formal methods to verify the behavior of system 
components and ensure they meet safety requirements.

• Langley Formal Methods Program: The Formal Methods group at NASA's 
Langley Research Center develops and maintains the NASA PVS Library, 
which includes a wide range of formal verification tools and frameworks. These 
tools are used for verifying air traffic systems, fault-tolerant protocols, and other 
critical systems.

• Autonomous Systems: NASA also explores formal verification approaches for 
autonomous robotic systems. This includes specifying and verifying the 
behavior of autonomous systems to ensure they operate safely and reliably in 
space missions..
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Tesla
Tesla is involved in research related to formal verification, particularly in the 
context of its autonomous driving systems. 
• Formal verification methods are used to ensure the safety and reliability of 

the software that controls Tesla's vehicles. This includes verifying that the 
software behaves correctly under all possible conditions, which is crucial for 
the development of safe and reliable autonomous vehicles.

• Tesla's Autopilot and Full Self-Driving (FSD) systems rely heavily on 
advanced software engineering and formal methods to validate the complex 
algorithms that enable autonomous driving. This research helps in identifying 
and mitigating potential risks, ensuring that the systems operate safely in 
real-world scenarios.
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xAI
• xAI is actively involved in research related to formal verification. 
• According to recent reports, xAI plans to incorporate formal verification 

techniques into its AI models. 
• This approach aims to ensure that the code generated by their models, such 

as the Grok language model, is free from bugs and adheres to specified 
safety and performance criteria.

• Formal verification is a mathematical method used to prove the correctness 
of systems, and its application in AI can significantly enhance the reliability 
and trustworthiness of AI-generated outputs. This is particularly important for 
safety-critical applications where errors can have serious consequences.
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SpaceX 
• SpaceX is involved in research related to formal verification, 

particularly to ensure the safety and reliability of its spacecraft 
and rocket systems. Formal verification methods are crucial for 
validating the complex software that controls these systems, 
ensuring they perform correctly under all possible conditions.

• SpaceX's software engineering teams use formal methods to 
verify the correctness of flight control systems, mission planning 
software, and other critical components. This rigorous approach 
helps prevent errors that could lead to mission failures, making it 
an essential part of their development process.
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OpenAI
• Neural Theorem Proving: OpenAI has developed a neural theorem 

prover for the Lean proof assistant, which is used to solve formal 
mathematics problems. This involves using language models to generate 
proofs for formal statements, enhancing the reliability and correctness of 
mathematical proofs.

• Autoformalization: OpenAI has explored autoformalization, which is the 
process of translating natural language mathematics into formal 
specifications and proofs. This research aims to improve the accuracy 
and efficiency of formal verification by leveraging large language models.

• Improving Verifiability: OpenAI has published reports on mechanisms to 
improve the verifiability of AI systems. These tools help developers 
provide evidence that AI systems are safe, secure, fair, and privacy-
preserving.
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Google
Google is actively involved in research related to formal verification. Here are 
some key areas of their work:
• Towards Making Formal Methods Normal: Google Research has published 

work on integrating formal methods into developers' existing practices and 
workflows. This research aims to increase the adoption of formal verification 
by making it more accessible and practical for everyday software 
development.

• Formal Verification Techniques: Google uses formal methods to verify critical 
software systems. This involves modeling system requirements using 
specification languages and validating these models with tool support to 
ensure consistency and early verification.

• Automated Reasoning: Google's Automated Reasoning team focuses on 
developing tools and techniques for formal verification to improve the 
reliability and security of software systems. This includes work on verifying 
cryptographic protocols and other critical components.
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Design and Validation
• A design is a process of getting a (more detailed) realization from a given specification.

•  Validation is a process of ensuring that a realization satisfies its specification.

Specification

Realization1
Realization2

Realization3

Realization4
ImplementationA Multi-Level Design and  Validation
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Validation

• An implementation may be viewed as the lowest level of realization.



• Design is a process of getting a realization from a 
given specification.

• The design of a complex system may happen on
many levels.

•An implementation may be viewed as the lowest level 
of realization.
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• Validation is a process of ensuring that a realization 
satisfies its specification.
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Validation
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Validation Methods

•Validation has three main methods: 
• Formal Verification 
• Evaluation
• Testing
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Formal Verification

• Formal Verification is a mathematical method to prove 
that a realization satisfies its specification.
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Evaluation

• Evaluation is a method for finding how well a system 
behaves.
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Testing

• Testing is a method of proving that a realization does 
not satisfy its specification.
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Integrated Validation 

• Testing, Formal Verification, and Evaluation are 
usually complementary.
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Evaluation Methods

n Measurement
n Analytical Modeling
n Simulation Modeling
n Hybrid Modeling
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So, why not only test?

• Testing only shows the presence of bugs, not their 
absence!
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Verification and Formal Verification
• In software engineering, verification and formal verification 

are crucial processes, but they differ significantly in their 
approaches and objectives.

• Both methods are essential for ensuring a system is 
reliable, functional, and meets user needs. 

• They are often used together to provide comprehensive 
assurance of system quality.

11/21/2024 EECS 481  F24 - Modeling Checking 55



Verification

• Verification is the process of ensuring that the software 
meets its specified requirements. 

• It involves checking that software is built correctly 
according to the design and specifications. 

• Verification aims to catch errors early in the development 
process and ensure that the software behaves as 
expected under specified conditions.
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Formal Verification

• Formal Verification, on the other hand, uses mathematical 
methods to prove the correctness of a system. 

• It involves creating formal software models and using logical 
reasoning to verify that the software adheres to its specifications 
under all possible conditions.

• Formal verification provides a higher level of assurance 
because it can prove the absence of certain errors, rather than 
just finding them through testing.
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Verification versus Formal Verifications
• Approach: Verification relies on testing and reviews, while formal 

verification uses mathematical proofs and models.
• Scope: Verification checks the software against specific 

scenarios, whereas formal verification aims to prove correctness 
under all possible scenarios.

• Assurance: Formal verification offers a higher level of confidence 
in the correctness of the software, as it can mathematically 
guarantee certain properties.
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Formal verification
• From requirements to formal specification

• formalize specifications, derive a model
• formally verify correctness

Formal 
specification

Fo
rm

al
is
e

Model

System

Ab
st
ra
ct Refine

Verification

Informal 
requirements
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Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)
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Formal Verification and Model Checking
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What are Formal Methods?
• Techniques for analyzing systems, based on 

some mathematics.

• This does not mean that the user must be a 
mathematician.

• Some of the work is done informally, due to 
complexity.

EECS 481  F24 - Modeling Checking11/21/2024

62



Formal Methods
• Mathematically-based techniques for describing properties of 

systems
• Provide framework for

• Specifying systems (and thus the notion of correctness)
• Developing systems
• Verifying correctness

• Of implementation w.r.t. the specification
• Equivalence of different implementations

• Reasoning is based on logic
• Amenable to machine analysis and manipulation
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Why aren’t FMs used more?

“Formal methods can 
revolutionize 
development!” “Formal methods are difficult,

expensive, not widely useful 
and for safety-critical systems
only”
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Formal Verification

•Formal verification seeks to establish a mathematical 
proof that a system works correctly.

https://web.eecs.umich.edu/~movaghar/Principles of Model Checking-Book-2008.pdf
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Formal Verification Steps
•A formal verification is done in three steps: 

• A system model to describe the system,
• A specification model to describe the correctness 

requirement,
• An analysis technique to verify that the system 

meets its specifications. 
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Some System Model 
• Transition Systems (Automata)
• Communicating Sequential Processes (CSP)
• Reo
• (High-level) Programming Languages

• https://web.eecs.umich.edu/~movaghar/cspbook.pdf

• https://web.eecs.umich.edu/~movaghar/Reo Arbab 2003.pdf
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Some Specification Models
• Propositional Logic
• First-order Logic
• Linear Temporal Logic (LTL)
• Computational Tree Logic (CTL)
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Formal Verification Methods

•There are two major methods for formal verification:

• Deductive Method

• Model Checking
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Deductive Method
• In the deductive method, the problem 

is formulated as proving a theorem in 
a mathematical proof system. 
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Model Checking
• In the method of model checking, the 

behavior of the system is checked
algorithmically through an exhaustive search 
of all reachable states.  

https://web.eecs.umich.edu/~movaghar/Model Checking-Turing Award2007-CACM.pdf

https://web.eecs.umich.edu/~movaghar/Model Checking-Q&A-Turing Award2007.CACM.pdf

https://en.wikipedia.org/wiki/Model_checking
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View of Model Checking in Theoretical Settings

•Theoretical Aspects of Software Engineering
•Formal Methods

• Formal Verification
• Model Checking
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Popular Model-Checking Tools

• NuSMV
• PRISM

 https://nusmv.fbk.eu/index.html
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Companies Using NuSMV
•Airbus: Utilizes NuSMV for verifying the correctness 
and safety of their avionics system.

• Intel: Employs NuSMV in the verification of hardware 
designs to ensure reliability and performance.

•Siemens: Uses NuSMV for verifying industrial 
automation systems and ensuring they meet safety 
standards.

•NASA: Applies NuSMV in the verification of critical 
software systems used in space missions.

11/21/2024 EECS 481  F24 - Modeling Checking 74



Companies Using PRISM
•  Google: Utilizes PRISM for verifying the reliability and 
performance of their systems, particularly in areas 
involving probabilistic models.

•  Microsoft: Employs PRISM in their research and 
development to ensure the correctness and reliability 
of software systems.

•  IBM: Uses PRISM for formal verification of complex 
systems, ensuring they meet required performance 
and reliability standards.
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Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)
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Abstract (Semantic) Models
• A prerequisite for model checking is to provide a 

model of the system.
• We introduce transition systems as abstract 

(semantic) models to represent hardware and 
software systems.

• Using the Structural Operation Semantics (SOS) 
method, we can define the operational semantics of 
any model, including all (high-level) programming 
languages.
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What are Transition Systems?

• Transition Systems (TSs) are abstract (semantic) 
models that are the operational semantics of many 
models, including all (high-level) programming 
languages.

• TSs are directed graphs where nodes and edges 
represent states and transitions, respectively.
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States of a Transition System 
• A state describes information about a system at a 

certain moment of its behavior:
• The current color of a traffic light.
• The current values of all program variables + the 
program counter.

• The current value of the registers together with the 
values of the input bits.
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Transitions of a Transition System 

• Transitions specify how the system evolves from one 
state to another.
• A switch from one color to another (for traffic light).
• The execution of a program statement.
• The change of the registers and output bits for a new 

input.
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Structural Operation Semantics
• The transition relation of TS(Model) is defined 

using the so-called SOS notation:

• This implies if the proposition above the “solid 
line” holds, then the proposition under the 
fraction bar holds as well.

• If the premise is a tautology, the rule is called an 
axiom.

!"#$%&#
'()'*+&%()
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Operation Semantics 

• The operational semantics of many models, 
including all (high-level) programming languages, 
are defined using SOS rules.

• https://web.eecs.umich.edu/~movaghar/SOS-1.pdf

• https://web.eecs.umich.edu/~movaghar/SOS-2.pdf
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Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)
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What is Linear Temporal Logic (LTL)?
•Linear Temporal Logic (LTL) is a type of modal 
temporal logic used to describe sequences of events or 
states over time. 

•LTL is widely used to formally specify safety-critical 
properties of hardware and software systems. 

•For example, it can be used to ensure that a system will 
never reach an undesirable state or that a certain 
condition will eventually be met.
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LTL Syntax
•  LTL formulas are built using a set of propositional variables, 

Propositional operators (like ¬, ∨, Ù), and temporal operators.

Temporal Operators:
•  X (Next): A condition will be true at the next state.
•  F (Eventually): A condition will be true at some point in the 
future.
•  G (Globally): A condition will always be true.
•  U (Until): One condition will be true until another condition 
becomes true.
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Example
• LTL allows for the specification of the relative 

order of events. However, it does not support any 
means to refer to the precise timing of events.
• “The car stops once the driver pushes the 
brake”.

• “The message is received after it has been 
sent”.
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LTL Semantics
•LTL formulas are evaluated over infinite sequences of 
states (often called paths).

•A path satisfies an LTL formula if the formula holds for 
the entire sequence of states.

11/21/2024 EECS 481  F24 - Modeling Checking 89



infinitely often and eventually forever
• By combining G and F, new temporal modalities are 

obtained:
• GFa describes the property stating that at any 

moment j there is a moment I ³ j at which a-state 
is visited. Thus a-state is visited infinitely often.

• FGa expresses that from any moment j, finally 
only a-state is visited. Thus a-state is visited 
eventually forever.
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LTL  Example (1/2) 

• Example: Consider the Transition System (TS) below with 
the set of atomic propositions AP={a,b}

• TS |=Ga
• TS | ¹ X(aÙb)
• TS |= G(¬b ®G(aÙ¬b))
• TS |¹ b U (aÙ¬b)
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LTL Example (2/2)

• Example: Properties for mutual exclusion problem:
• Safety property states that two processes P1 and P2 
never simultaneously have access to their critical 
section: G(¬crit1Ú¬crit2).

• Liveness property stating each process Pi is 
infinitely often in its critical section: (GFcrit1)Ù 
(GFcrit2).
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