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Artificial Intelligence
for Software
Engineering (Al for SE)



One-Slide Summary

* Foundations of Data Science: The theoretical basis of today's artificial
intelligence systems and applications is built upon the foundations of data
science, encompassing key concepts from statistics, operations research,
machine learning, and computer science.

- Al for SE: Artificial Intelligence significantly enhances software engineering by
automating and improving various aspects of the development process and
maintaining code quality, making it a versatile tool for modern software
development.

« LLMs: Large Language Models (LLMs) are currently the most successful Al
techniques in software engineering due to their ability to understand and
generate human-like text, which bridges the gap between natural language
and programming languages.
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Learning Objectives: by the end of today's
lecture, you should be able to...

1. (Knowledge) describe the primary activities in software engineering
using Al

2. (Value) understand why the applications of Al in software
engineering are important

3. (Skill) Review some recent papers



Overview

« Background

« What is Artificial Intelligence (Al) for Software Engineering
(SE)?

* What are the applications of Al in SE?
» Can LLMs help us do program verification?
» Can LLMs help us write unit tests?
* Can LLMs help us do mutation testing?
» Can LLMs help us do vulnerability analysis?
« Can LLMs help us fix bugs and write new code?
» Can LLMs help us do test generation?



Background



A Brief History of Al

- Artificial Intelligence (Al) has a rich history that dates back to the mid-
20th century. The field was officially founded in 1956 during the
Dartmouth Conference, where the term "artificial intelligence" was
coined by John McCarthy.

 Early Al research focused on symbolic methods and problem-solving.
However, progress was slow due to limited computing power and data.

* The 1980s saw a surge in Al interest, known as the first Al summer,
driven by expert systems. This was followed by an Al winter in the late
1980s and early 1990s, a period of reduced funding and interest due to
unmet expectations.
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Al Summer from 2010-2017

* The resurgence of Al began in the 2000s with the

advent of machine learning and the availability of big
data.

* The development of deep learning techniques in the
2010s, particularly neural networks, marked another Al

summer, leading to significant breakthroughs in image
and speech recognition.
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Statistical Models to Neural Networks

* The 2000s saw the rise of statistical models trained on large
datasets, leveraging the increasing availability of internet data.

* In 2009, most NLP tasks used statistical language models as
they could usefully ingest large datasets.

» Neural networks began to dominate NLP tasks around 2012,
using dense vector representations of words.
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What is Deep Learning?

* The concept of deep learning typically involves the use of deep
neural networks.

* Deep learning is a subset of machine learning that uses neural
networks with multiple layers (hence "deep") to model complex
patterns in data.

* These deep neural networks are designed to simulate the wa
the human brain processes information, allowing them to perform
tasks such as image and speech recognition, natural language
processing, and more.

* https://www.ibm.com/topics/deep-learning

» https://builtin.com/machine-learning/deep-learning
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Deep Neural Networks (DNNs)

* Deep neural networks (DNNs) are a type of artificial
neural network with multiple layers between the input
and output layers.

* These layers allow the network to learn and model
complex patterns and relationships within data.

« Each layer extracts increasingly abstract features from
the input, enabling the network to perform tasks such

as image and speech recognition, natural language
processing, and more accurately.
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Al Spring or Al Golden Age: Since 2017

* Many experts consider the period starting around 2017 as the
beginning of a new "Al spring” or "golden age" of Al.

 This era is characterized by rapid advancements in deep

learning, significant improvements in computational power, and
the widespread availability of big data.

* These factors have led to breakthroughs in various Al
applications, such as natural language processing, computer
vision, and autonomous systems.

* https://knowledge.wharton.upenn.edu/article/ai-entering-golden-age/
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Why DNNs are so dominant in today's Al
applications?

* DNNs have become dominant in today's Al systems due to their
superior performance and versatility.

* They can handle large datasets and complex models, making
them suitable for various applications.

* Advances in computational power, such as GPUs, and algorithm
improvements have enhanced their efficiency and effectiveness.

* This combination of factors has made DNNs a cornerstone of
modern Al, driving significant advancements across various
Industries.
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The Nobel Prize in Physics 2024

The Nobel Prize in Physics 2024 was
awarded jointly to John J. Hopfield
and Geoffrey E. Hinton "for
foundational discoveries and
inventions that enable machine
learning with artificial neural

"
networks
I11. Niklas Elmehed © Nobel Prize I1l. Niklas Elmehed © Nobel Prize
Outreach Outreach
John J. Hopfield Geoffrey Hinton
Prize share: 1/2 Prize share: 1/2

12/03/2024 EECS 481 F24 - Al for SE 14



The Transformer Era (2017- Present)

 The introduction of the transformer model using deep neural
network (DNN) architecture in 2017 revolutionized the NLP field.

* At the 2017 NeurlPS conference, Google researchers introduced
the transformer architecture in their landmark paper "Attention Is
All You Need,” which could handle long-range dependencies
more efficiently than RNNs and LSTMs.

» https://web.eecs.umich.edu/~movaghar/Attention All You Need 2017.pdf
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Pre-trained Transformers

 Transformers led to the development of powerful LLMs like
BERT (2018), which focuses on understanding context, and
GPT-3 (2020), which excels at generating coherent and
contextually relevant text.

* These models, like GPT (Generative Pre-trained Transformer),
have significantly advanced the field of natural language
processing (NLP) and All.
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The Current State of Al

* Artificial intelligence’s influence on society has never been
more pronounced.

* Since ChatGPT became a ubiquitous feature on computer
desktops Iin late 2022, the rapid development and
deployment of generative Al and large language model
(LLM) tools have started to transform industries and show
the potential to touch many aspects of modern life.

https://www.weforum.org/stories/2024/04/stanford-university-ai-index-report/
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Large Language Models (LLMs)

 Large Language Models(LLMs) use deep learning techniques,
particularly transformer architectures, to process and generate
text. Some well-known examples include OpenAl's GPT series
(GPT-3, GPT-3.5, GPT-4), Google's BERT, and Meta's
LLaMA.

* These models have hundreds of billions of parameters and
tokens, allowing them to capture intricate patterns in language
and generate coherent, contextually relevant responses.

https://en.wikipedia.org/wiki/Large language model
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Recent Advances and Applications

* LLMs have continued to evolve, with models like OpenAl's
Codex (based on GP1-3) fine-tuned for specific tasks such as
code generation.

* These models are now used in various applications, from
chatbots and virtual assistants to automated content creation
and programming assistance.

- LLMs have come a long way from their early days, and they
continue to push the boundaries of what Al can achieve in
understanding and generating human language.
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Book: Foundations of Data Science

* This book thoroughly introduces the fundamental concepts of
data science, including probability, statistical inference, linear
regression, and machine learning.

* |t strongly emphasizes the mathematical and algorithmic
foundations of data science, making it particularly valuable for
readers who want a deep understanding of the theoretical aspects.

* https://web.eecs.umich.edu/~movaghar/book Machine Learning 2018.pdf
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Excerpt from the Book

“ ...we have written this book to cover the theory we expect
to be useful in the next 40 years, just as an understanding of
automata theory, algorithms, and related topics gave
students an advantage in the last 40 years. One of the major
changes is an increase in emphasis on probability, statistics,
and numerical methods...”
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Interdisciplinary Nature of Data Science

* The book integrates concepts from statistics, operations research,
and computer science, reflecting the interdisciplinary nature of data
science.

* |t delves into the complexities of high-dimensional data, which is
crucial for understanding modern data analysis.

* |t covers practical techniques such as singular value
decomposition (SVD), random walks, and Markov chains, which
are essential for real-world data science applications.
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Theoretical Foundations of Machine
Learning, Integration, and Ethics

* The book discusses various machine learning algorithms and
their theoretical foundations, helping readers understand the
principles behind these powerful tools.

* |t emphasizes the importance of collaboration between data
scientists and domain experts, ensuring that assumptions are
balanced with computational efficiency.

* The book also touches on the ethical use of data science,
which is increasingly important in today's data-driven world.



Overview

« What is Artificial Intelligence (Al) for Software Engineering
(SE)?



What is Artificial Intelligence (Al)
for Software Engineering (SE)?



Al for SE

« Artificial Intelligence for Software Engineering (Al for SE)
iInvolves using artificial intelligence and machine learning
techniques to enhance and automate various software
development and maintenance aspects.

» Al for SE aims to make software development more efficient,
reliable, and scalable by leveraging the power of Al.
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Automating Software Development

* Al has made tremendous progress in automating numerous jobs
typically undertaken by software programmers.

- Al-powered systems, for example, may produce code that fulfills
a set of requirements. This method is known as automated
programming, and it is becoming more popular.

12/03/2024 EECS 481 F24 - Al for SE 27



Improving Software Testing

* Al is altering the way software is tested.

* Algorithms based on artificial intelligence may be used to
automate testing, discover and diagnose mistakes, and
optimize testing situations.

* This strategy can greatly enhance software quality while
lowering testing time and expense.
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Improving Software Upkeep

» Al may also aid with software maintenance.

* Al systems can analyze massive volumes of software-
related data and make recommendations for upgrades
and enhancements using machine learning.

 This method can assist software developers in keeping
software systems up to date and improving their overall
quality.
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Intelligent System Enabling

* Al is also allowing for the creation of intelligent software
systems.

* These systems are capable of learning from data and
adapting to changing conditions.

 Al-powered chatbots, for example, may learn from prior
discussions and improve their replies over time.

« Similarly, recommendation systems can improve their
recommendations by learning from user behavior.
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Increasing Software Security

Al can also help to improve software security.

* For example, Al algorithms may discover security flaws
in software systems and offer fixes.

* They can also recognize possible risks and take
preventative steps.
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Addressing the Talent Shortage

* Finally, Al can assist in overcoming the software
engineering skills problem.

» Al-powered tools and systems may help software
developers be more productive, efficient, and effective.

 This can assist organizations in meeting their software
development objectives while using fewer resources.
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Code Generation and Debugging

* Al can assist in writing code, reducing the time and
effort required by developers.

* Al can identify bugs in the code and even suggest
or implement fixes.

33



Predictive Analytics and Automated Testing

* Al can predict potential issues in software projects,
such as delays or resources.

« Al can create and run tests to ensure software quality
and reliability.

34



LLMs for SE

« Many Al applications in software engineering (SE)
leverage Large Language Models (LLMs).

* These models have shown significant promise in
various aspects of software development.

12/03/2024
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Code Completion and Code Generation

* Tools like GitHub Copilot use LLMs to provide intelligent code
suggestions and auto-completion, enhancing developer
productivity.

« LLMs can generate code snippets or even entire functions
based on natural language descriptions, making it easier to
implement features quickly.
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Testing, Debugging and Code Refactoring

» LLMs assist in identifying and fixing bugs by analyzing

code and suggesting potential fixes.

* They help improve the structure of existing code without
changing its functionality, making the codebase cleaner
and more maintainable.

« LLMs can generate test cases based on the code,
ensuring better coverage and reliability.
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Overview

« Background

« What is Artificial Intelligence (Al) for Software Engineering
(SE)?

» What are the applications of Al in SE?

» Can LLMs help us do program verification?
Can LLMs help us write unit tests?
Can LLMs help us do mutation testing?
Can LLMs help us do vulnerability analysis?
Can LLMs help us fix bugs and write new code?
Can LLMs help us do test generation?
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What are the applications of
Al in SE?



Unleashing the Potential of OpenAl's
Codex in Software Engineering

* OpenAl's Codex is extensively used in various applications
within software engineering (SE).

» Codex, which powers tools like GitHub Copilot, has become a
valuable asset for developers by automating repetitive coding
tasks, generating code snippets, and even assisting with code
completion and debugging.

+ https://www.toolify.ai/ai-news/unleashing-the-potential-of-openais-codex-in-software-engineering-26 74967

» https://openai.com/index/openai-codex/
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Codex

« Codex is an advanced Al model developed by Open Al that
translates natural language into code. It is a descendant of

OpenAl's GPT-3 model, fine-tuned specifically for programming
tasks.

« Based on GPT-3, a neural network trained on text, Codex was

additionally trained on 159 gigabytes of Python code from 54
million GitHub repositories.

* Open Al claims that Codex can create code in over a dozen
programming languages, including Go, JavaScript, Perle, PHP,
Ruby, Shell, Swift, and TypeScript, though it is most effective in
Python.
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Codex Highlights

» OpenAl's Codex combines natural language understanding with
code generation, revolutionizing software development.

» Codex excels at generating code snippets, automating repetitive
coding tasks, and assisting beginners in learning programming.

* It has limitations in reasoning abstractly, handling novel or niche
concepts, and generating code that meets complex requirements.

* Software engineers can use Codex as a tool to augment their work,
ensuring human intervention to produce reliable code.

 The future possibilities of Codex include automated bug detection,
code refactoring, and intelligent code completion.
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Can LLMs help us do program verification?



Result 1: LLM Capabilities in Loop Invariant
Synthesis

* The authors observe that Large Language Models
(LLMs) like GPT-3.5 and GPT-4 can synthesize

loop invariants for a class of programs in a zero-
shot setting.

* However, they require multiple samples to
generate the correct invariants.

https://web.eecs.umich.edu/~movaghar/Sarah Fakhoury 2024 .pdf
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Leveraging LLMs

* The approach leverages an LLM for generation and ranks using
a purely neural model and does not require a program verifier at
the inference time.

* This approach involves designing a ranker that can distinguish
between correct and incorrect invariants based on problem
definition.

* The ranker is optimized as a contrastive ranker, which helps in
prioritizing the most promising invariants for verification.
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Ranking Mechanism

* The paper introduces a ranking mechanism to
evaluate and prioritize the generated loop
iInvariants.

* This helps in reducing the number of calls to a
program verifier, making the process more
efficient.

12/03/2024 EECS 481 F24 - Al for SE
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Empirical Evaluation

* The authors conduct an empirical evaluation to
demonstrate the effectiveness of their approach.

* They show that their ranking mechanism significantly
improves the performance of LLMs in generating
correct loop invariant.

* These contributions aim to enhance the usability and
efficiency of LLMs in program verification tasks,
particularly in the context of loop invariant synthesis.
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Result 2: LEMUR: INTEGRATING LARGE LANGUAGE
MODELS IN AUTOMATED PROGRAM VERIFICATION

* The paper introduces a novel framework that integrates LLMs with
automated reasoners for program verification.

 This framework leverages LLMs' high-level reasoning capabilities and
automated reasoners’ precise low-level reasoning.

* The authors present LEMUR as a proof system and provide formal
proof of its soundness.

* This is the first formalization of such a hybrid approach, demonstrating
that the integration of LLMs and automated reasoners can be both
sound and effective.

* https://web.eecs.umich.edu/~movaghar/LEMUR 2024.pdf
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Sound and Terminating Algorithm

* The paper describes an instantiation of the
LEMUR calculus that results in a sound and
terminating algorithm.

* This ensures that the verification process is
reliable and can be completed within a finite
amount of time.

12/03/2024



Implementation and Optimizations,
Evaluation and Results

* The authors implement the proposed framework and introduce
several practical optimizations to enhance its performance.

* These optimizations make the framework more efficient and
applicable to real-world verification tasks.

* The paper includes an evaluation of the framework,
demonstrating its effectiveness in various program verification
scenarios.

* The results show that the integration of LLMs and automated
reasoners can significantly improve the verification process.
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Can LLMs help us write unit tests?
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Result 3: Unit Test Generation

» LLMs can generate unit tests by analyzing the code and
creating test cases that cover various scenarios.

* The generated tests can achieve higher code coverage and
better quality by using LLMs.

* These models can identify edge cases and generate tests that
human developers might overlook

» https://web.eecs.umich.edu/~movaghar/Multi-language Unit Testing LLM 2024 .pdf
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Result 4: Natural Language Processing

*LLMs can understand and generate human-like
text, making the tests readable and maintainable.

* This helps in creating tests that are closer to
what a developer might write.

* https://web.eecs.umich.edu/~movaghar/Unit Test Generation LLM 2024.pdf
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Result 5: Empirical Study of Unit Test Generation
with LLMs

This study investigates the effectiveness of using LLMs for
generating unit tests compared to traditional tools like EvoSuite.

It evaluates various open-source LLMs and their performance
In generating unit tests for Java projects.

The findings highlight the potential of LLMs in this domain while
also identifying areas for improvement.

https://web.eecs.umich.edu/~movaghar/EVosuite-LLM-2024-1.pdf
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Result 6: Large-scale Study on LLMs for Test Case
Generation

 This comprehensive study assesses the capabilities of
several LLMs, including GPT and Mistral, for generating unit
tests.

* The research compares the correctness, understandability,
coverage, and bug-detection capabilities of LLM-generated
tests against those produced by EvoSuite.

* The results indicate that while LLMs show promise, there are
still challenges to be addressed to match the effectiveness of
traditional methods.

» https://web.eecs.umich.edu/~movaghar/Evosuite-LLM-2024-2.pdf
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Result 7: Meta’s TestGen-LLM

* Meta's TestGen-LLM tackles the time-consuming task of unit
test writing by leveraging the power of Large Language
Models (LLMs).

» General-purpose LLMs like Gemini or ChatGPT might struggle
with the specific domain of unit test code, testing syntax, and

generating tests that don't add value.
* TestGen-LLM is specifically tailored for unit testing.

https://www.freecodecamp.org/news/automated-unit-testing-with-testgen-lim-and-cover-agent/
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Can LLMs help us do mutation testing?



Result 8: An Exploratory Study on Using Large
Language Models for Mutation Testing

* This paper investigates the performance of LLMs in generating
effective mutations, focusing on their usability, fault detection
potential, and relationship with real bugs.

» https://web.eecs.umich.edu/~movaghar/Mutation-Testing-LLMS-2024.pdf
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Result 9: Mutation-based Consistency Testing for Evaluating
the Code Understanding Capability of LLMs

* This study introduces a method to assess the code
understanding performance of LLMs by applying code
mutations to existing code generation datasets.

* https://web.eecs.umich.edu/~movaghar/Mutattion-Testing-Code-Understanding-LLMs-2024.pdf
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Result 10: A Mutation Testing Framework of In-
Context Learning Systems

* This paper proposes a mutation testing framework
specifically designed for in-context learning systems,
leveraging LLMs to evaluate the quality and effectiveness
of test data.

* https://web.eecs.umich.edu/~movaghar/Mutation-Testing-Framework-LLMs-2024 .pdf
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Result 11: On the Use of Large Language Models for
Mutation Testing

* The authors conducted a Iar e-scale empirical study involving
six large language models (L Ms and 851 real bugs from two
Java benchmarks (Defectsdd 2.0 and ConDefects) to evaluate
the effectiveness of LLMs in generating mutations.

 The study found that LLMs generate more diverse mutations
that are behaviorally closer to real bugs, leading to
approximately 19% higher fault detecfion compared to existing

approaches.

e https://web.eecs.umich.edu/~movaghar/Mutation Testing LLM 2025.pdf
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Challenges and Prompt Engineering

» Despite their effectiveness, the mutants generated by LLMs
had lower compilability rates and higher useless and equivalent
mutation rates compared to rule-based approaches

* The paper also explores alternative prompt engineering
strategies and identifies the root causes of uncompilable
mutations, providing insights for improving the performance of
LLMs in mutation testing.
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Table 1. Real Bugs Used in Our Experiment

Dataset Project # of Bugs | Time Span
Math 106 2006/06/05 - 2013/08/31
Lang 65 2006/07/16 - 2013/07/07
Chart 26 2007/07/06 - 2010/02/09
Time 27 2010/10/27 - 2013/12/02
Closure 133 | 2009/11/12 - 2013/10/23
Mockito 38 2009/06/20 - 2015/05/20
Defects4] (D4))  —; 39 | 2007/05/15 - 2018/02/26
Codec 18 2008/04/27 - 2017/03/26
Csv 16 2012/03/27 - 2018/05/18
Gson 18 2010/11/02 - 2017/09/21
JacksonCore 26 | 2013/08/28 - 2019/04/05
Jsoup 93 | 2011/07/02 - 2019/07/04
ConDefects (CD) | — 246 | 2024/03/01 - 2024/06/30
Total — 851 2006/07/16 - 2024/06/30




Table 2. Studied LLMs

Model Type | Studied Model Base Model | Training Data Time | Release Time | Size
GPT-3.5-Turbo GPT 2021/09 2023/03 —

Closed GPT-40 GPT 2023/10 2024/05 —
GPT-40-Mini GPT 2023/10 2024/07 —
StarChat-$-16b StarCoder | — 2023/06 16B

Open CodeLlama-Instruct-13b | Llama — 2023/08 13B
DeepSeek-Coder-V2-236b | DeepSeck 2023/09 2024/07 236B

https://blog.spheron.network/choosing-the-right-llm-2024-comparison-of-open-source-vs-closed-source-lims

12/03/2024
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Table 3. Default Few-Shot Examples from QuixBugs

Correct Version Buggy Version

n=(mna& ((n-1)); n=(n" (n-1));

while (!queue.isEmpty()) while (true)

return depth==0; return true;

ArraylList r = new ArrayList(); to_add.addAll (subset);
r.add(first).addll(subset);

to_add(r);

c = bin_op.apply(b,a); c = bin_op.apply(a,b);
while(Math.abs(x-approxxapprox)>epsilon) | while(Math.abs(x-approx)>epsilon)
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"{WHOLE_JAVA METHOD}'
Above is the original code. your task is to generate "{MUT NUMBER}' mutants, (notice: mutant
refers to the mutant in software engineering, i.e., making subtle changes to the original code) in:
"{CODE _ELEMENT?}’, as follows are some examples of mutants which you can refer to:
{...
"precode": "while (Math.abs(x-approx*approx) > epsilon) { "
"aftercode": " while (Math.abs(x-approx) > epsilon) {",
..}
#Requirement:
1. Provide generated mutants directly
2. A mutation can only occur on one line
3. Your output must be like:
[ { "id":, "line":, "precode":"", "filepath":"kk", "aftercode":"" } ],
where "id" stands for the mutant serial number, "Line" represents the line number
mutated, "precode" represents the line of code before mutation and it can not be empty,
"aftercode" represents the line of code after mutation
4. Prohibit generating the exact same mutants
5. All write in a JSON file

of the

Context
(Whole

Method)

Instructions
and Input

Data

R
Context
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Examples)
)
Output

Fig. 1. The Default Prompt Template
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Table 4. Overall Performance of All the Mutation Generation Techniques

Metric GPT-3.5 | GPT-40 | GPT-40-M || DC-236b | SC-16b | CL-13b || LEAM | pBert | PIT | Major
Mut. Score 0697 | 072 0.708 0694 | 0516 | 0700 || 0545 | 0675 | 0581 | 0486
Mut. Count 538338 | 539715 | 588803 504711 | 463248 | 457195 || 890417 | 20089 | 2890433 | 346282
Avg. Gen. Time 1.79 176 1.65 4.25 753 [ 9.06 306 | 233 | 002 | 008
Comp. Rate 602% | 75.6% 73.6% 755% | 111% | 702% || 35.0% | 225% | — | 986%
Useless Mut. Rate 10.9% 7.8% 6.7% 8.3% 8.9% 39.3% 1.0% 1.7% 0.0% 0.0%
Eq. Mut. Rate 2.2% 1.2% 17% 1.2% 18% | 12% || 13% | 25% | 00% | 0.6%
Real Bug Detec. | 917% | 93.4% 93.4% 928% | 471% | 83.1% || 707% | 713% | 513% | 744%
Coupling Rate 414% | 43.6% 44.1% 415% | 294% | 398% || 287% | 416% | 140% | 36.0%
Ochiai Coeff. 65.0% | 68.5% 66.9% 618% | 193% | 408% || 374% | 316% | 315% | 444%
1. How many LLMs have a Mutation Score of more than 70%?
2. How many LLMs have Real Bug Detection of more than 90%7?
3. How many LLMs achieve a Compilability rate of more than 70%?
4. Which LLM excels w.r.t. Compilability Rate and Equivalent Mutation Rate?
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Table 12. Performance Under the Same Number of Mutations

Metric GPT-3.5 | GPT-40 | GPT-40-M || DC-236b | SC-16b | CL-13b || LEAM | pBert | Major | PIT
Comp. Rate 62.9% 77.4% 70.1% 73.0% 39.3% 74.2% 389% | 18.5% | 96.5% —
Useless Mut. Rate 11.0% 1.3% 7.0% 8.9% 27.1% 39.0% 1.4% 1.4% 0.0% —
Real Bug Det. 89.2% 90.8% 91.3% 89.7% 38.0% 73.5% 67.5% | 35.0% | 83.3% | 43.7%
Coupling Rate 13.3% 14.6% 12.6% 13.4% 11.9% 10.5% 13.2% | 13.2% | 128% | 2.4%
Ochiai Coefficient 35.8% 45.0% 40.8% 35.3% 15.3% 17.8% 17.0% | 15.0% | 341% | 19.2%
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Fig. 2. Number of newly introduced AST nodes of the
studied approaches and the few-shot examples.



* Finding 1: Rule-based approaches cost less time than LLMs in
generating mutations. For example, GPT LLMs take fewer than
1.8s per mutation. In contrast, PIT and Major only require 0.02s

and 0.08s, respectively, while small model-based approaches
(i.e., LEAM anduBert) take 2-3s.

* Finding 2: Rule-based approaches, PIT and Major, outperform
others in terms of compilability rate, useless mutation rate, and
equivalent mutation rate. In particular, GP T-40 exhibits a
compilability rate of 75.6%, a useless mutation rate of 7.8%, and
an equivalent mutation rate of 1.2%. In contrast, Major excels
with a compilability rate of 98.3%, a useless mutation rate of
0%, and an equivalent mutation rate of 0.6%.
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Finding 3: LLM-based mutation approaches introduce more types of new
AST nodes than traditional approaches, while less inclined to generation
deletion mutations.

Finding 4: Five out of six LLIMs significantly outperform traditional
approaches in Real Bug Detectability. In particular, on ConDefects, GPT-40
outperforms nearly 29% over the best of the conventional approach, Major,
highlighting the advantages of LLVis in detecting real bugs.

Finding 5: GPT-4 achieves the highest Coupling Rate at 44.1%,
outperforming all traditional approaches, including the best traditional
approach, uBert, by 2.5%.

Finding 6: Five LLMs surpass all traditional generation approaches in the
Ochiai Coefficient. In particular, the best LLM, GPT-40, exceeds the best of
traditional approaches, Major, by 24.1%.
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Finding 7: Two GPT-4 models perform best, while DeepSeek has a similar
performance to GPT -3.5, standing out among open-source models. The
newer models exhibit better performance in mutation generation.

Finding 8: The prompt with the whole method and few-shot examples as
context (i.e., P1) achieves the best performance across all Behavior Metrics,
whereas adding the code of test suites (i.e., P4) decreases performance.
Finding 9: The mutations generated by GPT models have nine main types of
compilation errors, with Usage of Unknown Methods and Code Structural
Destruction being the two most prevalent types.

Finding 10: Member references and method invocations within the code
context are the most likely triggers for LLIVIs to generate non-compilable
mutations.



Can LLMs help us do vulnerability analysis?



Result 12: LLMs in Source Code Vulnerability
Detection

* This paper discusses how LLMs can be used to analyze source
code and detect known vulnerabilities.

* |t highlights the use of LLMs to capture complex patterns in
code and convert source code to intermediate representations
for better analysis.

» https://web.eecs.umich.edu/~movaghar/Vulnerability-detection-LLMs-2024.pdf
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Result 13: LLM-based Agents for Software
Engineering

* This survey paper reviews the current state of LLM
applications in software engineering, including vulnerability
and defect detection.

* |t covers various topics, such as code generation, autonomous
decision-making, and software maintenance.

» https://web.eecs.umich.edu/~movaghar/LLM-based-agent-se-2024.pdf
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Result 14: Large Language Model for
Vulnerability Detection and Repair

* This systematic literature review examines approaches aimed
at improving vulnerability detection and repair through LLMs.

* It covers research from leading software engineering, Al, and
security conferences and journals.

» https://web.eecs.umich.edu/~movaghar/Source-code-valnurability-detection-LLMs-2024.pdf
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Can LLMs help us fix bugs and write new code?



Result 15: Teaching Large Language Models to
Self-Debug

* The paper introduces a self-debugging approach that
enables Large Language Models (LLMs) to identify and
correct their mistakes without human feedback. This is
achieved through few-shot demonstrations.

* |t implements a method where the LLM performs
"rubber duck debugging,” explaining its generated code
in natural language to identify errors by investigating
execution results.

https://web.eecs.umich.edu/~movaghar/Self-Debgging -LLM 2023.pdf
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Accuracy and Efficiency Improvement

* It demonstrates that the self-debugging approach achieves state-of-the-
art performance on several code generation benchmarks, including
Spider (text-to-SQL), TransCoder (C++-to-Python translation), and MBPP
(text-to-Python generation).

* It shows significant improvements in prediction accuracy, particularly on
complex problems. For example, it improves baseline accuracy by up to
12% on benchmarks with unit tests.

* It highlights that leveraging feedback messages and reusing failed
predictions notably improves sample efficiency, matching or
outperforming baseline models that generate more than 10 times the
number of candidate programs.
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Result 16: Evaluating LLMs at Detecting
Errors in LLM Responses

* The paper introduces Real Mistake, the first error
detection benchmark that consists of objective, realistic,
and diverse errors made by LLMs.

* This benchmark includes three challenging tasks that
iIntroduce objectively assessable errors in four
categories: reasoning correctness, instruction-following,
context-faithfulness, and parameterized knowledge.

https://web.eecs.umich.edu/~movaghar/LLM Error Detection 2024.pdf
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Evaluation of Error Detectors and the

Analysis of Explanations

 The authors use Real_Mistake to evaluate error detectors based on 12
different LLMSs.

 They find that top LLMs like GPT-4 and Claude 3 detect errors at very
low recall rates, and all LLM-based error detectors perform significantly
worse than humans.

* The paper highlights that explanations provided by LLM-based error
detectors lack reliability.

» This finding underscores the need for more robust methods to explain
and justify the detected errors.
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Sensitivity to Prompt Changes and Evaluation
of Improvement Approaches

* The study shows that LLM-based error detection is highly
sensitive to small changes in prompts, making it challenging to
improve the performance of these detectors.

* The paper evaluates popular approaches to improving LLMs,
such as self-consistency and majority vote, and finds that these
methods do not enhance error detection performance.
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Result 17: Enhancing the Code Debugging
Ability of LLMs

* This paper introduces DEBUGEVAL, a benchmark designed
to evaluate the debugging capabilities of LLMSs.

* |t proposes a framework called MASTER to enhance
debugging abilities through data refinement and supervised
fine-tuning.

* https://web.eecs.umich.edu/~movaghar/Code-Debuqgging-LLMs-2024.pdf
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Result 18: LLMs for Software Engineering

* This comprehensive review covers various applications of
LLMs in software engineering, including debugging
automation.

* |t analyzes methods used in data collection, preprocessing,
and application, highlighting the role of well-curated

datasets.

» https://web.eecs.umich.edu/~movaghar/LLM-SE-Review-2024.pdf
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Result 19: LLM Assisted Software
Engineering

 This paper provides an overview of the current state-of-

the-art in LLM support for software construction,
iIncluding debugging.

* |t illustrates the potential and challenges of using LLMs
In software engineering tasks.

» https://web.eecs.umich.edu/~movaghar/LLM-Assisted-SE-2023-Review.pdf
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Can LLMs help us do test generation?



Result 20: CoverUp: Coverage-Guided LLM-
Based Test Generation

* The paper introduces CoverUp, a system that combines
coverage analysis with Large Language Models (LLMs) to
generate high-coverage Python regression tests.

* |t utilizes an iterative process where coverage information is
used to guide the LLM in refining tests to cover more lines and
branches of code.

https://web.eecs.umich.edu/~movaghar/Coverup Regression Testing 2024.pdf
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Coverage Improvement

* The paper demonstrates through empirical analysis that
CoverUp significantly improves test coverage compared to
existing methods.

« For example, it achieves a median line+branch coverage of
80% per module, compared to 47% by CodaMosa, and an
overall coverage of 90%, compared to 77% by MuTAP.

* The paper highlights that the iterative, coverage-guided
approach is crucial to its success, contributing to nearly 40%
of its effectiveness.
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Result 21: Automated Unit Test Improvement
using Large Language Models at Meta

* The paper introduces TestGen-LLM, a tool that uses Large Language

Models (LLMs) to automatically improve existing human-written unit
tests.

* [t demonstrates that TestGen-LLM can generate additional test cases

that cover previously missed corner cases, thereby increasing overall
test coverage.

* [t implements a set of filters to ensure that the generated test classes
provide measurable improvements over the original test suite,
reducing issues related to LLM hallucination.

https://web.eecs.umich.edu/~movaghar/Automatic Test Generation Meta 2024.pdf
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Increased Reliability and Coverage of Test Cases

* The paper describes the deployment of TestGen-LLM at Meta's
test-a-thons for Instagram and Facebook platforms, where it
improved 11.5% of all classes to which it was applied.

* |t reports that 75% of TestGen-LLM's test cases were built
correctly, 57% passed reliably, and 25% increased coverage.

 Additionally, 73% of its recommendations were accepted for
production deployment by Meta software engineers.
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Result 22: Large Language Models as Test Case
Generators: Performance Evaluation and
Enhancement

* The paper conducts an extensive evaluation of Large
Language Models (LLMs) in generating test cases.

* The study finds that the performance of LLMs
declines significantly when handling more complex
problems, often resulting in errors in the generated
test cases.

» https://web.eecs.umich.edu/~movaghar/LLM Test Case Generators 2024 .pdf
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Improved Accuracy of Test cases

* |t proposes a multi-agent framework called TestChain, which

decouples the generation of test inputs and test outputs. This
framework uses a ReAct format conversation chain for LLMs to

interact with a Python interpreter, leading to more accurate test
outputs.

* It demonstrates that TestChain significantly outperforms the
baseline. Specifically, using GPT-4 as the backbone, TestChain

achieves a 13.84% improvement in the accuracy of test cases
on the LeetCode-hard dataset.
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Software Testing with Large Language
Models: Survey, Landscape, and Vision

* The paper provides a comprehensive review of the utilization of
large language models (LLMs) in software testing.

* It analyzes 102 relevant studies, highlighting the various software
testing tasks for which LLMs are commonly used, such as test
case preparation and program repair.

* The paper discusses the types of LLMs employed, the prompt
engineering techniques used, and the accompanying methods that

enhance their effectiveness.

» https://web.eecs.umich.edu/~movaghar/Testing LLMs Survey 2024.pdf
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Figure 1: Structure of the contents in this paper (the numbers in bracket indicates the number of involved papers, and a
paper might involve zero or multiple items)
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Figure 4: Distribution of testing tasks with LLMs (aligned with software testing life cycle [134, 135, 136], the number in

bracket indicates the number of collected studies per task, and one paper might involve multiple tasks)
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TABLE III: Performance of unit test case generation

Dataset Correctness|Coverage LLM Paper
5 Java projects from Defects4] [16.21% 5%-13% (line coverage) ) BART  |[26]
10 Jave projects 40% 89% (line coverage), 90% (branch coverage) |ChatGPT |[36]
CodeSearchNet 41% N/A ChatGPT [7]
HumanEval 78% 87% (line coverage), 92% (branch coverage) | Codex [39]
SF110 2% 2% (line coverage), 1% (branch coverage) Codex [39]
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