
Model Checking

11/21/2024 EECS 481 F24 - Modeling Checking 1

One-Slide Summary

11/21/2024 EECS 481 F24 - Modeling Checking 2

• Model Checking is an algorithmic method in software engineering used to
verify if a finite-state model of a system meets specific requirements.

• Formal Verification refers to the process of using mathematical techniques
to prove or disprove the correctness of a system concerning a formal
specification.

• Formal Methods utilize mathematical techniques to specify, develop,
analyze, and verify software and hardware systems.

• Theoretical Aspects of Software Engineering (TASE) involve studying and
applying mathematical and logical foundations to understand, model, and
enhance software engineering processes and systems.

Model Checking ⊂ Formal Verification ⊂ Formal Methods ⊂	TASE

11/21/2024 EECS 481 F24 - Modeling Checking

Learning Objectives: by the end of today’s
lecture, you should be able to…
1. (Knowledge) Review the foundations of software

engineering
2. (Value) Understand the concept of formal methods and its

relation to software engineering
3. (Skill) Review formal verification and model checking

3

Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)

11/21/2024 EECS 481 F24 - Modeling Checking

4

Motivation

11/21/2024 EECS 481 F24 - Modeling Checking 5

What is Model Checking?

• Model checking is a formal verification technique in software
engineering that algorithmically verifies if a finite-state model
of a system satisfies a given specification, usually expressed
in temporal logic.

• It systematically explores all possible states of the system to
ensure correctness and identify potential errors.

11/21/2024 EECS 481 F24 - Modeling Checking 6

The potential of model checking

• Model checking is particularly valuable for safety-critical systems
because it can rigorously verify that these systems meet their
specifications and do not exhibit undesirable behaviors.

• Model checking helps ensure the reliability and safety of these
systems by exhaustively exploring all possible states and
transitions to detect errors early in the development process.

11/21/2024 EECS 481 F24 - Modeling Checking 7

Model checking Prospects

• Theoretically speaking, model checking of large language
models (LLMs) may even be possible!!!

• The operational semantics of an LLM may be represented as a
transition system.

• In this framework, each state represents a specific configuration
of the model's parameters and memory, while transitions
correspond to the model's responses to inputs or internal
updates.

11/21/2024 EECS 481 F24 - Modeling Checking 8

Too big a transition system!
Why?

• Parameter Space: LLMs have billions of parameters, each of which
can take on a wide range of values.

• Input Combinations: The variety of possible inputs (words,
sentences, contexts) further multiplies the number of potential
states.

• Internal Memory: The model's internal memory and context tracking
add another layer of complexity.

• Given these factors, the total number of states can be on the order
of (10100) or more, depending on the specific architecture and
application of the LLM.

11/21/2024 EECS 481 F24 - Modeling Checking 9

Symbolic Model Checking

• Symbolic Model Checking using data structures such as OBDDs has been able
to verify transition systems with more than 10120 states.

• Model Checking =
—mechanical, push-button technology
—performed without human intervention

1051 atoms10120 states

EECS 481 F24 - Modeling Checking

https://sciencenotes.org/how-many-atoms-are-in-the-world/
https://education.jlab.org/qa/mathatom_05.html

11/21/2024 10

https://sciencenotes.org/how-many-atoms-are-in-the-world/
https://education.jlab.org/qa/mathatom_05.html

Model Checking Approach
• An approach for verifying the temporal behavior of a

system.
• Primarily fully automated (“push-button”) techniques.
• Model

• Representation of the system
• Need to decide the right level of granularity.

• Specification
• High-level desired property of a system
• Considers infinite sequences.

• PSPACE-complete w.r.t. size of the specification model
and linear w.r.t. size of the transition system model.

What is Model Checking?

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model
▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification
▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-
Example

Proof
(optional)

11/21/2024 EECS 481 F24 - Modeling Checking 11

Conventional software engineering
• From requirements to a software system

• apply design and validation methodologies
• code directly in a programming language
• validation mainly via testing, code walkthroughs, etc.

Design &
Validation

System
Informal

requirements

EECS 481 F24 - Modeling Checking

11/21/2024 12

But my program works!

EECS 481 F24 - Modeling Checking

• True, there are many successful large-scale complex computer systems…
• online banking, electronic commerce
• information services, online libraries, business processes
• supply chain management
• mobile phone networks

• Yet many new potential application domains with far greater complexity and
higher expectations
• automotive drive-by-wire
• medical sensors: heart rate & blood pressure monitors
• intelligent buildings and spaces, environmental sensors

• Learning from mistakes is costly…11/21/2024 13

Toyota Prius
• Toyota Prius

• first mass-produced hybrid vehicle

• February 2010
• software “glitch” found in anti-lock braking system
• in response to numerous complaints/accidents

• Eventually fixed via software update
• in total 185,000 cars were recalled, at a huge cost
• handling of the incident prompted much criticism, bad publicity

EECS 481 F24 - Modeling Checking

11/21/2024 14

Ariane 5
• ESA(European Space Agency) Ariane 5 launcher

• shown here in maiden flight on 4th
June 1996

• 37secs later self-destructs

• uncaught exception: numerical overflow
in a conversion routine results in incorrect
altitude sent by the on-board computer

Expensive, embarrassing…

EECS 481 F24 - Modeling Checking

11/21/2024 15

The London Ambulance Service
• London Ambulance Service computer-aided

despatch system
• Area 600sq miles
• Population 6.8million
• 5000 patients per day
• 2000-2500 calls per day

• Introduced October 1992
• Severe system failure:

• position of vehicles incorrectly recorded
• multiple vehicles sent to the same location
• 20-30 people estimated to have died as a result

EECS 481 F24 - Modeling Checking

11/21/2024 16

Smart Vehicles
• Safety-critical systems

• Airplanes
• Space shuttles
• Railways

• Expensive mistakes
• Chip design
• Critical software

• Want to guarantee safe behavior over
 unbounded time
• https://web.eecs.umich.edu/~movaghar/Software Model Checking-CACM2010.pdf Smart vehicles

11/21/2024 EECS 481 F24 - Modeling Checking 17

https://web.eecs.umich.edu/~movaghar/Software%20Model%20Checking-CACM2010.pdf

What do these stories have in common?

EECS 481 F24 - Modeling Checking

• Programmable computing devices
• conventional computers and networks
• software embedded in devices

• airbag controllers, mobile phones, etc.
• Programming error direct cause of failure
• Software critical

• for safety
• for business
• for performance

• High costs incurred: not just financial
• Failures avoidable…

11/21/2024 18

Model Checking
Automated formal verification for finite-state models

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬∃ à fail

Model checker
e.g. SMV, Spin

3

11/21/2024 EECS 481 F24 - Modeling Checking

19

Model checking in practice
• Model checking now routinely applied to real-life systems

• not just “verification”…
• model checkers used as a debugging tool

• at IBM, bugs detected in arbiter that could not be found with simulations
• Now widely accepted in industrial practice

• Microsoft, Intel, Cadence, Bell Labs, IBM,...
• Many software tools, both commercial and academic

• NuSmv, PRISM, SPIN, SLAM, FDR2, FormalCheck, RuleBase, ...
• software, hardware, protocols, …

• Extremely active research area
• 2008 Turing Award won by Edmund Clarke, Allen Emerson, and Joseph Sifakis for

their work on model-checking. https://web.eecs.umich.edu/~movaghar/Model Checking-Turing Award2007-CACM.pdf

11/21/2024 EECS 481 F24 - Modeling Checking 20

https://web.eecs.umich.edu/~movaghar/Model%20Checking-Turing%20Award2007-CACM.pdf

Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)

11/21/2024 EECS 481 F24 - Modeling Checking

21

Background and Basic Concepts

11/21/2024 EECS 481 F24 - Modeling Checking 22

Software Engineering

•IEEE, in its standard 610.12-1990, defines
software engineering as the application of a
systematic, disciplined, which is a
computable approach for the development,
operation, and maintenance of software,
that is, the application of engineering to
software.

11/21/2024 EECS 481 F24 - Modeling Checking 23

What is Software?

•We will present a philosophical definition
of software (hardware) as follows.

•Accordingly, we find that:
•Software is more complex than hardware.
•Software is a complex system.

11/21/2024 EECS 481 F24 - Modeling Checking 24

Philosophical Definition of Hardware
• Hardware refers to the tangible, physical components

of a computer system.
• Philosophically, hardware can be seen as the

material substrate that provides the necessary
infrastructure for computational processes.

• It is the physical embodiment of the machine's
capabilities, constrained by its material properties
and design.

EECS 481 F24 - Modeling Checking11/21/2024

25

Philosophical Definition of Software

• Software, on the other hand, is intangible.
• It consists of the instructions and data that tell the

hardware how to perform tasks.
• From a philosophical perspective, software

represents a computer system's logical and
functional essence.

• It is the abstract set of rules and instructions that
govern the behavior of the hardware, enabling it to
perform complex operations.

EECS 481 F24 - Modeling Checking11/21/2024

26

Philosophical Distinction
• Tangibility: Hardware is defined by its physical

presence, while software is independent of a
particular physical form.

• Functionality: Hardware's primary purpose is
physical functions, whereas software's is to execute
logical functions, manipulating symbols and data.

• Malleability: Hardware is relatively difficult to change
once manufactured, while software can be easily
modified and updated.

EECS 481 F24 - Modeling Checking11/21/2024

27

Brain versus Mind

• The philosophical distinction between the hardware
and the software is often compared to the
relationship between the brain and the mind in the
philosophy of mind, where:
• the brain is the physical hardware and
• the mind is the software or the set of processes

and functions that the brain performs.

EECS 481 F24 - Modeling Checking11/21/2024

28

The theoretical aspects of software
engineering (TASE)
•The theoretical aspects of software
engineering focus on the underlying principles
and formal methods that guide the
development, verification, and maintenance of
software systems.

EECS 481 F24 - Modeling Checking11/21/2024

29

Key Areas of TASE (1/2)

• Formal Methods: Techniques like model checking,
theorem proving, and formal verification to ensure
software correctness and reliability.

• Program Semantics: Understanding the meaning of
programs through formal languages and logic.

• Type Systems: Ensuring program correctness by
defining and enforcing rules about how data types are
used.

EECS 481 F24 - Modeling Checking11/21/2024

30

Key areas of TASE (2/2)

• Abstract Interpretation: A theory used to analyze
programs by approximating their behaviors.

• Automata Theory: The study of abstract machines and
the problems they can solve, which is fundamental in
designing compilers and interpreters.

EECS 481 F24 - Modeling Checking11/21/2024

31

Formal Methods in Software Engineering

•Formal methods in software engineering are
mathematically rigorous techniques used for the
specification, development, analysis, and
verification of software and hardware systems.

•These methods involve the use of formal
languages, logic, and mathematical models to
ensure the correctness and reliability of software
systems.

11/21/2024 EECS 481 F24 - Modeling Checking 32

Formal Methods: Key Areas
• Formal Specification: Creating precise and unambiguous
descriptions of software behavior and properties.

• Formal Verification: Using mathematical proofs to verify
that software meets its specifications.

• Model Checking: Automatically verifying finite-state
models of software against desired properties.

11/21/2024 EECS 481 F24 - Modeling Checking 33

Formal Methods: Applications
•Formal methods are particularly valuable in safety-
critical and security-critical systems, such as avionics
and medical devices, where reliability is paramount.

•Formal methods can be considered as research works
in software engineering. This research contributes to
advancing the theoretical foundations of software
engineering and enhancing practical applications.

https://github.com/ligurio/practical-fm
https://web.eecs.umich.edu/~movaghar/Formal Methods Manifesto 2023.pdf

11/21/2024 EECS 481 F24 - Modeling Checking 34

https://github.com/ligurio/practical-fm
https://web.eecs.umich.edu/~movaghar/Formal%20Methods%20Manifesto%202023.pdf

Amazon
Amazon is actively involved in research related to formal verification, particularly
through its Amazon Web Services (AWS) division. Here are a few notable examples:
• Cryptographic Software: Amazon's Automated Reasoning group has used formal

verification to improve the efficiency and security of cryptographic algorithms, such
as RSA, on their Graviton2 chips. This ensures that the cryptographic software
behaves correctly and securely.

• Amazon s2n: This is an open-source implementation of the TLS (Transport Layer
Security) protocol used by many Amazon services. Formal verification is
continuously applied to s2n to ensure its correctness and security throughout its
lifecycle.

• Cloud Infrastructure: Formal verification tools are used within AWS to enhance the
security of its cloud infrastructure, helping to secure both the infrastructure itself and
the customers using it.

11/21/2024 EECS 481 F24 - Modeling Checking 35

Microsoft
Microsoft is actively involved in research related to formal verification across
various projects and divisions. Here are a few notable examples:
• The Research in Software Engineering (RiSE) group at Microsoft focuses on

formal methods, automated reasoning, and proof-oriented programming to
ensure the correctness and security of their systems.

• VeriSol: This is a formal verification tool developed by Microsoft Research for
verifying smart contracts written in the Solidity programming language. VeriSol
helps ensure the correctness and security of smart contracts used in Azure
Blockchain.

• Verus: This project focuses on creating a practical foundation for systems
verification. It aims to eliminate bugs at compile time, ensuring that software is
correct before it ships.

• Practical System Verification: This initiative explores methods to make formal
verification more practical and scalable for system software. It addresses the
challenges of verifying complex systems with minimal developer effort.

11/21/2024 EECS 481 F24 - Modeling Checking 36

Meta (formerly Facebook)
Meta is involved in research related to formal verification.
• One notable project involves applying formal verification to microkernel

inter-process communication (IPC). This research uses Iris, a concurrent
separation logic implemented in the Coq proof assistant, to verify queue
data structures used for IPC in an operating system under development at
Meta. The project has successfully identified and corrected bugs, leading
to more reliable and efficient code.

• Meta's efforts in formal verification are part of a broader initiative to
enhance the reliability and security of its software systems. This includes
using formal methods to verify the correctness of algorithms and improve
the overall robustness of their infrastructure.

11/21/2024 EECS 481 F24 - Modeling Checking 37

Airbus
Airbus is actively involved in research related to formal verification, particularly for
its avionics software. Here are some key points:
• Avionics Software: Airbus has been integrating formal verification techniques into

the development process of avionics software since 2001. These techniques
include abstract interpretation, theorem proving, and model-checking.

• DO-178B Compliance: The formal verification methods used by Airbus comply
with the stringent requirements of the DO-178B standard, which governs the
development of avionics software.

• Collaborations: Airbus collaborates with academic and industrial labs, such as
ONERA (the French aerospace lab), to advance formal verification methods and
their application in critical embedded systems.

• Tools and Techniques: Airbus has developed and transferred several formal
verification tools to its operational teams, including Caveat, aiT, and Stack
analyzer, which are used to achieve DO-178B verification objectives.

11/21/2024 EECS 481 F24 - Modeling Checking 38

NASA
NASA is deeply involved in research related to formal verification, particularly to
ensure the safety and reliability of its aerospace systems. Here are some key
areas of their work:
• Flight Critical Software: NASA has applied formal verification techniques to

flight critical software, such as the Flight Control Systems (FCS) used in
aircraft. This involves using formal methods to verify the behavior of system
components and ensure they meet safety requirements.

• Langley Formal Methods Program: The Formal Methods group at NASA's
Langley Research Center develops and maintains the NASA PVS Library,
which includes a wide range of formal verification tools and frameworks. These
tools are used for verifying air traffic systems, fault-tolerant protocols, and other
critical systems.

• Autonomous Systems: NASA also explores formal verification approaches for
autonomous robotic systems. This includes specifying and verifying the
behavior of autonomous systems to ensure they operate safely and reliably in
space missions..

11/21/2024 EECS 481 F24 - Modeling Checking 39

Tesla
Tesla is involved in research related to formal verification, particularly in the
context of its autonomous driving systems.
• Formal verification methods are used to ensure the safety and reliability of

the software that controls Tesla's vehicles. This includes verifying that the
software behaves correctly under all possible conditions, which is crucial for
the development of safe and reliable autonomous vehicles.

• Tesla's Autopilot and Full Self-Driving (FSD) systems rely heavily on
advanced software engineering and formal methods to validate the complex
algorithms that enable autonomous driving. This research helps in identifying
and mitigating potential risks, ensuring that the systems operate safely in
real-world scenarios.

11/21/2024 EECS 481 F24 - Modeling Checking 40

xAI
• xAI is actively involved in research related to formal verification.
• According to recent reports, xAI plans to incorporate formal verification

techniques into its AI models.
• This approach aims to ensure that the code generated by their models, such

as the Grok language model, is free from bugs and adheres to specified
safety and performance criteria.

• Formal verification is a mathematical method used to prove the correctness
of systems, and its application in AI can significantly enhance the reliability
and trustworthiness of AI-generated outputs. This is particularly important for
safety-critical applications where errors can have serious consequences.

11/21/2024 EECS 481 F24 - Modeling Checking 41

SpaceX
• SpaceX is involved in research related to formal verification,

particularly to ensure the safety and reliability of its spacecraft
and rocket systems. Formal verification methods are crucial for
validating the complex software that controls these systems,
ensuring they perform correctly under all possible conditions.

• SpaceX's software engineering teams use formal methods to
verify the correctness of flight control systems, mission planning
software, and other critical components. This rigorous approach
helps prevent errors that could lead to mission failures, making it
an essential part of their development process.

11/21/2024 EECS 481 F24 - Modeling Checking 42

OpenAI
• Neural Theorem Proving: OpenAI has developed a neural theorem

prover for the Lean proof assistant, which is used to solve formal
mathematics problems. This involves using language models to generate
proofs for formal statements, enhancing the reliability and correctness of
mathematical proofs.

• Autoformalization: OpenAI has explored autoformalization, which is the
process of translating natural language mathematics into formal
specifications and proofs. This research aims to improve the accuracy
and efficiency of formal verification by leveraging large language models.

• Improving Verifiability: OpenAI has published reports on mechanisms to
improve the verifiability of AI systems. These tools help developers
provide evidence that AI systems are safe, secure, fair, and privacy-
preserving.

11/21/2024 EECS 481 F24 - Modeling Checking 43

Google
Google is actively involved in research related to formal verification. Here are
some key areas of their work:
• Towards Making Formal Methods Normal: Google Research has published

work on integrating formal methods into developers' existing practices and
workflows. This research aims to increase the adoption of formal verification
by making it more accessible and practical for everyday software
development.

• Formal Verification Techniques: Google uses formal methods to verify critical
software systems. This involves modeling system requirements using
specification languages and validating these models with tool support to
ensure consistency and early verification.

• Automated Reasoning: Google's Automated Reasoning team focuses on
developing tools and techniques for formal verification to improve the
reliability and security of software systems. This includes work on verifying
cryptographic protocols and other critical components.

11/21/2024 EECS 481 F24 - Modeling Checking 44

Design and Validation
• A design is a process of getting a (more detailed) realization from a given specification.

• Validation is a process of ensuring that a realization satisfies its specification.

Specification

Realization1
Realization2

Realization3

Realization4
ImplementationA Multi-Level Design and Validation

11/21/2024 EECS 481 F24 - Modeling Checking

45

Design

Validation

• An implementation may be viewed as the lowest level of realization.

• Design is a process of getting a realization from a
given specification.

• The design of a complex system may happen on
many levels.

•An implementation may be viewed as the lowest level
of realization.

11/21/2024 EECS 481 F24 - Modeling Checking

Design

46

• Validation is a process of ensuring that a realization
satisfies its specification.

11/21/2024 EECS 481 F24 - Modeling Checking

Validation

47

Validation Methods

•Validation has three main methods:
• Formal Verification
• Evaluation
• Testing

11/21/2024 EECS 481 F24 - Modeling Checking

48

Formal Verification

• Formal Verification is a mathematical method to prove
that a realization satisfies its specification.

11/21/2024 EECS 481 F24 - Modeling Checking

49

Evaluation

• Evaluation is a method for finding how well a system
behaves.

11/21/2024 EECS 481 F24 - Modeling Checking

50

Testing

• Testing is a method of proving that a realization does
not satisfy its specification.

11/21/2024 EECS 481 F24 - Modeling Checking

Testing

51

Integrated Validation

• Testing, Formal Verification, and Evaluation are
usually complementary.

11/21/2024 EECS 481 F24 - Modeling Checking

52

Evaluation Methods

n Measurement
n Analytical Modeling
n Simulation Modeling
n Hybrid Modeling

EECS 481 F24 - Modeling Checking11/21/2024

53

So, why not only test?

• Testing only shows the presence of bugs, not their
absence!

EECS 481 F24 - Modeling Checking11/21/2024

54

Verification and Formal Verification
• In software engineering, verification and formal verification

are crucial processes, but they differ significantly in their
approaches and objectives.

• Both methods are essential for ensuring a system is
reliable, functional, and meets user needs.

• They are often used together to provide comprehensive
assurance of system quality.

11/21/2024 EECS 481 F24 - Modeling Checking 55

Verification

• Verification is the process of ensuring that the software
meets its specified requirements.

• It involves checking that software is built correctly
according to the design and specifications.

• Verification aims to catch errors early in the development
process and ensure that the software behaves as
expected under specified conditions.

11/21/2024 EECS 481 F24 - Modeling Checking 56

Formal Verification

• Formal Verification, on the other hand, uses mathematical
methods to prove the correctness of a system.

• It involves creating formal software models and using logical
reasoning to verify that the software adheres to its specifications
under all possible conditions.

• Formal verification provides a higher level of assurance
because it can prove the absence of certain errors, rather than
just finding them through testing.

11/21/2024 EECS 481 F24 - Modeling Checking 57

Verification versus Formal Verifications
• Approach: Verification relies on testing and reviews, while formal

verification uses mathematical proofs and models.
• Scope: Verification checks the software against specific

scenarios, whereas formal verification aims to prove correctness
under all possible scenarios.

• Assurance: Formal verification offers a higher level of confidence
in the correctness of the software, as it can mathematically
guarantee certain properties.

11/21/2024 EECS 481 F24 - Modeling Checking 58

Formal verification
• From requirements to formal specification

• formalize specifications, derive a model
• formally verify correctness

Formal
specification

Fo
rm

al
is
e

Model

System

Ab
st
ra
ct Refine

Verification

Informal
requirements

EECS 481 F24 - Modeling Checking

11/21/2024 59

Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)

11/21/2024 EECS 481 F24 - Modeling Checking

60

Formal Verification and Model Checking

11/21/2024 EECS 481 F24 - Modeling Checking 61

What are Formal Methods?
• Techniques for analyzing systems, based on

some mathematics.

• This does not mean that the user must be a
mathematician.

• Some of the work is done informally, due to
complexity.

EECS 481 F24 - Modeling Checking11/21/2024

62

Formal Methods
• Mathematically-based techniques for describing properties of

systems
• Provide framework for

• Specifying systems (and thus the notion of correctness)
• Developing systems
• Verifying correctness

• Of implementation w.r.t. the specification
• Equivalence of different implementations

• Reasoning is based on logic
• Amenable to machine analysis and manipulation

EECS 481 F24 - Modeling Checking11/21/2024

63

Why aren’t FMs used more?

“Formal methods can
revolutionize
development!” “Formal methods are difficult,

expensive, not widely useful
and for safety-critical systems
only”

11/21/2024 EECS 481 F24 - Modeling Checking

64

Formal Verification

•Formal verification seeks to establish a mathematical
proof that a system works correctly.

https://web.eecs.umich.edu/~movaghar/Principles of Model Checking-Book-2008.pdf

EECS 481 F24 - Modeling Checking11/21/2024

65

https://web.eecs.umich.edu/~movaghar/Principles%20of%20Model%20Checking-Book-2008.pdf

Formal Verification Steps
•A formal verification is done in three steps:

• A system model to describe the system,
• A specification model to describe the correctness

requirement,
• An analysis technique to verify that the system

meets its specifications.

EECS 481 F24 - Modeling Checking11/21/2024

66

Some System Model
• Transition Systems (Automata)
• Communicating Sequential Processes (CSP)
• Reo
• (High-level) Programming Languages

• https://web.eecs.umich.edu/~movaghar/cspbook.pdf

• https://web.eecs.umich.edu/~movaghar/Reo Arbab 2003.pdf

11/21/2024 EECS 481 F24 - Modeling Checking

67

https://web.eecs.umich.edu/~movaghar/cspbook.pdf
https://web.eecs.umich.edu/~movaghar/Reo%20Arbab%202003.pdf

Some Specification Models
• Propositional Logic
• First-order Logic
• Linear Temporal Logic (LTL)
• Computational Tree Logic (CTL)

11/21/2024 EECS 481 F24 - Modeling Checking

68

Formal Verification Methods

•There are two major methods for formal verification:

• Deductive Method

• Model Checking

11/21/2024 EECS 481 F24 - Modeling Checking

69

Deductive Method
• In the deductive method, the problem

is formulated as proving a theorem in
a mathematical proof system.

11/21/2024 EECS 481 F24 - Modeling Checking

70

Model Checking
• In the method of model checking, the

behavior of the system is checked
algorithmically through an exhaustive search
of all reachable states.

https://web.eecs.umich.edu/~movaghar/Model Checking-Turing Award2007-CACM.pdf

https://web.eecs.umich.edu/~movaghar/Model Checking-Q&A-Turing Award2007.CACM.pdf

https://en.wikipedia.org/wiki/Model_checking

11/21/2024 EECS 481 F24 - Modeling Checking

71

https://web.eecs.umich.edu/~movaghar/Model%20Checking-Turing%20Award2007-CACM.pdf
https://web.eecs.umich.edu/~movaghar/Model%20Checking-Q&A-Turing%20Award2007.CACM.pdf
https://en.wikipedia.org/wiki/Model_checking

View of Model Checking in Theoretical Settings

•Theoretical Aspects of Software Engineering
•Formal Methods

• Formal Verification
• Model Checking

11/21/2024 EECS 481 F24 - Modeling Checking 72

Popular Model-Checking Tools

• NuSMV
• PRISM

 https://nusmv.fbk.eu/index.html

11/21/2024 EECS 481 F24 - Modeling Checking

73

https://nusmv.fbk.eu/index.html

Companies Using NuSMV
•Airbus: Utilizes NuSMV for verifying the correctness
and safety of their avionics system.

• Intel: Employs NuSMV in the verification of hardware
designs to ensure reliability and performance.

•Siemens: Uses NuSMV for verifying industrial
automation systems and ensuring they meet safety
standards.

•NASA: Applies NuSMV in the verification of critical
software systems used in space missions.

11/21/2024 EECS 481 F24 - Modeling Checking 74

Companies Using PRISM
• Google: Utilizes PRISM for verifying the reliability and
performance of their systems, particularly in areas
involving probabilistic models.

• Microsoft: Employs PRISM in their research and
development to ensure the correctness and reliability
of software systems.

• IBM: Uses PRISM for formal verification of complex
systems, ensuring they meet required performance
and reliability standards.

11/21/2024 EECS 481 F24 - Modeling Checking 75

Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)

11/21/2024 EECS 481 F24 - Modeling Checking

76

11/21/2024 EECS 481 F24 - Modeling Checking

Abstract (Semantic) Models

77

Abstract (Semantic) Models
• A prerequisite for model checking is to provide a

model of the system.
• We introduce transition systems as abstract

(semantic) models to represent hardware and
software systems.

• Using the Structural Operation Semantics (SOS)
method, we can define the operational semantics of
any model, including all (high-level) programming
languages.
11/21/2024 EECS 481 F24 - Modeling Checking 78

What are Transition Systems?

• Transition Systems (TSs) are abstract (semantic)
models that are the operational semantics of many
models, including all (high-level) programming
languages.

• TSs are directed graphs where nodes and edges
represent states and transitions, respectively.

11/21/2024 EECS 481 F24 - Modeling Checking 79

States of a Transition System
• A state describes information about a system at a

certain moment of its behavior:
• The current color of a traffic light.
• The current values of all program variables + the
program counter.

• The current value of the registers together with the
values of the input bits.

11/21/2024 EECS 481 F24 - Modeling Checking 80

Transitions of a Transition System

• Transitions specify how the system evolves from one
state to another.
• A switch from one color to another (for traffic light).
• The execution of a program statement.
• The change of the registers and output bits for a new

input.

11/21/2024 EECS 481 F24 - Modeling Checking 81

Structural Operation Semantics
• The transition relation of TS(Model) is defined

using the so-called SOS notation:

• This implies if the proposition above the “solid
line” holds, then the proposition under the
fraction bar holds as well.

• If the premise is a tautology, the rule is called an
axiom.

!"#$%&#
'()'*+&%()

11/21/2024 EECS 481 F24 - Modeling Checking 82

Operation Semantics

• The operational semantics of many models,
including all (high-level) programming languages,
are defined using SOS rules.

• https://web.eecs.umich.edu/~movaghar/SOS-1.pdf

• https://web.eecs.umich.edu/~movaghar/SOS-2.pdf

11/21/2024 EECS 481 F24 - Modeling Checking 83

https://web.eecs.umich.edu/~movaghar/SOS-1.pdf
https://web.eecs.umich.edu/~movaghar/SOS-2.pdf

Overview

• Motivation

• Background and Basic Concepts

• Formal Verification and Model Checking

• Abstract (Semantic) Models

• Linear Time Logic (LTL)

11/21/2024 EECS 481 F24 - Modeling Checking

84

11/21/2024 EECS 481 F24 - Modeling Checking

Linear Time Logic (LTL)

85

What is Linear Temporal Logic (LTL)?
•Linear Temporal Logic (LTL) is a type of modal
temporal logic used to describe sequences of events or
states over time.

•LTL is widely used to formally specify safety-critical
properties of hardware and software systems.

•For example, it can be used to ensure that a system will
never reach an undesirable state or that a certain
condition will eventually be met.

11/21/2024 EECS 481 F24 - Modeling Checking 86

LTL Syntax
• LTL formulas are built using a set of propositional variables,

Propositional operators (like ¬, ∨, Ù), and temporal operators.

Temporal Operators:
• X (Next): A condition will be true at the next state.
• F (Eventually): A condition will be true at some point in the
future.
• G (Globally): A condition will always be true.
• U (Until): One condition will be true until another condition
becomes true.

11/21/2024 EECS 481 F24 - Modeling Checking 87

Example
• LTL allows for the specification of the relative

order of events. However, it does not support any
means to refer to the precise timing of events.
• “The car stops once the driver pushes the
brake”.

• “The message is received after it has been
sent”.

11/21/2024 EECS 481 F24 - Modeling Checking 88

LTL Semantics
•LTL formulas are evaluated over infinite sequences of
states (often called paths).

•A path satisfies an LTL formula if the formula holds for
the entire sequence of states.

11/21/2024 EECS 481 F24 - Modeling Checking 89

infinitely often and eventually forever
• By combining G and F, new temporal modalities are

obtained:
• GFa describes the property stating that at any

moment j there is a moment I ³ j at which a-state
is visited. Thus a-state is visited infinitely often.

• FGa expresses that from any moment j, finally
only a-state is visited. Thus a-state is visited
eventually forever.

11/21/2024 EECS 481 F24 - Modeling Checking 90

LTL Example (1/2)

• Example: Consider the Transition System (TS) below with
the set of atomic propositions AP={a,b}

• TS |=Ga
• TS | ¹ X(aÙb)
• TS |= G(¬b ®G(aÙ¬b))
• TS |¹ b U (aÙ¬b)

11/21/2024 EECS 481 F24 - Modeling Checking 91

LTL Example (2/2)

• Example: Properties for mutual exclusion problem:
• Safety property states that two processes P1 and P2
never simultaneously have access to their critical
section: G(¬crit1Ú¬crit2).

• Liveness property stating each process Pi is
infinitely often in its critical section: (GFcrit1)Ù
(GFcrit2).

11/21/2024 EECS 481 F24 - Modeling Checking 92

