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ABSTRACT

Mutation testing assesses test suite efficacy by inserting small
faults into programs and measuring the ability of the test
suite to detect them. It is widely considered the strongest test
criterion in terms of finding the most faults and it subsumes a
number of other coverage criteria. Traditional mutation anal-
ysis is computationally prohibitive which hinders its adoption
as an industry standard. In order to alleviate the computa-
tional issues, we present a diff-based probabilistic approach
to mutation analysis that drastically reduces the number of
mutants by omitting lines of code without statement coverage
and lines that are determined to be uninteresting - we dub
these arid lines. Furthermore, by reducing the number of
mutants and carefully selecting only the most interesting ones
we make it easier for humans to understand and evaluate
the result of mutation analysis. We propose a heuristic for
judging whether a node is arid or not, conditioned on the
programming language. We focus on a code-review based
approach and consider the effects of surfacing mutation re-
sults on developer attention. The described system is used
by 6,000 engineers in Google on all code changes they author
or review, affecting in total more than 13,000 code authors
as part of the mandatory code review process. The system
processes about 30% of all diffs across Google that have state-
ment coverage calculated. About 15% of coverage statement
calculations fail across Google.
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1 INTRODUCTION

Software testing is a widely used technique for ensuring soft-
ware quality. To measure test suites’ effectiveness in detecting
faults in software, various methods are available in the indus-
try. Code coverage is used at Google as one such measure.
However, coverage alone might be misleading, as in many
cases where statements are covered but their consequences
not asserted upon [15]. Mutation analysis inserts systematic
faults (mutations) into the source code under test producing
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mutants of the original code, and judges the effectiveness of
the test suite by its ability to detect those faults. Mutation
analysis is widely considered the best method of evaluating
test suite efficacy [1]. Mutants resemble real world bugs, and
that the test suite effectiveness in detecting mutants is corre-
lated to its effectiveness in detecting real faults [11]. While
being a powerful tool, it is often computationally prohibitive.
Furthermore, the cost of developer attention in evaluating
and mitigating the results of the analysis is also expensive
and can be exorbitant even for medium sized systems.

To leverage mutation analysis in a large complex software
system like Google’s, in this work we propose a diff-based
approach to mutation analysis. Moreover, in the work we de-
scribe a method of transitive mutation suppression of uninter-
esting, arid lines based on developer feedback and program’s
AST. A diff-based approach greatly reduces the number of
lines in which mutants are created, and the suppression of
arid lines cuts the number of potential mutants further; com-
bined, these two approaches make mutation analysis feasible
even for colossal complex systems (Google’s monolithic repos-
itory contains approximately 2 billion lines of code [16]). The
contributions of this work are as follows:

∙ We propose a scalable mutation analysis framework
integrated with the code review process. The approach
hinges on mutation suppresion in arid nodes based on
developer feedback.

∙ We empirically validated the proposed approach on
the Google codebase by evaluating more than 70’000
diffs, testing 1.1 million mutants and surfacing 150’000
actionable findings during code review. Using this de-
veloper feeback loop, the reported usefulness of the
surfaced results improved from 20% to 80%.

2 PROBLEM STATEMENT AND
BACKGROUND

2.1 Mutation testing

Mutation testing, a process of inserting small faults into
programs and measuring test suite effectiveness of detecting
them was originally proposed by DeMillo et al. [3]. Various
mutation operators that define transformations of the pro-
gram were defined over time. Each transformation results in
a new program, called mutant, that differs slightly from the
original. The process of creating a mutant from the original
program is called mutagenesis. Test suite efficacy is measured
by its ability to detect those mutants. Mutants for which
at least one test in the test suite fails are dubbed detected
or killed. Consequently, mutants that are not detected by
the test suite are called living mutants. The more mutants it
kills, the more effective the test suite is in detecting faults.
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Figure 1: Mutant finding shown in the Critique -
Google code review tool

Mutation score is the ratio of killed mutants to the total
number of mutants and is a measure of this efficacy.

Selective mutation can substantially reduce the cost of
mutation analysis [14], but alone is not enough to make
mutation analysis scale for Google’s development workflow.

2.2 Mutation score

The Google repository contains about two billion lines of
code [16]. On average, 40’000 changes are commited to the
codebase every workday, roughly 16’000 changes are authored
by human authors and 24’000 by automated systems. At
present it is infeasably expensive to compute the absolute
mutation score for the codebase at any given fixed point.
It would be even more expensive to keep re-computing the
mutation score in any fixed time period (e.g., daily or weekly)
and it is almost imposible to compute the full score after
each commit. In addition to the computation costs of the
mutation score, we were also unable to find a good way to
surface it to the engineers in an actionable way.

2.3 Developer tools

2.3.1 Code review process. Most changes to Google’s mono-
lithic codebase, except for a limited number of fully auto-
mated changes, are reviewed by engineers before they are
merged into the source tree. Potvin and Levenberg [16]
provide a comprehensive overview of Google’s development
ecosystem. The review process is the cornerstone of the qual-
ity of the codebase, stated humorously by Linus’ Law [17]:
”Given enough eyeballs, all bugs are shallow”. Reviewers can
leave comments on the changed code that must be resolved
by the author. A special type of comment generated by an
automated diff analyzer is known as a finding. The mutation
analysis result is one example of an automated finding.

If an automated diff analyzer finding (e.g. a living mutant)
is not useful, developers can report that with a single click on
the finding. If any of the reviewers consider a finding to be
important, they can indicate that to the diff author with a
single click, as shown in Figure 1. This feedback is accessible
to the owner of the tool that created the findings, so quality

metrics can be tracked and unhelpful findings triaged, and
ideally prevented in the future.

Many analyzers are run automatically when a diff is sent
for review, from linters and formatters to static code and
build dependency analyzers, mostly based on the Tricorder
code analysis platform [18]. Additionally, reviewers will also
post their comments to the diff. As a result, surfacing non-
actionable findings during code review has a negative impact
on the author and the reviewers.

We argue that the code review process is the best location
for surfacing changed code metrics because it maximizes
the probability that the change will be acted upon, thus
improving the test suite efficacy.

2.3.2 Explicit build dependencies and coverage. Google uses
Bazel as its build system [9]. Build targets list their sources
and dependencies explicitly. Test targets can contain multiple
tests, and each test suite can contain multiple test targets.
Using the explicit dependency and source listing, test coverage
analysis provides information about which test target covers
which line in the source code. Tests are executed in parallel.

Statement coverage analysis results link lines of code to
a set of tests covering them. Line level coverage is used for
test execution phase, where the minimal set of tests is run in
the attempt to kill the mutant.

During code reviews, absolute and incremental code cov-
erage is surfaced to the developers. Absolute code coverage
is the ratio of the number of lines covered by tests in the
file to the total number of instrumented lines in the file. The
number of instrumented lines is usually smaller than the
total number of lines, since artefacts like comments or pure
whitespace lines are not applicable for testing. Incremental
coverage is the ratio of the number of lines covered by tests
in the added or modified lines in the diff to the total number
of added or modified lines in the diff.

3 PROBABILISTIC DIFF-BASED
MUTATION TESTING ANALYSIS

Integrating analysis results into the existing developer work-
flow is crucial to making it effective [10]. If developers are
compelled to execute a separate binary and act on its output,
the usability of the tool is drastically reduced. For this reason,
the results of the mutation analysis, e.g. living mutants, are
surfaced during a code review as code findings as described
by Sadowski et al. [18].

Google has a massive codebase, counting two billion lines
of code [16] in various programming languages. The cover-
age distribution per project is shown in Figure 2. Although
the statement coverage of most projects is satisfactory, the
number of living mutants per diff is significant (median is
2 mutants, 99th percentile is 43 mutants). To be of any use
to the author and the reviewers, code findings need to be
surfaced quickly, before the review is complete. The cost of
executing tests for all mutants is prohibitive, therefore, new
techniques are needed.

Probabilistic. For each line, at most one mutant is gener-
ated. Surfacing multiple mutants for a single line clutters the
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Figure 2: Distribution of project statement coverage

code review interface and looks confusing. If a mutant can
be generated in a line, it will be. The mutation operator is
picked at random from the set of applicable operators which
depends on the context of the mutation. We elaborate on
future work of leveraging the mutation context and historic
feedback to predict the quality of the mutant in Section 6.

Diff-based. For each diff under review, mutation analysis
is executed as soon as the incremental coverage analysis
is complete. Incremental coverage analysis results are used
to minimize the set of viable lines that should be mutated.
Mutations are also suppressed in uninteresting, arid lines,
described in Section 4. Only lines affected by the diff under
review that are covered and are not arid are mutated. This
way, only relevant lines that are interesting to both author
and reviewers are analyzed.

The mutation testing service implements mutagenesis for
seven programming languages: C++, Java, Python, Javascript,
Go, TypeScript and Common Lisp. For each language, AOR,
LCR, ROR, SBR and UOI mutators described in Mothra
are implemented, shown in Figure 3 [13]. The ABS (absolute
value insertion) mutator was reported predominantly not
useful, mostly because it acted on time-and-count related
expressions that are positive and nonsensical if negated, and
is not used. We argue this is due to the style and features of
our codebase, and is not applicable generally. For each file in
the diff, a set of mutants is requested, one for each affected
covered line. Affected lines are added or modified lines in
the diff, and the covered lines are defined by the coverage
analysis results, as described in Section 2.3.2. Mutagenesis is
performed by traversing the Abstract Syntax Trees (AST) in
each of the languages, and decisions are often done on the
AST node level because it allows for fine-grained decisions
due to the amount of context available.

4 ARID NODE DETECTION VIA
ABSTRACT SYNTAX TREE
TRAVERSAL

Some parts of code are less interesting than others. Surfacing
living mutants in uninteresting statements like logging has a
negative impact on human time spent analyzing the finding,
and its cognitive overhead. Because adding test cases to kill
mutants in uninteresting nodes is not viewed as improving the
overall efficacy of the suite to detect faults, such mutants tend
to survive. This section proposes an approach for mutation

suppression and a heuristic for detecting such AST nodes
in which mutation is to be suppressed. There is a tradeoff
between the correctness and usability of results; the proposed
heuristic may suppress mutation in relevant nodes as a side-
effect of reducing uninteresting node mutations. We argue
that this is a good tradeoff because the number of possible
mutants is always orders of magnitude larger than what we
could reasonably present to the developers within the existing
developer tools, and it’s more effective to prevent high impact
faults, rather than arid faults.

4.1 Arid nodes

When parsing the source code to the AST, compilers construct
a tree of nodes. Nodes may be statements, expressions or
declarations and they are connected with the child-parent
relationships into a tree to represent their connections in
the source code [12]. Most compilers diferentiate simple and
compound nodes. Simple nodes have no other nodes as part
of their body, e.g. a call expression names a function and
parameters, but has no body. Compound nodes have at least
one body, e.g. a for loop might have a body, while an if

statement might have two: then and else branches. An
example of an arid node would be a log statement, calls to
memory-reserving functions like std::vector::reserve or
writes to stdout: scenarios tipically not tested by unit tests.

The heuristic for labeling nodes as arid is two-fold and is
defined in equation 1. The first part operates on simple nodes
and is represented by an expert curated manually for each
programming language and is adjusted over time. The second
part operates on compound nodes, and is defined recursively.
A compound node is an arid node iff all of its compounds
are arid. There are different categories of arid nodes:

∙ nodes are associated with logging, testing,
∙ nodes that control non-functional properties, and
∙ node that are axiomatic for the language and where
mutant would be trivially killed by higher order testing.

Expert. Let𝑁 ∈ 𝑇 be a node in the abstract syntax tree 𝑇
of a program. Let 𝑠𝑖𝑚𝑝𝑙𝑒 be a boolean function determining
whether a node is simple (compound nodes contain their
children nodes). Let 𝑒𝑥𝑝𝑒𝑟𝑡 be a boolean function over a
subset of simple statements in 𝑇 encoding manually curated
knowledge on arid simple nodes. Then,

𝑎𝑟𝑖𝑑(𝑁) =

{︂
𝑒𝑥𝑝𝑒𝑟𝑡(𝑁) 𝑖𝑓 𝑠𝑖𝑚𝑝𝑙𝑒(𝑁)

1 𝑖𝑓
⋀︀
(𝑎𝑟𝑖𝑑(𝑏)) = 1, ∀𝑏 ∈ 𝑁 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)
The 𝑒𝑥𝑝𝑒𝑟𝑡 function that flags simple nodes as arid is

developed over time to incorporate developer feedback on
reported ’Not useful’ mutants. This process is manual: if we
decide a certain mutation is not useful and that the whole
class of mutants should not be created, the rule is added to
the 𝑒𝑥𝑝𝑒𝑟𝑡 function. This is the critical part of the system
because, without it, users would become frustrated with non-
actionable feedback and opt out of the system altogether.
Targeted mutation and careful finding surfacing has been
critical for the adoption of the mutation testing in Google.
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Name Scope

AOR Arithmetic operator replacement a + b → {𝑎, 𝑏, 𝑎− 𝑏, 𝑎 * 𝑏, 𝑎/𝑏, 𝑎%𝑏}
LCR Logical connector replacement a && b → {𝑎, 𝑏, 𝑎||𝑏, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}
ROR Relational operator replacement a >b → {𝑎 < 𝑏, 𝑎 <= 𝑏, 𝑎 >= 𝑏, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}
UOI Unary operator insertion a → {𝑎++, 𝑎−−}; b → !b
SBR Statement block removal stmt → ∅

Figure 3: Mutation operators

Heuristics for arid node detection used at Google for each
language are described in Appendix A.

5 ANALYSIS OF DIFF-BASED
PROBABILISTIC MUTATION
ANALYSIS RESULTS

The dataset contains information on 1’159’723 mutants in
seven programming languages: C++, Java, Python, Go,
JavaScript, TypeScript and Common Lisp. The distribu-
tion of mutations is provided in Figure 4. In total, 72’425
diffs were analyzed as part of the code review process and
150’854 actionable results generated, out of which 11’049 got
developer feedback. The purpose of the analysis is to better
understand the efficacy and percieved usefulness of mutation
types accross programming languages.

5.1 Dataset

The analyzed dataset contains information about all the
mutation analyses that were run. For each diff analyzed, the
dataset contains:

∙ files with lines affected,
∙ test targets testing those affected lines,
∙ mutants generated for each of the affected lines,
∙ test results for the file at the mutated line, and
∙ mutation context and mutator types for each mutant.

Language Count (Ratio) Survival rate

Java 543’541 (47%) 13.2%
C++ 279’575 (24%) 11.7%
Python 129’868 (11%) 14.7%
Go 1’050.7 (9%) 14.0%
JavaScript 86’123 (7%) 13.1%
TypeScript 13’318 (1%) 8.3%
Common Lisp 2’272 (1%) 1.0%

Figure 4: Mutants per programming language

5.2 Results

We first investigate the mutation operator survivability (Sec-
tion 5.3). Then, in Section 5.4 we investigate the developer
feedback on the surfaced mutants. Data is sliced by language
and mutator operator types for deeper insight. Programming
languages have different characteristics, so it is reasonable to

Mutation operator Count (Ratio)

SBR 829’999 (72.18%)
UOI 197’776 (17.19%)
ROR 51’574 (4.48%)
LCR 51’360 (4.46%)
AOR 19’448 (1.69%)

Figure 5: Mutants per mutation operator

expect the mutation analysis results to vary correspondingly.
Out of 1’159’723 mutants in the dataset, the majority of
mutants come from Java (47%) and C++ (23%), as shown
in Figure 4.

5.3 Mutation survivability

Over 87% of all test runs over mutants fail, killing the mutant.
This is not the mutation score [4] (the ratio of mutants killed
to total number of mutants) because of the probabilistic
nature of mutagenesis where only a subset of mutants is
generated and evaluated, and many potential mutants are
not ever tested because they are in arid nodes.

It is interesting to look at the different breakdowns of the
mutants by various criteria. Differences between program-
ming languages are expected. Indeed, Python mutants have
the highest survival rate of 14.7%, shown on Figure 4. We
argue that the difference is related to the fact that C++
is a compiled language and a whole class of faults that ap-
pear in Python code are caught by the C++ compiler. Sim-
ilarly, TypeScript is optionally statically typed superset of
JavaScript and shows lower survivability. It is interesting that
Go is second with 14%.

Figure 6 shows the survivability of each type of mutant.
Because SBR mutation can be applied to almost any non-
arid node in the code, it is no surprise that it dominates the
mutant space, contributing roughly 72% of all mutants. SBR
is a powerful weapon, but a blunt one: it is the mutation
type second-least likely to survive the test suite, and is thus
surfaced during code review with the probability of 12.9%.
However, the distribution of survival probabilities over mu-
tation types is quite stable, with LCR (Logical Connector
Replacement) being the most robust at 15%.

Different programming languages exhibit different behav-
iors, so it is worth looking into survival rates per language.
Figure 12 shows the overall distribution, with the TypeScript
AOR mutator as the best fit mutator with a 22.7% survival
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Figure 6: Mutant survival rate sliced by type and language

rate. Interestingly, Java mutator survivability distribution
has the highest entropy, where all operators fall within a
narrow 2.6% bucket, while TypeScript has the widest range
from 4.9% to 22.7%. Looking at the UOI mutations, it is
peculiar that they are the most surviving in Python while
in all other languages they are the least surviving mutants.
We argue this is due to extensive use of boolean literals in
Python’s default parameter values that are not tested or used
for injection of testing doubles.

When generating only a single mutant in a line, surviv-
ability data can be leveraged to predict the best mutant to
generate in that line, based on historic data.

5.4 Developer feedback

User feedback is gathered via Critique (Section 2.3.1) where
each surfaced code finding displays ”Please fix” and ”Not
useful” links. 75% of all findings with feedback were found
useful by developers. This ratio gets better over time because
the ”Not useful” feedback can usually be generalized in a
rule for the 𝑒𝑥𝑝𝑒𝑟𝑡 function described in Section 4, so future
mutations of nodes in which mutants were found not to be
useful can be suppressed, generating fewer useless mutants
over time. Some of the heuristics of the 𝑒𝑥𝑝𝑒𝑟𝑡 for several
languages are described in Appendix A.

Living mutants are a precondition for surfacing an action-
able finding, but alone do not make a good measure of efficacy.
A näıve example would be a mutation that changes the dead-
line of a network call; this mutant would likely survive, but
rarely be useful and effective. Developer feedback, request-
ing the author of the diff to improve the tests based on the
mutant (by means of ”Please fix”) is a stronger signal that
the mutant is effective. In Figure 7, we present the perceived
usefulness of mutants by the operator type, LCR being useful
in most cases (87.3%) and AOR the least (61.7%).

Another angle is to view the perceived usefulness sliced by
programming language, shown in Figure 7. It’s interesting to
note that findings in JavaScript and Go have lower value that
in other languages. We argue that in JavaScript, this is due

to mutants in nodes associated with type annotations and
module imports. For Go, it stands to reason that its idiomatic
way of handling errors from calls that is omnipresent but
rarely exhaustively tested is the cause. These point to areas
of improvement in the arid node detection mechanism.

We find that developer feedback is the most important
available measure for mutation analysis results due to Google’s
high accuracy and actionability requirements for surfacing
findings during code reviews.

6 FUTURE WORK

Because at most one mutant is generated per line, it is
important to maximize the probability that the generated
mutant survives and is actually useful to the developer. Since
developer feedback and mutant survival are tracked, we will
work on a learning system for predicting the usefulness of
mutant operator types when faced with multiple available
choices. We are working on describing the mutation context
by looking into the neighboring nodes in the AST along with
other features of the mutation. The usefulness prediction
of different mutator types is based on the usefulness of the
previous mutations that occurred in similar contexts, i.e. its
AST neighbors in a lower-dimension space.

While we have reduced the non-actionable result rates to
25% manually, this approach does not scale since changes
have to be implemented for all languages, and when adding
support for new ones, all applicable heuristics need to be
ported to it.

Our future efforts are geared towards two results: reducing
the ratio of non-actionable mutation analysis results, and
inferring the arid nodes directly from developer feedback
without manual curation.

7 CONCLUSION

Developer attention is a valuable resource and should be
used with care. In large systems, we have found there to
be too many living mutants to efficiently find and surface
the surviving ones in a useful and actionable manner. The
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Figure 7: Mutant usefulness ratio per language and type

proposed probabilistic diff-based approach with arid node
detection significantly lowers the computation cost and cog-
nitive overhead of surfacing mutation analysis results. The
proposed approach surfaces surviving mutants in interesting
lines relevant to the author and the reviewers, pointing to
potentially flawed or missing test cases within minutes of the
code review request. We found 75% of the surfaced findings
with feedback to be reported useful, and we have observed
many cases in which mutants caught actual bugs in the code,
and even more where test suites were improved to kill the
reported mutants.
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A ARID NODE EXPERT RULES

The 𝑒𝑥𝑝𝑒𝑟𝑡 function defined in Section 4 consists of various
rules in Google, some of which are mutation-type-specific,
and some of which are universal. The rules are defined at the
AST node level.

A.1 General rules

There are a few rules that are applied for all languages and
mutation types.

Program arguments are commonly passed to Google bina-
ries using the gflags library [7]. Flag definitions declare the
default value of the flag, and a test suite will rarely check
for changes in this behavior. Empirically, mutations in flag
definitions have been found predominantly useless, so the
flag definition nodes are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡.

DEFINE_bool(dry_run , true , "debug only");

DEFINE_bool(dry_run , fa l se , "debug only");

https://golang.org/ref/spec#Slice_types
https://golang.org/ref/spec#Slice_types
https://grpc.io
https://github.com/google/guice
https://github.com/gflags/gflags
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://bazel.io/
http://dl.acm.org/citation.cfm?id=2854146
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The most common arid nodes are logging statements, which
are never tested outside of the logging framework itself. Log-
ging nodes are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡.

log.infof("network speed: %v", bytes/time)

log.infof("network speed: %v", bytes+time)

Import statements are not interesting nodes, and removing
them often causes compiler or interpreter errors, so they are
considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡.

Return statements are not mutated either. Note that the
only mutation type applicable to the return statement is SBR,
which would delete it and likely cause a compiler error. The
expression contained within the return statement itself is a
node of another type and is subject to mutation. For example,
the following return statement will never be deleted, but the
division operator might be mutated: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓(3 / 4𝑓). The
return statement in the AST given by Figure 8 will not be
mutated, but its children might.

ReturnStmt

CallExpr

FunctionDecl BinaryOperator

IntegralLiteral

lhs

/

o
p
co
d
e

Lit

rhs

Figure 8: Possible AST for a return statement

Time specification-changing mutations are avoided because
unit tests rarely test for timing conditions, and if they do,
they tend to use fake clocks. Statements invoking sleep-like
functionality, setting deadlines, or waiting for services to
become ready (like gRPC [5] server’s Wait function that
is always invoked in RPC servers, which are abundant in
Google’s code base) are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡
function.

sleep(100); rpc.set_deadline(10);

sleep(200); rpc.set_deadline(20);

Memory-reserving functionality is not mutated because it
usually leads to slower but equivalent mutants. A common
example is free, delete or std::vector::reserve, that poten-
tially causes a reallocation and sets the vector capacity, but
exhibits no semantic difference; deleting this line or changing
the allocation size might cause more reallocations on the way

or a segmentation fault, but will probably not cause a failure
that should be caught by a test. Such nodes across languages
are considered arid by the 𝑒𝑥𝑝𝑒𝑟𝑡 function.

Memoization is often used to improve code execution
speeds, but its removal inevitably causes the generation of an
equivalent mutant. An equivalent mutant is a program that
is syntactically different from the original, but semantically
equivalent to it. The question of equivalence is unfortunately
undecidable, so avoiding generating equivalent mutants is
important. The following heuristic is used to detect memoiza-
tion: an if statement is a cache lookup if it is of the form if

a, ok := x[v]; ok return a, i.e. if a lookup in the map
finds an element, the if block returns that element (among
other values, e.g. Error in Go). Such an if statement is a
cache-lookup statement and is considered arid by the 𝑒𝑥𝑝𝑒𝑟𝑡
function, as is its full body. An example cache-lookup in Go
is shown in Figure 9. Removing the emphasized block would
just kill the cache, but the program would still work in the
same way, thus the change is not detectable by any semantic
tests.

var cache map[string]string

func get(key string) string {

i f va l , ok := cache [ key ] ; ok {
return v a l

}
value := expensiveCalculation(key)

cache[key] = value

return value

}

Figure 9: Memoization in Go

In the for-statement condition, the less than operator is
not mutated to a not-equal operator. This usually results
in the equivalent mutant and is suppressed. An example is
given in Figure 10. Replacement with other operators is not
suppressed.

for (int i = 0; i < 10; i++)

for (int i = 0; i != 10; i++)

Figure 10: Equivalent mutant in for loop condition

𝑖𝑓 statements that contain only arid nodes are arid nodes.
If the 𝑖𝑓 statement’s 𝑡ℎ𝑒𝑛 and 𝑒𝑙𝑠𝑒 (and other) blocks contain
nothing but arid nodes, they and their conditions are not
mutated. The same is true for all expressions containing one
or more blocks as children, e.g. 𝑓𝑜𝑟, 𝑤ℎ𝑖𝑙𝑒, 𝑑𝑜, 𝑐𝑎𝑠𝑒, 𝑠𝑤𝑖𝑡𝑐ℎ,
etc.
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if (FLAGS debug) {

LOG(INFO) << "request received: "

<< req ->DebugString ();

}

if ( ! ( FLAGS debug ) ) {

LOG(INFO) << "request received: "

<< req ->DebugString ();

}

A.2 Arid node expert rules specific to a
certain programming language

The heuristics used for different programming languages are
highly driven by the internal frameworks and constructs and
they evolve over time. A small window into them is given in
the following language-specific subsections.

A.2.1 C++. The LCR mutator has an exception when
dealing with NULL i.e., nullptr, because of its equivalence
with 𝑓𝑎𝑙𝑠𝑒. The example in Figure 11 demonstrates this.
The mutants marked in bold are equivalent because of the
falsy value of nullptr. The same is true of the opposite
example, where the condition is if (nullptr == x), and
the left-hand side is equivalent to the mutant where the
expression is replaced by false. These mutation subtypes are
suppressed.

original node potential mutants

𝑖𝑓(𝑥! = 𝑛𝑢𝑙𝑙𝑝𝑡𝑟)
if (x)
if (nullptr)
if (x == nullptr)
if (false)
if (true)

Figure 11: Equivalent potential mutants for LCR

Label statements and declarations are not mutated because
of prevalent compiler errors caused by the only mutator ap-
plicable in most cases: SBR. Binary operators are affected
by SBR only if they are assignment operators, because oth-
erwise they mostly cause compilation errors, e.g., removing
the condition in a for statement. The condition itself, as a
binary operator, is subject to most other mutations, though.
If blocks are removed, they are replaced with an empty block
, to avoid compilation errors. Block statements are enclosed
by curly braces and are usually children of nodes with blocks,
like if, for or while statements. Both the if statement and its
block can be fully removed by SBR.

A.2.2 Java. Guice-related nodes [6] are considered arid
nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡 function (see section 4). Java’s java.lang.Object
methods that are usually generated, namely equals, hash-
Code, clone, toString are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡
function. Method, constructor, enum, interface, variable and

class declarations are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡
function. SBR, as the only applicable mutation type, would
usually cause compilation errors if applied. Exception muta-
tion is mostly suppressed. Deleting throw, throws and catch
statements can cause compilation errors, and mutating the ex-
ception messages is rarely asserted upon; tests usually check
the type of the thrown exception (e.g. PermissionException).
Such nodes are considered arid by the 𝑒𝑥𝑝𝑒𝑟𝑡 function and
are not mutated.

A.2.3 Go. Go has a relatively simple grammar which re-
sults in fewer rules for the 𝑒𝑥𝑝𝑒𝑟𝑡. Go’s make built-in function
creates a slice of certain length, and potentially capacity. Ad-
ditionally, runtime.KeepAlive is marked as arid, because it
deals with scheduling finalizers and freeing objects, and is
never tested by unit tests. Mutants in variable declarations
are suppressed. Go is very special in the way it handles un-
used variables and imports: they are compiler errors and that
behavior cannot be changed by compiler flags, unlike gcc
or clang Wno-error flag family. Deleting the only statement
using a variable in Go will result in a compilation error in
the line declaring the variable. Deleting the only statement
using a module, like math.Pow, will result in the compilation
error in the line importing the math package. Go also has
a shorthand for variable declaration, e.g., k := 3. All such
nodes are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡 function and
mutants in them are suppressed.

Go also has a very minimalistic approach to its core li-
braries and the language in general. There are no size or
empty functions, and a built-in len function is used instead.
It is common to check the emptiness of the slice by asking
whether len(slice) > 0, and a mutant reversing that op-
erator to less than produces unreachable code, because by
definition, the length of a slice is non-negative. ROR muta-
tions of conditions comparing length of a structure and 0
are limited in a way that the mutation of unreachable code
is avoided, covering both sides of the mirrored comparisons,
where 0 is on the left- or right-hand side.

Go slice [2] capacity specification in make statements are
arid nodes, and mutating them produces equivalent mutants.

s := make ([]string , len(x) + 2)

s := make ([]string , len(x) * 2)

A.2.4 Javascript. The Google’s Closure library [8] is com-
monly used in the codebase. Its namespace features for han-
dling packages and avoiding name collisions are prevalent
and are considered arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡 function. Some
of those nodes include calls to goog.require, goog.provide,
goog.module, module.register.

JavaScript has deep and shallow equality operators (==,
===, !=, !==). There are heated discussions on how these
should be used, but it is generally not useful to mutate
between deep and shallow variants of the same operator,
especially since the opposite operator mutation usually makes
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for a good mutant. LCR mutations are limited to the opposite
operator, i.e. == → != and === → !==.

Closure compiler type hints are considered arid nodes by
the 𝑒𝑥𝑝𝑒𝑟𝑡 function: removing them does not and should not
break any tests. Various constructor and constructor-like field
definitions in JavaScript are considered arid nodes.

A.2.5 Python. When python is running a module as a
main program, it sets the special 𝑛𝑎𝑚𝑒 variable to ” 𝑚𝑎𝑖𝑛 ”.
Most python binaries contain the following boilerplate.

if __name__ == "__main__":

run()

This if statement is considered an arid node by the 𝑒𝑥𝑝𝑒𝑟𝑡
function. Inverting the condition does not produce a useful
mutant, as the condition will only evaluate to true when the
python file is executed as a stand-alone program, not when
executed within a test.

Python’s print and assert builtin functions are considered
arid nodes by the 𝑒𝑥𝑝𝑒𝑟𝑡 function and are not mutated.

Default argument values are considered arid nodes by the
𝑒𝑥𝑝𝑒𝑟𝑡 function. Based on a lot of feedback from developers,
these mutations were suppressed because of their low value.
Example of such mutant is demonstrated in the following
listing.

def f(size , duration , annotate=Fa l se ):

def f(size , duration , annotate=True):

While this might suppress important mutants, the over-
whelming feedback of low usefulness prevailed in marking
these nodes arid. This might come from the Google-specific
Python style and tests.

Programming Language Survival rate (%)

TypeScript AOR 22.727
C++ LCR 18.497
Python UOI 17.915
JavaScript LCR 17.868
Go ROR 17.860
C++ AOR 16.673
JavaScript ROR 15.297
Go SBR 15.029
Java AOR 14.975
Go AOR 14.964
C++ ROR 14.535
Java LCR 14.224
Java UOI 14.216
Java ROR 13.763
JavaScript SBR 13.340
Python SBR 13.168
Python LCR 13.018
C++ SBR 12.644
Java SBR 12.608
Go LCR 12.042
Python ROR 10.979
JavaScript AOR 10.776
Python AOR 8.421
TypeScript SBR 8.408
TypeScript ROR 8.092
Go UOI 7.785
TypeScript LCR 7.083
JavaScript UOI 6.608
C++ UOI 5.178
TypeScript UOI 4.861
Lisp SBR 1.757
Lisp LCR 1.666
Lisp UOI 0.740

Figure 12: Survival rate per language and type
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