
 

Question 1. Word Bank Matching (1 point each, 14 points total)

For each statement below, input the letter of the term that is best described. Note that you can click each word (cell) to mark it
off. Each word is used at most once.

A. — A/B Testing B. — Agile
Development

C. — Alpha Testing D. — Beta Testing

E. — Competent Programmer
Hypothesis

F. — Dynamic
Analysis

G. — Fault Localization H. — Formal Code
Inspection

I. — Fuzz Testing J. — Integration
Testing

K. — Milestone L. — Mocking

M. — Oracle N. — Pair
Programming

O. — Passaround Code
Review

P. — Perverse Incentives

Q. — Race Condition R. — Regression
Testing

S. — Risk T. — Sampling Bias

U. — Software Metric V. — Static Analysis W. — Streetlight Effect X. — Triage

Y. — Unit Testing Z. — Waterfall Model

Q1.1:

Kamilla is creating a new social network software together with their co-workers. Each of the functions
written by Kamilla works as expected, but when put together with the other functions implemented by

Kamilla’s co-workers, the entire system does not work. Kamilla plans to test the entire software, with
both Kamilla's functions and functions written by other people.

Q1.2:
Engineers at Boomit use a tool, called DetectBugs, to find potential bugs and runtime errors in Boomit's
codebase. In particular, the DetectBugs tool does not run Boomit's code.

Q1.3:
Kameron wants to test some functionality of their code. The code involves using a method foo that takes
a very long time to run. To speed up the testing, Kameron uses a way to replace foo with another

implementation bar which takes significantly less time to run.

Q1.4:

To manage their new project, Daphne decides to execute the following steps in order: (1) gathering

requirements of the software they want to develop, (2) designing and implementing the code, and (3)
testing the system and fixing bugs.

Q1.5:
The software engineers at Bioplex have a day-long meeting to go over their codebase together and
discuss potential bugs and security risks.

Q1.6:
There may be potential problems and unfortunate events that may compromise the success of projects.
Experienced project leads will create strategies to mitigate such potential problems and control

unfortunate event outcomes.

Q1.7:
Before Kookle launches the brand new maps to their adventure video game, they send a version of the

maps to some end-users for their feedback.

Q1.8:
90% of the unit tests currently failed. However, after changing an `or` sign (||) to an `and` sign (&&), all

the unit tests for the codebase passed.

Q1.9:

Donware, an online marketplace company, is experiencing segmentation faults in their massive

codebase. Henry identifies that memory reads are rarely the problem, but memory writes are. They write
a script to list lines of code that write to memory that come before memory reads that have caused

segmentation faults.

Q1.10:

After Paulina finishes their code for a new feature, they must get the changes looked over by another

engineer before the changes are merged to BuzzyFuzzy’s codebase. The other engineer could look at the
changes offline, without having to meet with Paulina synchronously.

Q1.11:
Three concurrent threads, A, B, and C, access the same shared variable v without locking: all of them
read the value of v, and thread A also writes to v. Depending how the threads interleave with each other,

thread B may read a different value of v when the program is executed multiple times.

Q1.12:

Kyle is a manager for a team of software engineers. To ensure that the team stays on track, Kyle sets an

internal deadline to have 75% of the features completed for their prototype. This will not be seen by
customers.

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



Q1.13:

Dave and Ariel are classmates working on a coding project together. They find that when Dave types the

code, and Ariel simultaneously watches to identify bugs and make suggestions, they are more effective
than individually coding without synchronized communication with each other.

Q1.14:
Gogozoom calculates their engineers’ year-end bonuses by the number of lines of code the engineers
write. This leads to engineers writing more lines of code that may be unnecessary and/or unreadable.

Question 2. Code Coverage (19 points)

You are given the following functions. Assume that statement coverage applies only to statements marked STMT_#, and we
consider all statements marked STMT_# in the entire program when calculating coverage. That is, even if the program

execution starts from one particular method, we consider coverage with respect to the contents of all methods shown.
Similarly, even if some methods are not executed during the program execution, we consider coverage with respect to the

contents of all methods shown. Finally, we assume every argument of string type has at least one character; in other words,
we do not consider NULL or empty strings as input to functions in this program.

(a) (3 points)

Provide 1 input (i.e., both arguments) to maang(str a, str b) such that the statement coverage under this input is 75%.

Write your test input in the form such as maang(hello, world), if it is possible to achieve the given statement coverage. If it
is not possible, enter "not possible".

In the context of this question, you have to pick inputs from the following seven strings: { av, att, meta, apple, amazon,
nvidia, netflix }.

Your answer here.

(b) (3 points) True / False: there exists a test suite (with at least one test input) such that the test suite obtains 100%

statement coverage. (We only consider statements marked STMT_# when computing statement coverage in this question. And
we consider all statements marked STMT_#.) Furthermore, in this question you can use any test inputs, not necessarily only

those strings from the previous question.

True

False

(c) (3 points) What is the maximum branch coverage achievable by one and only one (i.e., exactly one) input to maang(str a,
str b)? Note that, the polar_bear function has a while loop in it – similar to if-then-else, this while loop also introduces two
branches: one branch that enters the loop body and the other branch exits the loop.

void maang(str a, str b) {
    STMT_1

    if (a[0] == b[0]) {
        jelly_bean(strlen(a), strlen(b))

    }
    STMT_2

}
​

void jelly_bean(int x, int y) {
    STMT_3

    if (x < y) {
        STMT_4

        polar_bear(y)
    } else {

        STMT_5
        x = 0

        polar_bear(x)
    }

}
​

void polar_bear(int z) {
    while (z > 5) { // line 22

        STMT_6
        z--

    }
    if (z <= 2) { // line 26

        STMT_7
    }

    STMT_8
}

​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



Your answer here.

(d) (3 points) What would be the maximum statement coverage achievable by exactly one input if the "while" condition on line

22 were replaced with z > 2?

Your answer here.

(e) (4 points) What is the minimum number of test cases to reach 100% branch coverage? Provide the test cases with their
input in the form maang(a, b). For a and b, please use string values from only the following seven strings: { av, att,
meta, apple, amazon, nvidia, netflix }. For example, one test case could be maang(att, att). Another example test
case is maang(att, meta). Please write each test case on a separate line.

Your answer here.

(f) (3 points) In 4 sentences or less, describe a scenario in which 100% statement coverage might miss a bug in a program.

Your answer here.

Question 3. Short Answer (5 points each, 40 points)

(a) (5 points)

Suppose you are interviewing at company Corp481, and you get the following technical question:

Given an array of strings called strs, group the anagrams together. Here, an "anagram" is a word or phrase formed by
rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example, “ate” and

“eat” are anagrams.

What are three questions you may want to ask -- e.g., to help clarify the question, or to help you better understand the task, or

to convince the interviewer that you understand relevant software engineering concepts -- before you start typing any code for
this question?

Your answer here.

(b) (5 points)

Suppose you are managing a team of software engineers at company Corp481.

After looking through the history of commits, you realized that each individual code change is quite large. You decided to
encourage developers on your team to keep each individual change small going forward.

How would you justify this decision of breaking larger changes into a series of smaller changes? Feel free to cite what you
learned from the lecture slides and/or readings to back up your justifications. Please use at most five sentences.

Your answer here.

(c) (5 points)

Suppose you are managing a team of software engineers at company Corp481.

When developing a large project, different components in the project may take different amounts of time to be implemented.
You find that programmers who finish their work early are oftentimes blocked by the work of other programmers. For

example, programmer A cannot proceed to test her function because it requires the output of the function which programmer
B is currently still working on.

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



You need to decide whether or not to employ pair programming (i.e., two programmers code up the task together) for a series

of tasks. You will only opt in for pair programming if it leads to an overall lower cost ($$). Otherwise, you would choose to use
individual programming (i.e., one developer programs the entire task alone).

Suppose for ALL tasks, pair programming makes coding 20% slower but results in 60% fewer defects. For example, a task —
that takes one programmer 10 hours to complete — would take a pair of two programmers 12 hours to complete (i.e., two

programmers are pair programming together for the entire 12 hours). On the other hand, given a task, suppose one
programmer writes a program to solve this task that has 10 bugs. If two programmers pair programs together, they would

write a program that solves the same task and that has 4 bugs.

In the context of this question, when pair programming, we allow two programmers to write the program together, however,

when fixing bugs/defects, each programmer will do it individually. In other words, in terms of fixing defects, there is no
difference between pair programming and individual programming: a defect is always fixed by one programmer.

The hourly rate for each programmer would be $50. That is, if a task takes one individual programmer 10 hours to code up,
the cost is $500 (i.e., we need to pay the programmer $500). On the other hand, if two programmers pair program for 10

hours, the total cost would be $1,000 (i.e., each programmer gets paid $500). As for fixing defects, if a defect takes one
programmer 1 hour to fix, the programmer would get paid $50.

The following tables detail the specifications for each task. In particular, for each task, it gives:

a. Program Size (LOC): the total lines of code (LOC). Note that, for the purpose of this question, pair programming and

individual programming will produce programs of the same size.
b. Coding Speed (LOC / hour): the number of lines of code per hour that one programmer can write for the task.

c. Defect Rate (#defects / KLOC): the number of defects produced per one thousand lines of code, assuming one
programmer is working on the task alone.

d. Defect Fixing Rate (#hours / defect): the number of hours for one programmer to fix one defect.

In each answer box, enter either "Individual" or "Pair" as your answer

In order to improve the overall efficiency of the entire team, what single Software Engineering method can you apply and why

is it a good choice? Please use at most five sentences and include at least two reasons why your method is a good choice.

Your answer here.

(d) (5 points)

Suppose you are managing a team of software engineers at company Corp481.

In order to improve productivity, you plan to base developer end-of-year cash bonuses on the following metrics:

a. The number of words of documentation written.
b. The number of code changes accepted during code reviews.

Evaluate the pros and cons of each of these two metrics. Use less than 2 sentences for pros and less than 2 sentences for cons.

Your answer here.

(e) (5 points)

Program Size (LOC) Coding Speed (LOC / hour) Defect Rate (#defects / KLOC) Defect Fixing Rate (#hours / defect)
100,000 50 20 10

Your answer here.

(f) (5 points)

Program Size (LOC) Coding Speed (LOC / hour) Defect Rate (#defects / KLOC) Defect Fixing Rate (#hours / defect)
100,000 100 10 2

Your answer here.

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



(g) (5 points) You are working on a multi-threaded C++ codebase with many lock and unlocks. In every function or method,

there are many if statements that check for errors that result in an early return, many of which are obscure and expected to
almost never happen. You just learned that you need to call unlock before all return statements, and the only reason you’ve

not yet run into any issues is because you only forgot to unlock in some of these error checks. You want to use dynamic
analysis to identify inputs that cause these problems. Is this a good technique, or is there a better one for this scenario? In

addition, please indicate which dynamic analysis from the lecture or readings you think would be the 'best' fit for this situation.
Justify your answer. Limit your answer to no more than five sentences.

Your answer here.

(h) (5 points) You are a software engineer at an app-based rideshare company with a very large codebase. Because of a recent
high-profile hack at one of your competitors, you and your coworkers decide to systematically evaluate your codebase for

security vulnerabilities. If your main concern is identifying whether a defect exists that would cause employee credentials to be
leaked, what single method would you use to evaluate the quality of your codebase, and why? If you have multiple methods in

mind, please explain a best one in your answer. Use no more than five sentences.

Your answer here.

Question 4. Mutation Testing (8 points)

Consider the following python program that implements a standard binary search algorithm. Note that the '//' operator is the
floor division operator in python. For example, 9 // 2 gives you 4. We are interested in the two mutants that are created for

this python program — they are shown in the comments below. In particular, mutant 1 changes to “high = len(arr)” without
changing anything else. Mutant 2 changes only the “while” condition from using “<=” to using “<”.

(a) (4 points)

Your first task is to fill in the following table. In this table, you are given two test inputs. For example, in the first test input arr

= [1, 2, 3, 4] and x = 2 and in the second test input arr = [1, 2, 3, 4] and x = 1. Indicate in the table below whether or not each
of these test inputs would kill each mutant.

Test # Input Oracle Mutant 1 Killed? Mutant 2 Killed?

1 arr = [1, 2, 3, 4] x = 2 1

2 arr = [1, 2, 3, 4] x = 1 0

True
False

True
False

True
False

True
False

(b) (4 points) In a few sentences, discuss the pros and cons of using each of the two mutants to evaluate the each of the two

test inputs

# Returns index of x in given array arr if present,
# else returns -1

​
def binary_search(arr, x):

    high = len(arr) - 1    # mutant 1: high = len(arr)
    mid = 0

    low = 0
​

    while low <= high:    # mutant 2: while low < high
        mid = (high + low) // 2

​
        if arr[mid] < x:

            low = mid + 1
        elif arr[mid] > x:

            high = mid - 1
        else:

            return mid
​

    return -1
​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



Your answer here.

Question 5. Invariants (8 points)

Consider the following code snippet that defines a function, called totallyUsefulFunction, which takes as input two non-
negative integers and one boolean value. In particular, the `apple` variable is a non-negative integer (i.e., positive or zero) that

indicates the number of apples. Similarly, `banana` is the number of bananas (positive or zero, but not negative). Finally,
`chocolate` variable is a boolean that is either True or False, meaning whether or not we have chocolate.

The function calculates a particular `foodScore`. Each apple contributes 1 point and each banana contributes 2 points. If
chocolate is not present, the total `foodScore` is always 0.

The function also calculates the `foodCount` – the total number of apples, bananas and chocolate (with True counting as one
item and False as zero items).

(a) (8 points)

Consider the following four invariants generated by an oracle for totallyUsefulFunction. (The oracle here could be an

automated dynamic invariant generation tool like Daikon. Or it could be created manually by a human. How this oracle is
implemented is not important in this question. We just assume we’re given four invariants.)

The invariants are evaluated at the end of the function – as indicated at the end of the totallyUsefulFunction. For each
invariant, please first indicate either (1) the invariant is valid, or (2) the invariant is not valid.

Then, explain your reasoning. That if, for each invariant, if it is valid, please briefly explain why you believe it is valid. If invalid,
please describe a situation in which this invariant is violated. For example, you could specify the parameter values that make

the invariant invalid – please use the format like [apple = 0, banana = 0, chocolate = false].

Please provide your answer for each invariant in the box below. Each invariant is a new line. You can use the format like
INV_1: valid-or-invalid. your-reasoning.

totallyUsefulFunction(int apple, int banana, bool chocolate){
​

    int foodScore = apple + banana * 2;
    int foodCount = apple + banana + 1;

​
    while (foodScore < 22){

        apple ++;
        foodScore ++;

        foodCount ++;
    }

​
    // Can I have a little chocolate, as a treat?

    if (chocolate == false){
        foodScore = 0;

        foodCount --;
        print(‘sad’);

    } else {
        print(‘yum!’)

    }
​

    // Invariants Evaluated Here
​

}
​

INV_1: foodCount >= 10 
INV_2: foodCount >= 12 

INV_3: foodCount == apple + banana + 1 
INV_4: foodScore >= 0 

​

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

1
2

3
4

5

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



Your answer here.

Question 6: Dataflow Analysis (11 points total)

Consider a live variable dataflow analysis for three variables, x, y, and z used in the control-flow graph below. We associate
with each variable a separate analysis fact: either the variable is (1) possibly read on a later path before it is overwritten (live),

or (2) it is not (dead). We track the set of live variables at each point: for example, if x and y are alive but z is not, we write {x,
y}. The special statement return reads, but does not write, its argument. In addition, if and while read, but do not write, all

of the variables in their predicates. (You must determine if this is a forward or backward analysis.)

(1 point each) For each basic block B1 through B11, write down the list of variables that are live right before the start of the

corresponding block in the control flow graph above. Please list only the variable names in lowercase without commas or other
spacing (e.g., use either ab or ba to indicate that a and b are alive before that block).

B1

 

B2

 

B3

 

B4

 

B5

 

B6

 

B7

 

B8

 

B9

 

B10

 

B11

 

Extra Credit

Each question below is for 1 point of extra credit unless noted otherwise. We are strict about giving points for these answers.

No partial credit.

(1) What is your favorite part of the class so far?

Your answer here.

(2) What is your least favorite part of the class so far?

Your answer here.

(3) If you read any optional reading, identify it and demonstrate to us that you have read it critically. (2 points)

Your answer here.

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit



(4) If you read any other optional reading, identify it and demonstrate to us that you have read it critically. (2 points)

Your answer here.

(5) In your own words, identify and explain any of the bonus psychology effects or ethical considerations presented in class on
the colored bordered slides or in a "long instructor post" on Piazza. (2 points)

Your answer here.

Honor Pledge and Exam Submission

You must check the boxes below before you can submit your exam.

I have neither given nor received unauthorized aid on this exam.

I am ready to submit my exam.

Submit My Exam

Once you submit, you will be able to leave the page without issue. Please don't try to mash the button.

The exam is graded out of 100 points.

99
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit


