
Challenges and practices in aligning requirements
with verification and validation: a case study
of six companies

Elizabeth Bjarnason & Per Runeson & Markus Borg &

Michael Unterkalmsteiner & Emelie Engström &

Björn Regnell & Giedre Sabaliauskaite &

Annabella Loconsole & Tony Gorschek & Robert Feldt

Published online: 19 July 2013
Springer Science+Business Media New York 2013

Abstract Weak alignment of requirements engineering (RE) with verification and valida-
tion (VV) may lead to problems in delivering the required products in time with the right
quality. For example, weak communication of requirements changes to testers may result in
lack of verification of new requirements and incorrect verification of old invalid requirements,
leading to software quality problems, wasted effort and delays. However, despite the serious
implications of weak alignment research and practice both tend to focus on one or the other of RE
or VVrather than on the alignment of the two.We have performed a multi-unit case study to gain
insight into issues around aligning RE and VV by interviewing 30 practitioners from 6 software
developing companies, involving 10 researchers in a flexible research process for case studies.
The results describe current industry challenges and practices in aligning RE with VV, ranging
from quality of the individual RE and VVactivities, through tracing and tools, to change control

Empir Software Eng (2014) 19:1809–1855
DOI 10.1007/s10664-013-9263-y

Communicated by: Nachiappan Nagappan

E. Bjarnason (*) : P. Runeson :M. Borg : E. Engström : B. Regnell
Department of Computer Science, Lund University, Box 118, SE-221 00 Lund, Sweden
e-mail: elizabeth@cs.lth.se

P. Runeson
e-mail: per.runeson@cs.lth.se

M. Borg
e-mail: markus.borg@cs.lth.se

E. Engström
e-mail: emelie.engstrom@cs.lth.se

B. Regnell
e-mail: bjorn.regnell@cs.lth.se

M. Unterkalmsteiner : T. Gorschek : R. Feldt
Blekinge Institute of Technology, School of Computing, SE-371 79 Karlskrona, Sweden

M. Unterkalmsteiner
e-mail: michael.unterkalmsteiner@bth.se

and sharing a common understanding at strategy, goal and design level. The study identified that
human aspects are central, i.e. cooperation and communication, and that requirements engineer-
ing practices are a critical basis for alignment. Further, the size of an organisation and its
motivation for applying alignment practices, e.g. external enforcement of traceability, are
variation factors that play a key role in achieving alignment. Our results provide a strategic
roadmap for practitioners improvement work to address alignment challenges. Furthermore, the
study provides a foundation for continued research to improve the alignment of RE with VV.

Keywords Requirements engineering . Verification . Validation . Testing . Alignment . Case
study

1 Introduction

Requirements engineering (RE) and verification and validation (VV) both aim to support
development of products that will meet customers’ expectations regarding functionality and
quality. However, to achieve this RE and VV need to be aligned and their ‘activities or
systems organised so that they match or fit well together’ (MacMillan Dictionary’s definition
of ‘align’). When aligned within a project or an organisation, RE and VV work together like
two bookends that support a row of books by buttressing them from either end. RE and VV,
when aligned, can effectively support the development activities between the initial defini-
tion of requirements and acceptance testing of the final product (Damian and Chisan 2006).

Weak coordination of requirements with development and testing tasks can lead to
inefficient development, delays and problems with the functionality and the quality of the
produced software, especially for large-scale development (Kraut and Streeter 1995). For
example, if requirements changes are agreed without involving testers and without updating
the requirements specification, the changed functionality is either not verified or incorrectly
verified. This weak alignment of RE and work that is divided and distributed among
engineers within a company or project poses a risk of producing a product that does not
satisfy business and/or client expectations (Gorschek and Davis 2007). In particular, weak
alignment between RE and VV may lead to a number of problems that affect the later project
phases such as non‐verifiable requirements, lower product quality, additional cost and effort
required for removing defects (Sabaliauskaite et al. 2010). Furthermore, Jones et al. (2009)

T. Gorschek
e-mail: tony.gorschek@bth.se

R. Feldt
e-mail: robert.feldt@chalmers.se

A. Loconsole
Malmö University, Teknik och samhälle, SE-205 06 Malmö, Sweden
e-mail: annabella.loconsole@mah.se

R. Feldt
Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden

G. Sabaliauskaite
Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682, Singapore
e-mail: gsabaliauskaite@gmail.com

1810 Empir Software Eng (2014) 19:1809–1855

identified three other alignment related problems found to affect independent testing teams,
namely uncertain test coverage, not knowing whether changed software behaviour is
intended, and lack of established communication channels to deal with issues and questions.

There is a large body of knowledge for the separate areas of RE and VV, some of which
touches on the connection to the other field. However, few studies have focused specifically
on the alignment between the two areas (Barmi et al. 2011) though there are some
exceptions. Kukkanen et al. reported on lessons learnt in concurrently improving the re-
quirements and the testing processes based on a case study (Kukkanen et al. 2009). Another
related study was performed by Uusitalo et al. who identified a set of practices used in
industry for linking requirements and testing (Uusitalo et al. 2008). Furthermore, RE
alignment in the context of outsourced development has been pointed out as a focus area
for future RE research by Cheng and Attlee (Cheng and Atlee 2007).

When considering alignment, traceability has often been a focal point (Watkins and Neal
1994, Barmi et al. 2011, Paci et al. 2012). However, REVV alignment also covers the
coordination between roles and activities of RE and VV. Traceability mainly focuses on the
structuring and organisation of different related artefacts. Connecting (or tracing) require-
ments with the test cases that verify them support engineers in ensuring requirements
coverage, performing impact analysis for requirements changes etc. In addition to tracing,
alignment also covers the interaction between roles throughout different project phases; from
agreeing on high-level business and testing strategies to defining and deploying detailed
requirements and test cases.

Our case study investigates the challenges of RE and VV (REVV) alignment, and
identifies methods and practices used, or suggested for use, by industry to address these
issues. The results reported in this paper are based on semi-structured interviews of 90 min
each with 30 practitioners from six different software companies, comprising a wide range of
people with experience from different roles relating to RE and VV. This paper extends on
preliminary results of identifying the challenges faced by one of the companies included in
our study (Sabaliauskaite et al. 2010). In this paper, we report on the practices and challenges
of all the included companies based on a full analysis of all the interview data. In addition,
the results are herein categorised to support practitioners in defining a strategy for identify-
ing suitable practices for addressing challenges experienced in their own organisations.

The rest of this paper is organised as follows: Section 2 presents related work. The design
of the case study is described in Section 3, while the results can be found in Section 4. In
Section 5 the results are discussed and, finally the paper is concluded in Section 6.

2 Related Work

The software engineering fields RE and VV have mainly been explored with a focus on one
or the other of the two fields (Barmi et al. 2011), though there are some studies investigating
the alignment between the two. Through a systematic mapping study into alignment of
requirements specification and testing, Barmi et al. found that most studies in the area were
on model-based testing including a range of variants of formal methods for describing
requirements with models or languages from which test case are then generated. Barmi et
al. also identified traceability and empirical studies into alignment challenges and practices
as main areas of research. Only 3 empirical studies into REVV alignment were found. Of
these, two originate from the same research group and the third one is the initial results of the
study reported in this paper. Barmi et al. draw the conclusions that though the areas of
model-based engineering and traceability are well understood, practical solutions including

Empir Software Eng (2014) 19:1809–1855 1811

evaluations of the research are needed. In the following sections previous work in the field is
described and related to this study at a high level. Our findings in relation to previous work
are discussed in more depth in Section 5.

The impact of RE on the software development process as a whole (including testing)
has been studied by Damian et al. (2005) who found that improved RE and involving
more roles in the RE activities had positive effects on testing. In particular, the improved
change control process was found to ‘bring together not only the functional organisation
through horizontal alignment (designers, developers, testers and documenters), but also
vertical alignment of organisational responsibility (engineers, teams leads, technical
managers and executive management), (Damian et al. 2005). Furthermore, in another
study Damian and Chisan (2006) found that rich interactions between RE and testing can
lead to pay-offs in improved test coverage and risk management, and in reduced re-
quirements creep, overscoping and waste, resulting in increased productivity and product
quality. Gorschek and Davis (2007) have proposed a taxonomy for assessing the impact
of RE on, not just project, but also on product, company and society level; to judge RE
not just by the quality of the system requirements specification, but also by its wider
impact.

Jointly improving the RE and testing processes was investigated by Kukkanen et al.
(2009) through a case study on development performed partly in the safety-critical domain
with the dual aim of improving customer satisfaction and product quality. They report that
integrating requirements and testing processes, including clearly defining RE and testing
roles for the integrated process, improves alignment by connecting processes and people
from requirements and testing, as well as, applying good practices that support this connec-
tion. Furthermore, they report that the most important aspect in achieving alignment is to
ensure that ‘the right information is communicated to the right persons’ (Kukkanen et al.
2009, p 484). Successful collaboration between requirements and test can be ensured by
assigning and connecting roles from both requirements and test as responsible for ensuring
that reviews are conducted. Among the practices implemented to support requirements and
test alignment were the use of metrics, traceability with tool support, change management
process and reviews of requirements, test cases and traces between them (Kukkanen et al.
2009). The risk of overlapping roles and activities between requirements and test, and gaps
in the processes was found to be reduced by concurrently improving both processes
(Kukkanen et al. 2009). These findings correlate very well with the practices identified
through our study.

Alignment practices that improve the link between requirements and test are reported by
Uusitalo et al. (2008) based on six interviews, mainly with test roles, from the same number
of companies. Their results include a number of practices that increase the communication
and interaction between requirements and testing roles, namely early tester participation,
traceability policies, consider feature requests from testers, and linking test and requirements
people. In addition, four of the companies applied traceability between requirements and test
cases, while admitting that traces were rarelymaintained andwere thus incomplete (Uusitalo et al.
2008). Linking people or artefacts were seen as equally important by the interviewees who were
unwilling to select one over the other. Most of the practices reported by Uusitalo et al. were also
identified in our study with the exception of the specific practice of linking testers to
requirements owners and the practice of including internal testing requirements in the project
scope.

The concept of traceability has been discussed, and researched since the very beginning
of software engineering, i.e. since the 1960s (Randell 1969). Traceability between require-
ments and other development artefacts can support impact analysis (Gotel and Finkelstein

1812 Empir Software Eng (2014) 19:1809–1855

1994, Watkins and Neal 1994, Ramesh et al. 1997, Damian et al. 2005, Uusitalo et al. 2008,
Kukkanen et al. 2009), lower testing and maintenance costs (Watkins and Neal 1994,
Kukkanen et al. 2009), and increased test coverage (Watkins and Neal 1994, Uusitalo et
al. 2008) and thereby quality in the final products (Watkins and Neal 1994, Ramesh et al.
1997). Tracing is also important to software verification due to being an (acknowledged)
important aspect in high quality development (Watkins and Neal 1994, Ramesh et al. 1997).
The challenges connected to traceability have been empirically investigated and reported
over the years. The found challenges include volatility of the traced artefacts, informal
processes with lack of clear responsibilities for tracing, communication gaps, insufficient
time and resources for maintaining traces in combination with the practice being seen as
non-cost efficient, and a lack of training (Cleland-Huang et al. 2003). Several methods for
supporting automatic or semi-automatic recovery of traces have been proposed as a way to
address the cost of establishing and maintaining traces, e.g. De Lucia et al. 2007, Hayes et al.
2007, Lormans et al. 2008. An alternative approach is proposed by Post et al. (2009) where
the number of traces between requirements and test are reduced by linking test cases to user
scenarios abstracted from the formal requirements, thus tracing at a higher abstraction level.
When evaluating this approach, errors were found both in the formal requirements and in the
developed product (Post et al. 2009). However, though the evaluation was performed in an
industrial setting the set of 50 requirements was very small. In conclusion, traceability in
full-scale industrial projects remains an elusive and costly practice to realise (Gotel and
Finkelstein 1994, Watkins and Neal 1994, Jarke 1998, Ramesh 1998). It is interesting to note
that Gotel and Finkelstein (1994) conclude that a ‘particular concern’ in improving
requirements traceability is the need to facilitate informal communication with those
responsible for specifying and detailing requirements. Another evaluation of the trace-
ability challenge reported by Ramesh identifies three factors as influencing the implemen-
tation of requirements traceability, namely environmental (tools), organisational (external
organisational incentive on individual or internal), and development context (process and
practices) (Ramesh 1998).

Model-based testing is a large research field within which a wide range of formal models
and languages for representing requirements have been suggested (Dias Neto et al. 2007).
Defining or modelling the requirements in a formal model or language enables the automatic
generation of other development artefacts such as test cases, based on the (modelled)
requirements. Similarly to the field of traceability, model-based testing also has issues with
practical applicability in industrial development (Nebut et al. 2006, Mohagheghi and Dehlen
2008, Yue et al. 2011). Two exceptions to this is provided by Hasling et al. (2008) and by
Nebut et al. (2006) who both report on experiences from applying model-based testing by
generating system test cases from UML descriptions of the requirements. The main benefits
of model-based testing are in increased test coverage (Nebut et al. 2006, Hasling et al. 2008),
enforcing a clear and unambiguous definition of the requirements (Hasling et al. 2008) and
increased testing productivity (Grieskamp et al. 2011). However, the formal representation
of requirements often results in difficulties both in requiring special competence to produce
(Nebut et al. 2006), but also for non-specialist (e.g. business people) in understanding the
requirements (Lubars et al. 1993). Transformation of textual requirements into formal
models could alleviate some of these issues. However, additional research is required before
a practical solution is available for supporting such transformations (Yue et al. 2011). The
generation of test cases directly from the requirements implicitly links the two without any
need for manually creating (or maintaining) traces. However, depending on the level of the
model and the generated test cases the value of the traces might vary. For example, for use
cases and system test cases the tracing was reported as being more natural than when using

Empir Software Eng (2014) 19:1809–1855 1813

state machines (Hasling et al. 2008). Errors in the models are an additional issue to consider
when applying model-based testing (Hasling et al. 2008). Scenario-based models where test
cases are defined to cover requirements defined as use cases, user stories or user scenarios
have been proposed as an alternative to the formal models, e.g. by Regnell and Runeson
(1998), Regnell et al. (2000) and Melnik et al. (2006). The scenarios define the requirements
at a high level while the details are defined as test cases; acceptance test cases are used to
document the detailed requirements. This is an approach often applied in agile development
(Cao and Ramesh 2008). Melnik et al. (2006) found that using executable acceptance test
cases as detailed requirements is straight-forward to implement and breeds a testing men-
tality. Similar positive experiences with defining requirements as scenarios and acceptance
test cases are reported from industry by Martin and Melnik (2008)

3 Case Study Design

The main goal of this case study was to gain a deeper understanding of the issues in REVV
alignment and to identify common practices used in industry to address the challenges
within the area. To this end, a flexible exploratory case study design (Robson 2002, Runeson
et al. 2012) was chosen with semi-structured interviews as the data collection method. In
order to manage the size of the study, we followed a case study process suggested by
Runeson et al. (2012, chapter 14) which allowed for a structured approach in managing the
large amounts of qualitative data in a consistent manner among the many researchers
involved. The process consists of the following five interrelated phases (see Fig. 1 for an
overview, including in- and outputs of the different phases):

1) Definition of goals and research questions
2) Design and planning including preparations for interviews
3) Evidence collection (performing the interviews)
4) Data analysis (transcription, coding, abstraction and grouping, interpretation)
5) Reporting

Phases 1–4 are presented in more detail in Sections 3.1 to 3.4, while threats to validity are
discussed in Section 3.5. A more in-depth description with lessons learned from applying the
process in this study is presented by Runeson et al (2012, Chapter 14). A description of the
six case companies involved in the study can be found in Section 3.2.

The ten authors played different roles in the five phases. The senior researchers, Regnell,
Gorschek, Runeson and Feldt lead the goal definition of the study. They also coached the
design and planning, which was practically managed by Loconsole, Sabaliauskaite and
Engström. Evidence collection was distributed over all ten researchers. Loconsole and
Sabaliauskaite did the transcription and coding together with Bjarnason, Borg, Engström
and Unterkalmsteiner, as well as the preliminary data analysis for the evidence from the first

Fig. 1 Overview of the research process including in- and output for each phase

1814 Empir Software Eng (2014) 19:1809–1855

company (Sabaliauskaite et al. 2010). Bjarnason, Borg, Engström and Unterkalmsteiner did
the major legwork in the intermediate data analysis, coached by Regnell, Gorschek and
Runeson. Bjarnason and Runeson made the final data analysis, interpretation and reporting,
which was then reviewed by the rest of the authors.

3.1 Definition of Research Goal and Questions

This initial phase (see Fig. 1) provided the direction and scope for the rest of the case study.
A set of goals and research questions were defined based on previous experience, results and
knowledge of the participating researchers, and a literature study into the area. The study
was performed as part of an industrial excellence research centre, where REVV alignment
was one theme. Brainstorming sessions were also held with representatives from companies
interested in participating in the study. In these meetings the researchers and the company
representatives agreed on a main long-term research goal for the area: to improve develop-
ment efficiency within existing levels of software quality through REVV alignment, where
this case study takes a first step into exploring the current state of the art in industry.
Furthermore, a number of aspects to be considered were agreed upon, namely agile
processes, open source development, software product line engineering, non-functional
requirements, and, volume and volatility of requirements. As the study progressed the goals
and focal aspects were refined and research questions formulated and documented by two
researchers. Four other researchers reviewed their output. Additional research questions
were added after performing two pilot interviews (in the next phase, see Section 3.2). In
this paper, the following research questions are addressed in the context of software
development:

& RQ1: What are the current challenges, or issues, in achieving REVV alignment?
& RQ2: What are the current practices that support achieving REVV alignment?
& RQ3: Which current challenges are addressed by which current practices?

The main concepts of REVV alignment to be used in this study were identified after
discussions and a conceptual model of the scope of the study was defined (see Fig. 2). This
model was based on a traditional V-model showing the artefacts and processes covered by the
study, including the relationships between artefacts of varying abstraction level and between
processes and artefacts. The discussions undertaken in defining this conceptual model led to a
shared understanding within the group of researchers and reduced researcher variation, thus
ensuring greater validity of the data collection and results. The model was utilised both as a
guide for the researchers in subsequent phases of the study and during the interviews.

3.2 Design and Planning

In this phase, the detailed research procedures for the case study were designed and
preparations were made for data collection. These preparations included designing the
interview guide and selecting the cases and interviewees.

The interview guide was based on the research questions and aspects, and the conceptual
model produced in the Definition phase (see Figs. 1 and 2). The guide was constructed and
refined several times by three researchers and reviewed by another four. User scenarios
related to aligning requirements and testing, and examples of alignment metrics were
included in the guide as a basis for discussions with the interviewees. The interview
questions were mapped to the research questions to ensure that they were all covered. The
guide was updated twice; after two pilot interviews, and after six initial interviews. Through

Empir Software Eng (2014) 19:1809–1855 1815

these iterations the general content of the guide remained the same, though the structure and
order of the interview questions were modified and improved. The resulting interview guide
is published by Runeson et al. (2012, appendix C). Furthermore, a consent information letter
was prepared to make each interviewee aware of the conditions of the interviews and their
rights to refuse to answer and to withdraw at any time. The consent letter is published by
Runeson et al. (2012, Appendix E).

The case selection was performed through a brainstorming session held within the group
of researchers where companies and interviewee profiles that would match the research
goals were discussed. In order to maximise the variation of companies selected from the
industrial collaboration network, with respect to size, type of process, application domain
and type of product, a combination of maximum variation selection and convenience
selection was applied (Runeson et al. 2012, p. 35, 112). The characteristics of the case
companies are briefly summarised in Table 1. It is clear from the summary that they
represent: a wide range of domains; size from 50 to 1,000 software developers; bespoke
and market driven development; waterfall and iterative processes; using open source com-
ponents or not, etc. At the time of the interviews a major shift in process model, from
waterfall to agile, was underway at company F. Hence, for some affected factors in Table 1,
information is given as to for which model the data is valid.

Our aim was to cover processes and artefacts relevant to REVValignment for the whole life
cycle from requirements definition through development to system testing and maintenance.
For this reason, interviewees were selected to represent the relevant range of viewpoints from
requirements to testing, both at managerial and at engineering level. Initially, the company
contact persons helped us find suitable people to interview. This was complemented by
snowball sampling (Robson 2002) by asking the interviewees if they could recommend a
person or a role in the company whom we could interview in order to get alignment-related
information. These suggestions were then matched against our aim to select interviewees in
order to obtain a wide coverage of the processes and artefacts of interest. The selected
interviewees represent a variety of roles, working with requirements, testing and development;
both engineers and managers were interviewed. The number of interviews per company was
selected to allow for going in-depth in one company (company F) through a large number of

Time

Product lines

A
b

st
ra

ct
io

n
 le

ve
l

Code

Goals
Strategies
Roadmaps
Features
System requirements
Function specifications

Testing goals
Testing approaches
Test suites
Test cases (in natural language)
Executable test scripts

Implements Verifies

Relationships

Requirements
artefacts

Test
artefacts

Fig. 2 The conceptual model of the area under study, produced in phase 1

1816 Empir Software Eng (2014) 19:1809–1855

T
ab

le
1

O
ve
rv
ie
w
of

th
e
co
m
pa
ni
es

co
ve
re
d
by

th
is
ca
se

st
ud
y.
A
tc
om

pa
ny

F
a
m
aj
or

pr
oc
es
s
ch
an
ge

w
as

ta
ki
ng

pl
ac
e
at
th
e
tim

e
of

th
e
st
ud
y
an
d
da
ta
sp
ec
if
ic
to
th
e
pr
ev
io
us

w
at
er
fa
ll-
ba
se
d
pr
oc
es
s
ar
e

m
ar
ke
d
w
ith

‘p
re
vi
ou
s’

C
om

pa
ny

A
B

C
D

E
F

T
yp
e
of

co
m
pa
ny

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

C
on
su
lti
ng

S
of
tw
ar
e
de
ve
lo
pm

en
t

S
ys
te
m
s
en
gi
ne
er
in
g,

em
be
dd
ed

pr
od
uc
ts

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

S
of
tw
ar
e
de
ve
lo
pm

en
t,

em
be
dd
ed

pr
od
uc
ts

#
em

pl
oy
ee
s
in

so
ft
w
ar
e
de
ve
lo
pm

en
t

of
ta
rg
et
ed

or
ga
ni
sa
tio

n
12
5–
15
0

13
5

50
0

50
–1

00
30
0–
35
0

1,
00
0

#
em

pl
oy
ee
s
in

ty
pi
ca
l
pr
oj
ec
t

10
M
os
tly

4–
10
,
bu
t

va
ri
es

gr
ea
tly

50
–8

0
so
ft
w
ar
e
de
ve
lo
pe
rs
:

10
–2
0

6–
7
pe
r
te
am

,
10
–1

5
te
am

s
P
re
vi
ou
s
pr
oc
es
s:

80
0–
1,
00
0
pe
rs
on

ye
ar
s

D
is
tr
ib
ut
ed

N
o

C
ol
lo
ca
te
d
(p
er

pr
oj
ec
t,

of
te
n
on
-s
ite

at
cu
st
om

er
)

Y
es

Y
es

Y
es

Y
es

D
om

ai
n
/
S
ys
te
m

ty
pe

C
om

pu
te
r
ne
tw
or
ki
ng

eq
ui
pm

en
t

A
dv
is
or
y/
te
ch
ni
ca
l

se
rv
ic
es
,

ap
pl
ic
at
io
n
m
an
ag
em

en
t

R
ai
l
tr
af
fi
c
m
an
ag
em

en
t

A
ut
om

ot
iv
e

T
el
ec
om

T
el
ec
om

S
ou
rc
e
of

re
qu
ir
em

en
ts

M
ar
ke
t
dr
iv
en

B
es
po
ke

B
es
po
ke

B
es
po
ke

B
es
po
ke

an
d
m
ar
ke
td

ri
ve
n

B
es
po
ke

an
d
m
ar
ke
t
dr
iv
en

M
ai
n
qu
al
ity

fo
cu
s

A
va
ila
bi
lit
y,
pe
rf
or
m
an
ce
,

se
cu
ri
ty

D
ep
en
ds

on
cu
st
om

er
fo
cu
s

S
af
et
y

S
af
et
y

A
va
ila
bi
lit
y,
P
er
fo
rm

an
ce
,

re
lia
bi
lit
y,
se
cu
ri
ty

P
er
fo
rm

an
ce
,
st
ab
ili
ty

C
er
tif
ic
at
io
n

N
o
so
ft
w
ar
e
re
la
te
d
ce
rt
if
ic
at
io
n

N
o

IS
O
90
01
,
IS
O
14
00
1,

O
H
S
A
S
18
00
1

IS
O
90
01
,
IS
O
14
00
1

IS
O
90
01
,
IS
O
14
00
1

(a
im

in
g
to
w
ar
ds

ad
he
ri
ng

to
T
L
90
00
)

IS
O
90
01

P
ro
ce
ss

M
od
el

It
er
at
iv
e

A
gi
le

in
va
ri
an
ts

W
at
er
fa
ll

R
U
P,
S
cr
um

S
cr
um

,
eR

U
P,
a

sp
ri
nt
s
is
3
m
on
th
s

It
er
at
iv
e
w
ith

ga
te
de
ci
si
on
s

(a
gi
le

in
fl
ue
nc
ed
).

P
re
vi
ou
s:
W
at
er
fa
ll

D
ur
at
io
n
of

a
ty
pi
ca
l
pr
oj
ec
t

6–
18

m
on
th
s

N
o
ty
pi
ca
l
pr
oj
ec
t

1–
5
ye
ar
s
to

fi
rs
td

el
iv
er
y,

th
en

ne
w

so
ft
w
ar
e

re
le
as
e
fo
r
1–

10
ye
ar
s

1–
5
ye
ar
s
to

fi
rs
t
de
liv

er
y,

th
en

ne
w

so
ft
w
ar
e

re
le
as
es

fo
r
1–
10

ye
ar
s

1
ye
ar

P
re
vi
ou
s
pr
oc
es
s
2
ye
ar
s

#
re
qu
ir
em

en
ts
in

ty
pi
ca
l
pr
oj
ec
t

10
0
(2
0–

30
pa
ge
s
H
T
M
L
)

N
o
ty
pi
ca
l
pr
oj
ec
t

60
0–
80
0
at

sy
st
em

le
ve
l

F
or

so
ft
w
ar
e:
20
–4

0
us
e
ca
se
s

50
0–
70
0
us
er

st
or
ie
s

P
re
vi
ou
s
pr
oc
es
s:
14
,0
00

#
te
st
ca
se
s
in

a
ty
pi
ca
l
pr
oj
ec
t

~1
,0
00

te
st
ca
se
s

N
o
ty
pi
ca
l
pr
oj
ec
t

25
0
at

sy
st
em

le
ve
l

11
,0
00
+

P
re
vi
ou
s
pr
oc
es
s
20
0,
00
0

at
pl
at
fo
rm

le
ve
l,
7,
00
0

at
sy
st
em

le
ve
l

P
ro
du
ct

L
in
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

O
pe
n
S
ou
rc
e

Y
es

Y
es
.
W
id
e
us
e,

in
cl
ud
in
g

co
nt
ri
bu
tio

ns

Y
es
,
pa
rt
ly

N
o

N
o

Y
es

(w
ith

ne
w

ag
ile

pr
oc
es
s
m
od
el
)

Empir Software Eng (2014) 19:1809–1855 1817

interviews. Additionally, for this large company the aim was to capture a wide view of the
situation and thus mitigate the risk of a skewed sampled. For the other companies, three
interviews were held per company. An overview of the interviewees, their roles and level of
experience is given in Table 2. Note that for company B, the consultants that were interviewed
typically take on a multitude of roles within a project even though they can mainly be
characterised as software developers they also take part in requirements analysis and specifi-
cation, design and testing activities.

3.3 Evidence Collection

A semi-structured interview strategy (Robson 2002) was used for the interviews, which were
performed over a period of 1 year starting in May 2009. The interview guide (Runeson et al.
2012, appendix C) acted as a checklist to ensure that all selected topics were covered.
Interviews lasted for about 90 min. Two or three researchers were present at each interview,
except for five interviews, which were performed by only one researcher. One of the
interviewers led the interview, while the others took notes and asked additional questions
for completeness or clarification. After consent was given by the interviewee audio
recordings were made of each interview. All interviewees consented.

The audio recordings were transcribed word by word and the transcriptions were vali-
dated in two steps to eliminate un-clarities and misunderstandings. These steps were: (i)
another researcher, primarily one who was present at the interview, reviewed the transcript,
and (ii) the transcript was sent to the interviewee with sections for clarification highlighted
and the interviewee had a chance to edit the transcript to correct errors or explain what they
meant. These modifications were included into the final version of the transcript, which was
used for further data analysis.

The transcripts were divided into chunks of text consisting of a couple of sentences each
to enable referencing specific parts of the interviews. Furthermore, an anonymous code was
assigned to each interview and the names of the interviewees were removed from the
transcripts before data analysis in order to ensure anonymity of the interviewees.

Table 2 Overview of interviewees’ roles at their companies incl. level of experience in that role; S(enior) = more
than 3 years, or J(unior) = up to 3 years. Xn refers to interviewee n at company X. Note: most interviewees have
additional previous experience

Role A B C D E F

Requirements engineer F1 (S), F6 (S),
F7 (S)

Systems architect D3 (J) E1 (S) F4 (S)

Software developer B1 (J),
B2 (S),
B3 (S)

F13 (S)

Test engineer A2 (S) C1 (S),
C2 (J)

D2 (S) E3 (S) F9 (S), F10 (S),
F11 (J), F12 (S),
F14 (S)

Project manager A1 (J) C3 (S) D1 (S) F3 (J), F8 (S)

Product manager A3 (S) E2 (S)

Process manager F2 (J), F5 (S),
F15 (J)

1818 Empir Software Eng (2014) 19:1809–1855

3.4 Data Analysis

Once the data was collected through the interviews and transcribed (see Fig. 1), a three-stage
analysis process was performed consisting of: coding, abstraction and grouping, and inter-
pretation. These multiple steps were required to enable the researchers to efficiently navigate
and consistently interpret the huge amounts of qualitative data collected, comprising more
than 300 pages of interview transcripts.

Coding of the transcripts, i.e. the chunks, was performed to enable locating relevant parts of
the large amounts of interview data during analysis. A set of codes, or keywords, based on the
research and interview questions was produced, initially at a workshop with the participating
researchers. This set was then iteratively updated after exploratory coding and further discus-
sions. In the final version, the codes were grouped into multiple categories at different
abstraction levels, and a coding guidewas developed. To validate that the researchers performed
coding in a uniform way, one interview transcript was selected and coded by all researchers.
The differences in coding were then discussed at a workshop and the coding guide was
subsequently improved. The final set of codes was applied to all the transcripts. The coding
guide and some coding examples are published by Runeson et al. (2012, Appendix D).

Abstraction and grouping of the collected data into statements relevant to the goals and
questions for our study was performed in order to obtain a manageable set of data that could
more easily be navigated and analysed. The statements can be seen as an index, or common
categorisation of sections belonging together, in essence a summary of them as done by
Gorschek and Wohlin (2004, 2006), Pettersson et al. (2008) and Höst et al. (2010). The
statements were each given a unique identifier, title and description. Their relationship to other
statements, as derived from the transcripts, was also abstracted. The statements and relation-
ships between them were represented by nodes connected by directional edges. Figure 3 shows
an example of the representation designed and used for this study. In particular, the figure shows
the abstraction of the interview data around cross-role reviews of requirements, represented by
node N4. For example, the statement ‘cross-role reviews’was found to contribute to statements
related to requirements quality. Each statement is represented by a node. For example, N4 for
‘cross-role review’, and N1, N196 and N275 for the statements related to requirements quality.
The connections between these statements are represented by a ‘contributes to’ relationship

N4
There is

cross-review
of reqs

N326
There is good
collaboration

N15
There is

good REVV
alignment

N114
There is
full test

coverage

N196
The reqs.
are clear

N1
The SRS is
complete

CC

C C

C
PDC

CC

P
N3

Traceability
bt reqs & test
cases exists

N275
The reqs

are
verifiable

Fig. 3 Part of the abstraction representing the interpretation of the interviewee data. The relationships shown
denote C - contribute to, P - prerequisite for, and DC – does not contribute to

Empir Software Eng (2014) 19:1809–1855 1819

from N4 to each of N1, N196 and N275. These connections are denoted by a directional edge
tagged with the type of relationship. For example, the tags ‘C’ for ‘contributes to’, ‘P’ for
‘prerequisite for’ and ‘DC’ for ‘does not contribute to’. In addition, negation of one or both of
the statements can be denoted by applying a post- or prefix ‘not’ (N) to the connection. The type
of relationships used for modelling the connections between statements were discussed, defined
and agreed on in a series of work meetings. Traceability to the origin of the statements and the
relationships between them was captured and maintained by noting the id of the relevant source
chunk, both for nodes and for edges. This is not shown in Fig. 3.

The identified statements including relationships to other statements were extracted per
transcript by one researcher per interview. To ensure a consistent abstraction among the
group of researchers and to enhance completeness and correctness, the abstraction for each
interview was reviewed by at least one other researcher and agreed after discussing differ-
ences of opinion. The nodes and edges identified by each researcher were merged into one
common graph consisting of 341 nodes and 552 edges.

Interpretation of the collected evidence involved identifying the parts of the data
relevant to a specific research question. The abstracted statements derived in the previous
step acted as an index into the interview data and allowed the researchers to identify
statements relevant to the research questions of challenges and practices. This interpretation
of the interview data was performed by analysing a graphical representation of the abstracted
statements including the connections between them. Through the analysis nodes and clusters
of nodes related to the research questions were identified. This is similar to explorative
coding and, for this paper, the identified codes or clusters represented REVV alignment
challenges and practices with one cluster (code) per challenge and per practice. Due to the
large amount of data, the analysis and clustering was initially performed on sub-sets of the
graphical representation, one for each company. The identified clusters were then iteratively
merged into a common set of clusters for the interviews for all companies. For example, for
the nodes shown in Fig. 3 the statements ‘The requirements are clear’ (N196) and ‘The
requirements are verifiable’ (N275) were clustered together into the challenge ‘Defining
clear and verifiable requirements’ (challenge Ch3.2, see Section 4.1) based on connections
(not shown in the example) to other statements reflecting that this leads to weak alignment.

Even with the abstracted representation of the interview transcripts, the interpretation step
is a non-trivial task which requires careful and skilful consideration to identify the nodes
relevant to specific research questions. For this reason, the clustering that was performed by
Bjarnason was reviewed and agreed with Runeson. Furthermore, the remaining un-clustered
nodes were reviewed by Engström, and either mapped to existing clusters, suggested for new
clusters or judged to be out of scope for the specific research questions. This mapping was
then reviewed and agreed with Bjarnason.

Finally, the agreed clusters were used as an index to locate the relevant parts of the
interview transcripts (through traces from the nodes and edges of each cluster to the chunks
of text). For each identified challenge and practice, and mapping between them, the located
parts of the transcriptions were then analysed and interpreted, and reported in this paper in
Sections 4.1, 4.2 and 4.3, respectively for challenges, practices, and the mapping.

3.5 Threats to Validity

There are limitations and threats to the validity to all empirical studies, and so also for this case
study. As suggested by Runeson and Höst (2009, Runeson et al. 2012), the construct validity,
external validity and reliability were analysed in the phases leading up to the analysis phase of
the case study, see Fig. 1. We also report measures taken to improve the validity of the study.

1820 Empir Software Eng (2014) 19:1809–1855

3.5.1 Construct Validity

Construct validity refers to how well the chosen research method has captured the concepts
under study. There is a risk that academic researchers and industry practitioners may use
different terms and have different frames of reference, both between and within these
categories of people. In addition, the presence of researchers may threaten the interviewees
and lead them to respond according to assumed expectations. The selection of interviewees
may also give a limited or unbalanced view of the construct. In order to mitigate these risks,
we took the following actions in the design step:

& Design of the interview guide and reference model. The interview guide was designed
based on the research questions and reviewed for completeness and consistency by other
researchers. It was piloted during two interviews and then revised again after another six.
The risk that the language and terms used may not be uniformly understood was
addressed by producing a conceptual model (see Fig. 2), which was shown to the
interviewees to explain the terminology. However, due to the semi-structured nature of
the guide and the different interviewers involved the absence of interviewee data for a
certain concept, challenge or practice cannot be interpreted as the absence of this item
either in the interviewees experience or in the company. For similar reasons, the results
do not include any ranking or prioritisation as to which challenges and practices are the
most frequent or most effective.

& Prolonged involvement. The companies were selected so that at least one of the re-
searchers had a long-term relation with them. This relationship helped provide the trust
needed for openness and honesty in the interviews. To mitigate the bias of knowing the
company too well, all but five interviews (companies D and E) were conducted by more
than one interviewer.

& Selection of interviewees. To obtain a good representation of different aspects, a range of
roles were selected to cover requirement, development and testing, and also engineers as
well as managers, as reported in Table 2. The aim was to cover the relevant aspects
described in the conceptual model, produced during the Definition phase (see Section 3.1,
Figs. 1 and 2). There is a risk that the results might be biased due to a majority of the
interviewees being from Company F. However, the results indicate that this risk was minor,
since a majority of the identified items (see Section 4) could be connected to multiple
companies.

& Reactive bias: The presence of a researcher might limit or influence the outcome either
by hiding facts or responding after assumed expectations. To reduce this threat the
interviewees were guaranteed anonymity both within the company and externally. In
addition, they were not given any rewards for their participation and had the right to
withdraw at any time without requiring an explanation, though no interviewees did
withdraw. This approach indicated that we were interested in obtaining a true image of
their reality and encouraged the interviewees to share this.

3.5.2 Internal Validity

Even though the conclusions in this paper are not primarily about causal relations, the
identification of challenges and practices somewhat resembles identifying factors in casual
relations. In order to mitigate the risk of identifying incorrect factors, we used data source
triangulation by interviewing multiple roles at a company. Furthermore, extensive observer

Empir Software Eng (2014) 19:1809–1855 1821

triangulation was applied in the analysis by always including more than one researcher in each
step. This strategy also partly addressed the risk of incorrect generalisations when abstracting
challenges and practices for the whole set of companies. However, the presented results
represent one possible categorisation of the identified challenges and practices. This is partly
illustrated by the fact that not all identified practices can be connected to a challenge.

The interviews at one of the case companies were complicated by a major process change
that was underway at the time of the study. This change posed a risk of confusing the context
for which a statement had been experienced; the previous (old) way of working or the newly
introduced agile practices. To mitigate this risk, we ensured that we correctly understood
which process the response concerned, i.e. the previous or the current process.

Furthermore, due to the nature of semi-structured interviews in combination with several
different interviewers it is likely that different follow-on questions were explored by the
various researchers. This risk was partly mitigated by jointly defining the conceptual model
and agreeing on a common interview guide that was used for all interviews. However, the
fact remains that there are differences in the detailed avenues of questioning which has
resulted in only being able to draw conclusions concerning what was actually said at the
interviews. So, for example, if the completeness of the requirements specification (Ch3.2)
was not explicitly discussed at an interview no conclusions can be drawn concerning if this
is a challenge or not for that specific case.

3.5.3 External Validity

For a qualitative study like this, external validity can never be assured by sampling logic and
statistical generalisation, but by analytical generalisation which enables drawing conclusions and,
under certain conditions, relating them also to other cases (Robson 2002, Runeson et al. 2012).
This implies that the context of the study must be compared to the context of interest for the
findings to be generalised to. To enable this process, we report the characteristics of the companies
in as much detail as possible considering confidentiality (see Table 1). The fact that six different
companies of varying size and domain are covered by the study, and some results are connected to
the variations between them indicates that the results are more general than if only one company
had been studied. But, of course, the world consists of more than six kinds of companies, and any
application of the results of this study need to be mindfully tailored to other contexts.

3.5.4 Reliability

The reliability of the study relates to whether the same outcome could be expected with another
set of researchers. For qualitative data and analysis, which are less procedural than quantitative
methods, exact replication is not probable. The analysis lies in interpretation and coding of
words, and the set of codes would probably be partly different with a different set of researchers.

To increase the reliability of this study and to reduce the influence by single researchers,
several researchers have taken part in the study in different roles. All findings and each step
of analysis have been reviewed by and agreed with at least one other researcher. In addition,
a systematic and documented research process has been applied (see Fig. 1) and a trace of
evidence has been retained for each analysis steps. The traceability back to each source of
evidence is documented and kept even in this report to enable external assessment of the
chain of evidence, if confidentially agreements would allow.

Finally, the presentation of the findings could vary depending on categorisation of the items
partly due to variation in views and experience of individual researchers. For example, a
challenge in achieving alignment such as Ch2 Collaborating successfully (see Section 4.1.2)

1822 Empir Software Eng (2014) 19:1809–1855

could be identified also as a practice at the general level, e.g. to collaborate successfully could
be defined as an alignment practice. However, we have chosen to report specific practices that
may improve collaboration and thereby REVV alignment. For example, P1.1 Customer
communication at all requirements levels and phases can support improved coordination of
requirements between the customer and the development team. To reduce the risk of bias in this
aspect, the results and the categorisation of them was first proposed by one researcher and then
reviewed by four other researchers leading to modifications and adjustments.

4 Results

Practitioners from all six companies in the study found alignment of RE with VV to be an
important, but challenging, factor in developing products. REVV alignment was seen to
affect the whole project life cycle, from the contact with the customer and throughout
software development. The interviewees stated clearly that good alignment is essential to
enable smooth and efficient software development. It was also seen as an important
contributing factor in producing software that meets the needs and expectations of the
customers. A software developer stated that alignment is ‘very important in creating the
right system’ (B1:271). One interviewee described the customer’s view of a product devel-
oped with misaligned requirements as: ‘There wasn’t a bug, but the behaviour of the
functionality was interpreted or implemented in such a way that it was hard to do what
the customer [originally] intended.’ (A3:43) Another interviewee mentioned that alignment
between requirements and verification builds customer trust in the end product since good
alignment allows the company to ‘look into the customer’s eyes and explain what have we
tested… on which requirements’ (D2:10).

In general, the interviewees expressed that weak and unaligned communication of the
requirements often cause inconsistencies that affect the verification effort. A common view
was that these inconsistencies, caused by requirements that are misunderstood, incorrect or
changed, or even un-communicated, leads to additional work in updating and re-executing
test cases. Improved alignment, on the other hand, was seen to make ‘communication
between different levels in the V-model a lot easier’ (E3:93). One of the interviewed testers
stated: ‘Alignment is necessary. Without it we [testers] couldn’t do our job at all.’ (C1:77)

Below, we present the results concerning the challenges of alignment (Ch1–Ch10) and
the practices (P1–P10) used, or suggested, by the case companies to address REVV
challenges. Table 3 provides an overview of the challenges found for each company, while
Table 4 contains an overview of the practices. Table 6 shows which challenges each
practices is seen to address.

4.1 Alignment Challenges

The alignment challenges identified through this study are summarised in Table 3. Some
items have been categorised together as one challenge, resulting in 10 main challenges
where some consist of several related challenges. For example, Ch3 Requirements specifi-
cation quality consists of three challenges (Ch3.1–Ch3.3) concerning different aspects of
requirements quality. Each challenge including sub items is described in the subsections that
follow.

1 Reference to source is given by interviewee code, see Table 2.

Empir Software Eng (2014) 19:1809–1855 1823

4.1.1 Challenge 1: Aligning Goals and Perspectives within an Organisation (Ch1)

The alignment of goals throughout the organisation was mentioned by many interviewees as
vital in enabling cooperation among different organisational units (see challenge 2 in
Section 4.1.2). However, goals were often felt to be missing or unclearly defined, which
could result in ‘making it difficult to test [the goals]’ (B3:17). In several companies problems
with differing and unaligned goals were seen to affect the synchronisation between re-
quirements and testing, and cause organisational units to counteract each other in joint
development projects. For example, a product manager mentioned that at times, requirement
changes needed from a business perspective conflicted with the goals of the development
units; ‘They [business roles] have their own directives and … schedule target goals’ and
‘they can look back and see which product was late and which product was good’ (A3:74).
In other words, misaligned goals may have an impact on both time schedules and product
quality.

Many interviewees described how awareness and understanding of different perspectives
on the problem domain is connected to better communication and cooperation, both towards
the customers and external suppliers, and internally between competence areas and units.
When there is a lack of aligned perspectives, the customer and the supplier often do not have
the same understanding of the requirements. This may result in ‘errors in misunderstanding
the requirements’ (B3:70). Lack of insight into and awareness of different perspectives was
also seen to result in decisions (often made by other units) being questioned and require-
ments changed at a late stage in the development cycle with a subsequent increase in cost
and risk. For example, a systems architect described that in a project where there is a ‘higher
expectations on the product than we [systems architect] scoped into it’ (E1:20) a lot of issues

Table 3 Alignment challenges mentioned for each company. Note: a blank cell means that the challenge was
not mentioned during the interviews, not that it is not experienced

Id Challenge Company

A B C D E F

Ch1 Aligning goals and perspectives within an organisation X X X X X

Ch2 Cooperating successfully X X X X X

Req spec quality Ch3.1 Defining clear and verifiable requirements X X X X

Ch3.2 Defining complete requirements X X X X

Ch3.3 Keeping requirements documents updated X

VV quality Ch4.1 Full test coverage X X X X X

Ch4.2 Defining a good verification process X

Ch4.3 Verifying quality requirements X X X

Ch5 Maintaining alignment when requirements change X X X

Req’s abstract levels Ch6.1 Defining requirements at abstraction level well matched
to test cases

X X

Ch6.2 Coordinating requirements at different abstraction levels X X

Traceability Ch7.1 Tracing between requirements and test cases X X X X X

Ch7.2 Tracing between requirements abstraction levels X X X

Ch8 Time and resource availability X X X

Ch9 Managing a large document space X X X

Ch10 Outsourcing of components or testing X X

1824 Empir Software Eng (2014) 19:1809–1855

and change requests surface in the late project phases. A software developer stated
concerning the communication between requirements engineers and developers that ‘if both
have a common perspective [of technical possibilities], then it would be easier to understand
what [requirements] can be set and what cannot be set’ (F13:29). Or in other words, with an
increased common understanding technically infeasible requirements can be avoided already
at an early stage.

Weak alignment of goals and perspectives implies a weak coordination at higher
organisational levels and that strategies and processes are not synchronised. As stated by a
process manager, the involvement of many separate parts of an organisation then leads to
‘misunderstandings and misconceptions and the use of different vocabulary’ (F2:57). In
addition, a test engineer at Company A mentioned that for the higher abstraction levels there
were no attempts to synchronise, for example, the testing strategy with the goals of

Table 4 Alignment practices and categories, and case companies for which they were mentioned. Experi-
enced practices are marked with X, while suggested practices are denoted with S

Company

Cat. Id Description A B C D E F

Requirements P1.1 Customer communication at all requirements levels and phases X X X X X

P1.2 Development involved in detailing requirements X X X

P1.3 Cross-role requirements reviews X X X X X

P1.4 Requirements review responsibilities defined X X

P1.5 Subsystem expert involved in requirements definition X X

P1.6 Documentation of requirement decision rationales S S

Validation P2.1 Test cases reviewed against requirements X

P2.2 Acceptance test cases defined by customer X

P2.3 Product manager reviews prototypes X X

P2.4 Management base launch decision on test report X

P2.5 User / Customer testing X X X X

Verification P3.1 Early verification start X X

P3.2 Independent testing X X X

P3.3 Testers re-use customer feedback from previous projects X X X

P3.4 Training off-shore testers X

Change P4.1 Process for requirements changes involving VV X X X X X

P4.2 Product-line requirements practices X X

P5 Process enforcement X S

Tracing P6.1 Document-level traces X

P6.2 Requirements-test case traces X

P6.3 Test cases as requirements X X

P6.4 Same abstraction levels for requirements and test spec X X

P7 Traceability responsibility role X X X

Tools P8.1 Tool support for requirements and testing X X X X X

P8.2 Tool support for requirements-test case tracing X X X X X

P9 Alignment metrics, e.g. test coverage X X X X

P10 Job rotation S S

A blank cell means that the practice was not mentioned during the interviews. It does not mean that it is not
applied at the company

Empir Software Eng (2014) 19:1809–1855 1825

development projects to agree on important areas to focus on (A2:105). Low maturity of the
organisation was thought to contribute to this and result in the final product having a low
degree of correspondence to the high-level project goals. A test engineer said: ‘In the long
run, we would like to get to the point where this [product requirements level] is aligned with
this [testing activities].’ (A2:119)

4.1.2 Challenge 2: Cooperating Successfully (Ch2)

All of the companies included in our study described close cooperation between roles and
organisational units as vital for good alignment and coordination of both people and
artefacts. Weak cooperation is experienced to negatively affect the alignment, in particular
at the product level. A product manager stated that ‘an “us and them” validation of product
level requirements is a big problem’ (A3:058–059). Ensuring clear agreement and commu-
nication concerning which requirements to support is an important collaboration aspect for
the validation. At Company F (F12:063) lack of cooperation in the early phases in validating
requirements has been experienced to result in late discovery of failures in meeting impor-
tant product requirements. The development project then say at a late stage: ‘We did not
approve these requirements, we can’t solve it’ (F12:63) with the consequence that the
requirements analysis has to be re-done. For Company B (consulting in different organisa-
tions) cooperation and communication was even described as being prioritised above formal
documentation and processes, expressed as: ‘We have succeeded with mapping requirements
to tests since our process is more of a discussion’ (B3:49). Several interviewees described
that alignment at product and system level, in particular, is affected by how well people
cooperate (C2:17, E1:44, 48, E2:48, F4:66, F15:46). When testers have a good cooperation
and frequently communicate with both requirements-related and development-related roles,
this leads to increased alignment (E3:093).

Organisational boundaries were mentioned as further complicating and hindering coop-
eration between people for two of the companies, namely companies E and F. In these cases,
separate organisational units exist for requirements (E2:29, E3:94, F2:119), usability
(F10:108) and testing (F3:184). As one interviewee said: ‘it is totally different organisations,
which results in … misunderstandings and misconceptions…we use different words’
(F02:57). Low awareness of the responsibilities and tasks of different organisational units
was also claimed to negatively affect alignment (F2:264). This may result in increased lead
times (E1:044, F15:033), need for additional rework (E1:150, E1:152), and conflicts in
resource allocation between projects (F10:109, E1:34).

4.1.3 Challenge 3: Good Requirements Specification Quality (Ch3)

‘If we don’t have good requirements the tests will not be that good.’ (D3:14) When the
requirement specification is lacking the testers need to guess and make up the missing
information since ‘the requirements are not enough for writing the software and testing the
software’ (D3:19). This both increases the effort required for testing and the risk of
misinterpretation and missing vital customer requirements. One process manager expressed
that the testability of requirements can be improved by involving testers and that ‘one main
benefit [of alignment] is improving the requirements specifications’ (F2:62). A test leader at
the same company identified that a well aligned requirements specification (through clear
agreement between roles and tracing between artefacts) had positive effects such as ‘it was
very easy to report when we found defects, and there were not a lot of discussions between
testers and developers, because everyone knew what was expected’ (F9:11).

1826 Empir Software Eng (2014) 19:1809–1855

There are several aspects to good requirements that were found to relate to alignment. In
the study, practitioners mentioned good requirements as being verifiable, clear, complete, at
the right level of abstraction, and up-to-date. Each aspect is addressed below.

& Defining clear and verifiable requirements (Ch3.1) was mentioned as a major chal-
lenge in enabling good alignment of requirements and testing, both at product and at
detailed level. This was mentioned for four of the six companies covered by our study,
see Table 3. Unclear and non‐verifiable requirements were seen as resulting in increased
lead times and additional work in later phases in clarifying and redoing work based on
unclear requirements (F2:64, D1:80). One test manager said that ‘in the beginning the
requirements are very fuzzy. So it takes time. And sometimes they are not happy with
our implementation, and we have to do it again and iterate until it’s ready.’ (F11:27,
similar in E3:44.) Failure to address this challenge ultimately results in failure to meet
the customer expectations with the final product. A project manager from company D
expressed this by saying that non‐verifiable requirements is the reason ‘why so many
companies, developers and teams have problems with developing customer-correct
software’ (D1:36).

& Defining complete requirements (Ch3.2) was claimed to be required for successful
alignment by interviewees from four companies, namely companies B, D, E and F. As
expressed by a systems architect from Company D, ‘the problem for us right now is not
[alignment] between requirements and testing, but that the requirements are not correct
and complete all the time’ (D3:118). Complete requirements support achieving full test
coverage to ensure that the full functionality and quality aspects are verified. (F14:31)
When testers are required to work with incomplete requirements, additional information
is acquired from other sources, which requires additional time and effort to locate
(D3:19).

& Keeping requirements documentation updated (Ch3.3) Several interviewees from
company F described how a high frequency of change leads to the requirements
documentation not being kept updated, and consequently the documentation cannot be
relied on (F14:44, F5:88). When a test for a requirement then fails, the first reaction is
not: ‘this is an error’, but rather ‘is this really a relevant requirement or should we
change it’ (F5:81). Mentioned consequences of this include additional work to locate
and agree to the correct version of requirements and rework (F3:168) when incorrect
requirements have been used for testing. Two sources of requirements changes were
mentioned, namely requested changes that are formally approved (F14:50), but also
changes that occur as the development process progresses (during design, development
etc.) that are not raised as formal change requests (F5:82, F5:91, F11:38). When the
requirements documentation is not reliable, the projects depend on individuals for
correct requirements information. As expressed by one requirements engineer: ‘when
you lose the people who have been involved, it is tough. And, things then take more
time.’ (F1:137)

4.1.4 Challenge 4: Validation and Verification Quality

Several issues with validation and verification were mentioned as alignment challenges that
affect the efficiency and effectiveness of the testing effort. One process manager with long
experience as a tester said: ‘We can run 100,000 test cases but only 9 % of them are relevant.’
(F15:152) Testing issues mentioned as affecting alignment were: obtaining full test coverage,
having a formally defined verification process and the verification of quality requirements.

Empir Software Eng (2014) 19:1809–1855 1827

& Full test coverage (Ch4.1) Several interviewees described full test coverage of the
requirements as an important aspect of ensuring that the final product fulfils the re-
quirements and the expectations of the customers. As one software developer said:
‘having full test coverage with unit tests gives a better security… check that I have
interpreted things correctly with acceptance tests’ (B1:117). However, as a project
manager from Company C said: ‘it is very hard to test everything, to think about all
the complexities’ (C3:15). Unclear (Ch3.2, C1:4) and non‐verifiable requirements
(Ch3.1, A1:55, D1:78, E1:65) were mentioned as contributing to difficulties in achieving
full test coverage of requirements for companies A, B, D and E. For certain requirements
that are expressed in a verifiable way a project manager mentioned that they cannot be
tested due to limitations in the process, competence and test tools and environments
(A1:56). To ensure full test coverage of requirements the testers need knowledge of the
full set of requirements, which is impeded in the case of incomplete requirements
specifications (Ch3.3) where features and functionality are not described (D3:16). This
can also be the case for requirements defined at a higher abstraction level (F2:211,
F14:056). Lack of traceability between requirements and test cases was stated to making
it harder to know when full test coverage has been obtained (A1:42). For company C,
traceability was stated as time consuming but necessary to ensure and demonstrate full
test coverage, which is mandatory when producing safety-critical software (C1:6,
C1:31). Furthermore, obtaining sufficient coverage of the requirements requires analysis
of both the requirement and the connected test cases (C1:52, D3:84, F14:212). As one
requirements engineer said, ‘a test case may cover part of a requirement, but not test the
whole requirement’ (F7:52). Late requirements changes was mentioned as a factor
contributing to the challenge of full test coverage (C1:54, F7:51) due to the need to
update the affected test cases, which is hampered by failure to keep the requirements
specification updated after changes (Ch3.5, A2:72, F15:152).

& Having a verification process (Ch4.2) was mentioned as directly connected to good
alignment between requirements and test. At company F, the on-going shift towards a
more agile development process had resulted in the verification unit operating without a
formal process (F15:21). Instead each department and project ‘tries to work their own
way… that turns out to not be so efficient’ (F15:23), especially so in this large organisation
where many different units and roles are involved from the initial requirements definition to
the final verification and launch. Furthermore, one interviewee who was responsible for
defining the new verification process (F15) said that ‘the hardest thing [with defining a
process] is that there are so many managers … [that don’t] know what happens one level
down’. In other words, a verification process that supports requirements-test alignment
needs to be agreed with the whole organisation and at all levels.

& Verifying quality requirements (Ch4.3) was mentioned as a challenge for companies
B, D and F. Company B has verification of quality in focus with continuous monitoring
of quality levels in combination with frequent releases; ‘it is easy to prioritise performance
optimisation in the next production release’ (B1:52). However, they do not work proac-
tively with quality requirements. Even though they have (undocumented) high-level quality
goals the testers are not asked to use them (B1:57, B2:98); ‘when it’s not a broken-down
[quality] requirement, then it’s not a focus for us [test and development]’ (B3:47). Company
F does define formal quality requirements, but these are often not fully agreed with
development (F12:61). Instead, when the specified quality levels are not reached, the
requirements, rather than the implementation, are changed to match the current behaviour,
thus resigning from improving quality levels in the software. As one test engineer said: ‘We
currently have 22 requirements, and they always fail, but we can’t fix it’ (F12:61).

1828 Empir Software Eng (2014) 19:1809–1855

Furthermore, defining verifiable quality requirements and test cases was mentioned as
challenging, especially for usability requirements (D3:84, F10:119). Verification is then
faced with the challenge of subjectively judging if a requirement is passed or failed (F2:46,
F10:119). At company F, the new agile practices of detailing requirements at the develop-
ment level together with testers was believed to, at least partly, address this challenge
(F12:65). Furthermore, additional complication is that some quality requirements can only
be verified through analysis and not through functional tests (D3:84).

4.1.5 Challenge 5: Maintaining Alignment when Requirements Change (Ch5)

Most of the companies of our study face the challenge of maintaining alignment between
requirements and tests as requirements change. This entails ensuring that both artefacts and
tracing between them are updated in a consistent manner. Company B noted that the impact
of changes is specifically challenging for test since test code is more sensitive to changes
than requirements specifications. ‘That’s clearly a challenge, because [the test code is] rigid,
as you are exemplifying things in more detail. If you change something fundamental, there
are many tests and requirements that need to be modified’ (B3:72).

Loss of traces from test cases to requirements over time was also mentioned to cause
problems. When test cases for which traces have been outdated or lost are questioned, then
‘we have no validity to refer to … so we have to investigate’ (A2:53). In company A, the
connection between requirements and test cases are set up for each project (A2:71): ‘This is
a document that dies with the project’; a practice found very inefficient. Other companies
had varying ambitions of a continuous maintenance of alignment and traces between the
artefacts. A key for maintaining alignment when requirements change is that the require-
ments are actively used. When this is not the case there is a need for obtaining requirements
information from other sources. This imposes a risk that ‘a requirement may have changed,
but the software developers are not aware of it’ (D3:97).

Interviewees implicitly connected the traceability challenge to tools, although admitting
that ‘a tool does not solve everything… Somebody has to be responsible for maintaining it
and to check all the links … if the requirements change’ (C3:053). With or without feasible
tools, tracing also requires personal assistance. One test engineer said, ‘I go and talk to him
and he points me towards somebody’ (A2:195).

Furthermore, the frequency of changes greatly affects the extent of this challenge and is
an issue when trying to establish a base-lined version of the requirements. Company C has
good tool support and traceability links, but require defined versions to relate changes to. In
addition, they have a product line, which implies that the changes must also be coordinated
between the platform (product line) and the applications (products) (C3:019, C3:039).

4.1.6 Challenge 6: Requirements Abstraction Levels (Ch6)

REVV alignment was described to be affected by the abstraction levels of the requirements
for companies A, D and F. This includes the relationship to the abstraction levels of the test
artefacts and ensuring consistency between requirements at different abstraction levels.

& Defining requirements at abstraction levels well-matched to test cases (Ch6.1)
supports defining test cases in line with the requirements and with a good coverage of
them. This was mentioned for companies D and F. A specific case of this at company D
is when the testers ‘don’t want to test the complete electronics and software system, but

Empir Software Eng (2014) 19:1809–1855 1829

only one piece of the software’ (D3:56). Since the requirements are specified at a higher
abstraction level than the individual components, the requirements for this level then
need to be identified elsewhere. Sources for information mentioned by the interviewees
include the design specification, asking people or making up the missing requirements
(D3:14). This is also an issue when retesting only parts of a system which are described
by a high-level requirement to which many other test cases are also traced (D3:56).
Furthermore, synchronising the abstraction levels between requirements and test arte-
facts was mentioned to enhance coverage (F14:31).

& Coordinating requirements at different abstraction levels (Ch6.2) when breaking
down the high-level requirements (such as goals and product concepts) into detailed
requirements at system or component level was mentioned as a challenge by several
companies. A product manager described that failure to coordinate the detailed require-
ments with the overall concepts could result in that ‘the intention that we wanted to fulfil
is not solved even though all the requirements are delivered’ (A3:39). On the other hand,
interviewees also described that the high-level requirements were often vague at the
beginning when ‘it is very difficult to see the whole picture’ (F12:144) and that some
features are ‘too complex to get everything right from the beginning’ (A3:177).

4.1.7 Challenge 7: Tracing Between Artefacts (Ch7)

This challenge covers the difficulties involved in tracing requirements to test cases, and vice
versa, as well as, tracing between requirements at different abstraction levels. Specific
tracing practices identified through our study are described in Sections 4.2.6 and 4.2.7.

& Tracing between requirements and test cases (Ch7.1). The most basic kind of
traceability, referred to as ‘conceptual mapping’ in Company A (A2:102), is having a
line of thought (not necessarily documented) from the requirements through to the
defining and assessing of the test cases. This cannot be taken for granted. Lack of this
basic level of tracing is largely due to weak awareness of the role requirements in the
development process. As a requirements process engineer in Company F says, ‘One
challenge is to get people to understand why requirements are important; to actually
work with requirements, and not just go off and develop and do test cases which people
usually like doing’ (F5:13).

Tracing by using matrices to map between requirements and test cases is a major cost
issue. A test architect at company F states, that ‘we don’t want to do that one to one
mapping all the way because that takes a lot of time and resources’ (F10:258). Compa-
nies with customer or market demands on traceability, e.g. for safety critical systems
(companies C and D), have full traceability in place though ‘there is a lot of adminis-
tration in that, but it has to be done’ (C1:06). However, for the other case companies in
our study (B3:18, D3:45; E2:83; F01:57), it is a challenge to implement and maintain
this support even though tracing is generally seen as supporting alignment. Company A
says ‘in reality we don’t have the connections’ (A2:102) and for Company F ‘in most
cases there is no connection between test cases and requirements’ (F1:157). Further-
more, introducing traceability may be costly due to large legacies (F1:57) and
maintaining traceability is costly. However, there is also a cost for lack of traceability.
This was stated by a test engineer in Company F who commented on degrading
traceability practices with ‘it was harder to find a requirement. And if you can’t find a
requirement, sometimes we end up in a phase where we start guessing’ (F12:112).

Company E has previously had a tradition of ‘high requirements on the traceability on

1830 Empir Software Eng (2014) 19:1809–1855

the products backwards to the requirements’ (E2:83). However, this company foresees
problems with the traceability when transitioning towards agile working practices, and
using user stories instead of traditional requirements. A similar situation is described for
Company F, where they attempt to solve this issue by making the test cases and
requirements one; ‘in the new [agile] way of working we will have the test cases as
the requirements’ (F12:109).

Finally, traceability for quality (a.k.a. non-functional) requirements creates certain
challenges, ‘for instance, for reliability requirement you might … verify it using
analysis’ (D3:84) rather than testing. Consequently, there is no single test case to trace
such a quality requirement to, instead verification outcome is provided through an
analysis report. In addition, tracing between requirements and test cases is more difficult
‘the higher you get’ (B3:20). If the requirements are at a high abstraction level, it is a
challenge to define and trace test cases to cover the requirements.

& Tracing between requirements abstraction levels (Ch7.2) Another dimension of
traceability is vertical tracing between requirements at different abstraction levels.
Company C operates with a detailed requirements specification, which for some parts
consists of sub-system requirements specifications (C1:31). In this case, there are no
special means for vertical traceability, but pointers in the text. It is similar in Company
D, where a system architect states that ‘sometimes it’s not done on each individual
requirement but only on maybe a heading level or something like that’ (D3:45).
Company F use a high-end requirements management tool, which according to the
requirements engineer ‘can trace the requirement from top level to the lowest imple-
mentation level’ (F7:50).

Company E has requirements specifications for different target groups, and hence
different content; one market oriented, one product oriented, and one with technical
details (E1:104). The interviewee describes tracing as a ‘synch activity’ without speci-
fying in more detail. Similarly, Company F has ‘roadmaps’ for the long term develop-
ment strategy, and there is a loosely coupled ‘connection between the roadmaps and the
requirements’ to balance the project scope against strategy and capacity (F11:50).

4.1.8 Challenge 8: Time and Resource Availability (Ch8)

In addition to the time consuming task of defining and maintaining traces (Ch7) further
issues related to time and resources were brought forward in companies C, E and F. Without
sufficient resources for validation and verification the amount of testing that can be
performed is not sufficient for the demands on functionality and quality levels expected of
the products. The challenge of planning for enough test resources is related to the alignment
between the proposed requirements and the time and resources required to sufficiently test
them. A requirements engineer states that ‘I would not imagine that those who are writing
the requirements in anyway are considering the test implications or the test effort required to
verify them’ (F6:181). A test manager confirms this view (F14:188). It is not only a matter of
the amount of resources, but also in which time frame they are available (E1:18). Further-
more, availability of all the necessary competences and skills within a team was also
mentioned as an important aspect of ensuring alignment. A software developer phrased it:
‘If we have this kind of people, we can set up a team that can do that, and then the
requirements would be produced properly and hopefully 100 % achievable’ (F13:149). In
addition, experienced individuals were stated to contribute to strengthening the alignment
between requirements and testing, by being ‘very good at knowing what needs to be tested
and what has a lower priority’ (C2:91), thereby increasing the test efficiency. In contrast,

Empir Software Eng (2014) 19:1809–1855 1831

inexperienced testing teams were mentioned for Company C as contributing to weaker
alignment towards the overall set of requirements including goals and strategies since they
‘verify only the customer requirements, but sometimes we have hazards in the system which
require the product to be tested in a better way’ (C2:32–33).

4.1.9 Challenge 9: Managing a Large Document Space (Ch9)

The main challenge regarding the information management problems lies in the sheer
numbers. A test engineer at Company F estimates that they have accumulated 50,000
requirements in their database. In addition, they have ‘probably hundreds of thousands of
test cases’ (F2:34, F12:74). Another test engineer at the same company points out that this
leads to information being redundant (F11:125), which consequently may lead to inconsis-
tencies. A test engineer at Company D identifies the constant change of information as a
challenge; they have difficulties to work against the same baseline (D2:16).

Another test engineer at Company F sees information management as a tool issue. He
states that ‘the requirements tool we have at the moment is not easy to work with....Even, if
they find the requirements they are not sure they found the right version’ (F9:81). In contrast,
a test engineer at company C is satisfied with the ability to find information in the same tool
(C2). A main difference is that at Company F, 20 times as many requirements are handled
than at Company C.

The investment into introducing explicit links between a huge legacy of requirements and
test cases is also put forward as a major challenge for companies A and F. In addition,
connecting and integrating different tools was also mentioned as challenging due to separate
responsibilities and competences for the two areas of requirements and testing (F5:95, 120).

4.1.10 Challenge 10: Outsourcing or Offshoring of Components or Testing (Ch10)

Outsourcing and offshoring of component development and testing create challenges both in
agreeing to which detailed requirements to implement and test, and in tracing between
artefacts produced by different parties. Company D stresses that the timing of the
outsourcing plays a role in the difficulties in tracing component requirement specifications
to the internal requirements at the higher level; ‘I think that’s because these outsourcing
deals often have to take place really early in the development.’ (D3:92). Company F also
mentions the timing aspect for acquisition of hardware components; ‘it is a rather formal
structured process, with well-defined deliverables that are slotted in time’ (F6:21).

When testing is outsourced, the specification of what to test is central and related to the
type of testing. The set-up may vary depending on competence or cultural differences etc.
For example, company F experienced that cultural aspects influence the required level of
detail in the specification; ‘we [in Europe] might have three steps in our test cases, while the
same test case with the same result, but produced in China, has eight steps at a more detailed
level’ (F15:179). A specification of what to test may be at a high level and based on a
requirements specification from which the in-sourced party derives tests and executes. An
alternative approach is when a detailed test specification is requested to be executed by the
in-sourced party (F6:251–255).

4.2 Practices for Improved Alignment

This study has identified 27 different alignment practices, grouped into 10 categories. Most
of the practices are applied at the case companies, though some are suggestions made by the

1832 Empir Software Eng (2014) 19:1809–1855

interviewees. These categories and the practices are presented below and discussed and
summarised in Section 5. In Section 4.3 they are mapped to the challenges that they are seen
to address.

4.2.1 Requirements Engineering Practices

Requirements engineering practices are at the core of aligning requirements and testing. This
category of practices includes customer communication and involving development-near
roles in the requirements process. The interviewees described close cooperation and team
work as a way to improve RE practices (F12:146) and thereby the coordination with
developers and testers and avoid a situation where product managers say ‘“redo it” when
they see the final product’ (F12:143).

& Customer communication at all levels and in all phases of development (P1.1) was
mentioned as an alignment practice for all but one of the case companies. The commu-
nication may take the form of customer-supplier co-location; interaction with the
customer based on executable software used for demonstrations or customer validation;
or agreed acceptance criteria between customer and supplier. For the smaller companies,
and especially those with bespoke requirements (companies B and C), this interaction is
directly with a physical customer. In larger companies (companies E and F), and
especially within market driven development, a customer proxy may be used instead
of the real customer, since there is no assigned customer at the time of development or
there is a large organisational distance to the customer. Company F assigns a person in
each development team ‘responsible for the feature scope. That person is to be available
all through development and to the validation of that feature’ (F2:109). Furthermore,
early discussions about product roadmaps from a 4 to 5 year perspective are held with
customers and key suppliers (F6:29) as an initial phase of the requirements process.

& Involving developers and testers in detailing requirements (P1.2) is another practice,
especially mentioned by companies A and F. A product manager has established this as a
deliberate strategy by conveying the vision of the product to the engineers rather than
detailed requirements: ‘I’m trying to be more conceptual in my ordering, trying to say
what’s important and the main behaviour.’ (A3:51) The responsibility for detailing the
specification then shifts to the development organisation. However, if there is a weak
awareness of the customer or market perspectives, this may be a risky practice as ‘some
people will not [understand this] either because they [don’t] have the background or
understanding of how customers or end-users or system integrators think’ (A3:47).
Testers may be involved to ensure the testability of the requirements, or even specify
requirements in the form of test cases. Company F was in the process of transferring
from a requirements-driven organisation to a design-driven one. Splitting up the
(previous) centralised requirements department resulted in ‘requirements are vaguer
now. So it’s more up to the developers and the testers to make their own requirements.’
(F12:17) Close cooperation around requirements when working in an agile fashion was
mentioned as vital by a product manager from Company E: ‘Working agile requires that
they [requirements, development, and test] are really involved [in requirements work]
and not only review.’ (E2:083)

& Cross-role requirements reviews (P1.3) across requirements engineers and testers is
another practice applied to ensure that requirements are understood and testable (A2:65,
C3:69, F2:38, F7:7). The practical procedures for the reviews, however, tend to vary.
Company A has an early review of requirements by testers while companies C and D

Empir Software Eng (2014) 19:1809–1855 1833

review the requirements while creating the test cases. Different interviewees from
companies E and F mentioned one or the other of these approaches; the process seems
to prescribe cross-role reviews but process compliance varies. A test engineer said ‘[the
requirements are] usually reviewed by the testers. It is what the process says.’ (F11:107)
Most interviewees mention testers’ reviews of requirements as a good practice that
enhances both the communication and the quality of the requirements, thereby resulting
in better alignment of the testing effort. Furthermore, this practice was described as
enabling early identification of problems with the test specification avoiding (more
expensive) problems later on (C2:62). A systems architect from Company F described
that close collaboration between requirements and testing around quality requirements
had resulted in ‘one area where we have the best alignment’ (F4:101).

& Defining a requirements review responsible (P1.4) was mentioned as a practice that
ensures that requirement reviews are performed (E2:18, F2:114). In addition, for Com-
pany F this role was also mentioned as reviewing the quality of the requirements
specification (F2:114) and thereby directly addressing the alignment challenge of low
quality of the requirements specification (Ch3).

& Involving domain experts in the requirements definition (P1.5) was mentioned as a
practice to achieve better synchronisation between the requirements and the system capa-
bilities, and thereby support defining more realistic requirements. The expert ‘will know if
we understand [the requirement] correctly or not’ (D3:38), said a system architect. Similar
to the previous RE practices, this practice was also mentioned as supporting alignment by
enhancing the quality of the requirements (Ch3) which are the basis for software testing.

& Documentation of requirement decision rationales (P1.6), and not just the current
requirement version, was suggested as a practice that might facilitate alignment by
interviewees from both of the larger companies in our study, namely E and F. ‘Softly
communicating how we [requirements roles] were thinking’ (E3:90) could enhance the
synchronisation between project phases by better supporting hand-over between the
different roles (F4:39). In addition, the information could support testers in analysing
customer defect reports filed a long time after development was completed, and in
identifying potential improvements (E3:90). However, the information needs to be easily
available and connected to the relevant requirements and test cases for it to be practically
useful to the testers (F1:120).

4.2.2 Validation Practices

Practices for validating the system under development and ensuring that it is in-line with
customer expectations and that the right product is built (IEEE610) include test case reviews,
automatic testing of acceptance test cases, and review of prototypes.

& Test cases are reviewed against requirements (P2.1) at company F (F14:62). In their
new (agile) development processes, the attributes of ISO9126 (2001) are used as a
checklist to ensure that not only functional requirements are addressed by the test cases,
but also other quality attributes (F14:76).

& Acceptance test cases defined by customer (P2.2), or by the business unit, is practiced
at company B. The communication with the customer proxy in terms of acceptance criteria
for (previously agreed) user scenarios acts as a ‘validation that we [software developers]
have interpreted the requirements correctly’ (B1:117). This practice in combination with
full unit test coverage of the code (B1:117) was experienced to address the challenge of
achieving full test coverage of the requirements (Ch4, see Section 4.1.4).

1834 Empir Software Eng (2014) 19:1809–1855

& Reviewing prototypes (P2.3) and GUI mock-ups was mentioned as an alignment
practice applied at company A. With this practice, the product manager in the role as
customer proxy validates that the developed product is in-line with the original product
intents (A3:153,163). Company partners that develop tailor-made systems using their
components may also be involved in these reviews.

& Management base launch decisions on test reports (P2.4) was mentioned as an
important improvement in the agile way of working recently introduced at Company
F. Actively involving management in project decisions and, specifically in deciding if
product quality is sufficient for the intended customers was seen as ensuring and
strengthening the coordination between customer and business requirements, and testing;
‘Management… have been moved down and [made to] sit at a level where they see what
really happens’ (F15:89).

& User/customer testing (P2.5) is a practice emphasised by company B that apply agile
development practices. At regular intervals, executable code is delivered, thus allowing the
customer to test and validate the product and its progress (B3: 32, B3:99). This practice is
also applied at company E, but with an organisational unit functioning as the user proxy
(E3:22). For this practice to be effective the customer testing needs to be performed early
on. This is illustrated by an example from company F, namely ‘before the product is
launched the customer gets to test it more thoroughly. And they submit a lot of feedback.
Most are defects, but there are a number of changes coming out of that. That’s very late in
the process… a few weeks […] before the product is supposed to be launched’ (F1:12). If
the feedback came earlier, it could be addressed, but not at this late stage.

4.2.3 Verification Practices

Verification ensures that a developed system is built according to the specifications
(IEEE610). Practices to verify that system properties are aligned to system requirements
include starting verification early to allow time for feedback and change, using independent
test teams, re-use of customer feedback obtained from previous projects, and training testers
at outsourced or off-shored locations.

& Early verification (P3.1) is put forward as an important practice especially when
specialised hardware development is involved, as for an embedded product. Verification
is then initially performed on prototype hardware (F15:114). Since quality requirements
mostly relate to complete system characteristics, early verification of these requirements
is harder, but also more important. Company E states: ‘If we have performance issues or
latency issues or database issues then we usually end up in weeks of debugging and
checking and tuning.’ (E3:28)

& Independent test teams (P3.2) are considered a good practice to reduce bias in
interpreting requirements by ensuring that testers are not influenced by the developers’
interpretation of requirements. However, this practice also increases the risk of mis-
alignment when the requirements are insufficiently communicated since there is a
narrower communication channel for requirements-related information. This practice
was emphasised especially for companies with safety requirements in the transportation
domain (companies C and D); ‘due to the fact that this is a fail-safe system, we need to
have independency between testers and designers and implementers’ (C3:24, similar in
C2:39, D2:80), ‘otherwise they [test team] might be misled by the development team’
(D1:41). Similarly, company F emphasises alternative perspectives taken by an inde-
pendent team. As a software developer said: ‘You must get another point of view of the

Empir Software Eng (2014) 19:1809–1855 1835

software from someone who does not know the technical things about the in-depth of the
code, and try to get an overview of how it works.’ (F13:32)

& Testers re-use customer feedback from previous projects (P3.3) when planning the
verification effort for later projects (F14:94), thereby increasing the test coverage. In
addition to having knowledge of the market through customer feedback, verification
organisations often analyse and test competitor products. With a stronger connection and
coordination between the verification and business/requirements units, this information
could be utilised in defining more accurate roadmaps and product plans.

& Training off-shore/outsourced testers (P3.4) in the company’s work practices and tools
increases the competence and motivation of the outsourced testers in the methods and
techniques used by the outsourcing company. This was mentioned by a project manager
from Company C as improving the quality of verification activities and the coordination
of these activities with requirement (C3:49, 64).

4.2.4 Change Management Practices

Practices to manage the (inevitable) changes in software development may mitigate the
challenge of maintaining alignment (Ch5, see Section 4.1.5). We identified practices related
to the involvement of testing roles in the change management process and also practices
connected to product lines as a means to support REVV alignment.

& Involving testing roles in change management (P4.1), in the decision making and in
the communication of changes, is a practice mentioned by all companies, but one, as
supporting alignment through increased communication and coordination of these
changes with the test organisation. ‘[Testers] had to show their impacts when we
[product management] were deleting, adding or changing requirements’ (E2:73) and
‘any change in requirement … means involving developer, tester, project manager,
requirements engineer; sitting together when the change is agreed, so everybody is aware
and should be able to update accordingly’ (F8:25). In companies with formalised waterfall
processes, a change control board (CCB) is a common practice for making decisions about
changes. Company D has weekly meetings of the ‘change control board with the customer
and we also have more internal change control boards’ (D1:106). The transitioning to agile
practices affected the change management process at companies E and F. At company F the
change control board (CCB) was removed, thus enhancing local control at the expense of
control of the whole development chain. As expressed by a process manager in company F:
‘I think it will be easy for developers to change it [the requirements] into what they want it
to be.’ (F12:135) At company E centralised decisions were retained at the CCB (E2:73),
resulting in a communication challenge; ‘sometimes they [test] don’t even know that we
[product management] have deleted requirements until they receive them [as deleted from
the updated specification]’ (E2:73).

& Product-line requirements practices (P4.2) are applied in order to reduce the impact
of a requirements change. By sharing a common product line (a.k.a. platform), these
companies separate between the requirements for the commonality and variability of their
products. In order to reduce the impact of larger requirements changes and the risks these
entail for current projects, company A ‘develop it [the new functionality] separately, and
then put that into a platform’ (A3:65). Company C use product lines to leverage on invested
test effort in many products. When changing the platform version ‘we need to do the impact
analysis for how things will be affected. And then we do the regression test on a basic
functionality to see that no new faults have been introduced.’ (C3:55)

1836 Empir Software Eng (2014) 19:1809–1855

4.2.5 Process Enforcement Practices (P5)

External requirements and regulations on certain practices affect the motivation and incen-
tive for enforcing processes and practices that support alignment. This is especially clear in
company C, which develops safety critical systems. ‘Since it is safety-critical systems, we
have to show that we have covered all the requirements, that we have tested them.’ (C1:6) It
is admitted that traceability is costly, but, non-negotiable in their case. ‘There is a lot of
administration in that, in creating this matrix, but it has to be done. Since it is safety-critical
systems, it is a reason for all the documentation involved.’ (C1:06) They also have an
external assessor to validate that the processes are in place and are adhered to. An alternative
enforcement practice was proposed by one interviewee from company F (which does not
operate in a safety-critical domain) who suggested that alignment could be achieved by
enforcing traceability through integrating process enforcement in the development tools
(F14:161) though this had not been applied.

4.2.6 Tracing Between Artefacts

The tracing practices between requirements and test artefacts vary over a large range of
options from simple mappings between documents to extensive traces between detailed
requirements and test cases.

& Document-level traces (P6.1) where links are retained between related documents is
the simplest tracing practice. This is applied at company A: ‘we have some mapping
there, between the project test plan and the project requirement specification. But this is
a fragile link.’ (A2:69)

& Requirement—test case traces (P6.2) is the most commonly mentioned tracing prac-
tice where individual test cases are traced to individual requirements. This practice
influences how test cases are specified: ‘It is about keeping the test case a bit less
complex and that tends to lead to keep them to single requirements rather than to several
requirements.’ (F6:123)

& Using test cases as requirements (P6.3) where detailed requirements are documented
as test cases is another option where the tracing become implicit at the detailed level when
requirements and test cases are represented by the same entity. This practice was being
introduced at company F. ‘At a certain level you write requirements, but then if you go into
even more detail, what you are writing is probably very equivalent to a test case.’ (F5:113)
While this resolves the need for creating and maintaining traces at that level, these test-case
requirements need to be aligned to requirements and testing information at higher abstrac-
tion levels. ‘There will be teams responsible for mapping these test cases with the high-level
requirements.’ (F10:150) Company A has this practice in place, though not pre-planned but
due to test cases being better maintained over time than requirements. ‘They know that this
test case was created for this requirement some time ago […and] implicitly […] the
database of test cases becomes a requirements specification.’ (A2:51)

& Same abstraction levels used for requirements and test specifications (P6.4) is an
alignment practice related to the structure of information. First, the requirements infor-
mation is structured according to suitable categories. The requirements are then detailed
and documented within each category, and the same categorisation used for the test
specifications. Company C has ‘different levels of requirements specifications and test
specifications, top level, sub-system, module level, and down to code’ (C3:67), and
company D presents similar on the test processes and artefacts (D3:53). It is worth

Empir Software Eng (2014) 19:1809–1855 1837

noting that both company C and D develop safety-critical systems. At company F, a
project leader described ‘the correlation between the different test [levels]’ and different
requirement levels; at the most detailed level ‘test cases that specify how the code should
work’ and at the next level ‘scenario test cases’ (F8:16).

4.2.7 Practice of Traceability Responsible Role (P7)

For large projects, and for safety-critical projects, the task of creating and maintaining the
traces may be assigned to certain roles. In company E, one of the interviewees is responsible
for consolidating the information from several projects to the main product level. ‘This is
what I do, but since the product is so big, the actual checking in the system is done by the
technical coordinator for every project.’ (E3:54) In one of the companies with safety-critical
projects this role also exists; ‘a safety engineer […] worked with the verification matrix and
put in all the information […] from the sub products tests in the tool and also we can have
the verification matrix on our level’ (C2:104.)

4.2.8 Tool Support

Tool support is a popular topic on which everyone has an opinion when discussing
alignment. The tool practices used for requirements and test management vary between
companies, as does the tool support for tracing between these artefacts.

& Tool support for requirements and test management (P8.1) varies hugely among the
companies in this study, as summarised in Table 5. Company A uses a test management
tool, while requirements are stored as text. Companies D and E use a requirements
management tool for requirements and a test management tool for testing. This was the
previous practice at company F too. Company C uses a requirements management tool
for both requirements and test, while Company F aims to start using a test management
tool for both requirements and testing. Most of the companies use commercial tools,
though company A has an in-house tool, which they describe as ‘a version handling
system for test cases’ (A2:208).

& Tool support for requirements-test case tracing (P8.2) is vital for supporting trace-
ability between the requirements and test cases stored in the tools used for requirements
and test management. Depending on the tool usage, tracing needs to be supported either
within a tool, or two tools need to be integrated to allow tracing between them. For some
companies, only manual tracing is supported. For example, at company D a systems
architect describes that it is possible to ‘trace requirements between different tools such
as [requirements] modules and Word documents’ (D3:45). However, a software manager
at the same company mentions problems in connecting the different tools and says ‘the
tools are not connected. It’s a manual step, so that’s not good, but it works’ (D1:111).

Table 5 Tool usage for requirements and test cases, and for tracing between them. For company F the tool
set-up prior to the major process change are also given (marked with ‘previous’)

Requirements tool Tracing tool Testing tool

Requirements C, D, E, F (previous) F

Traces C D, E, F (previous) F

Test cases C A, D, E, F (current and previous)

1838 Empir Software Eng (2014) 19:1809–1855

Tracing within tools is practiced at company C where requirements and test cases are
both stored in a commercial requirements management tool: ‘when we have created all
the test cases for a certain release, then we can automatically make this matrix show the
links between [system] requirements and test cases’ (C1:8). Company F has used the
between-tools practice ‘The requirements are synchronised over to where the test cases
are stored.’ (F5:19) However, there are issues related to this practice. Many-to-many
relationships are difficult to handle with the existing tool support (F2:167). Furthermore,
relationships at the same level of detail are easier to handle than across different
abstraction levels. One requirements engineer asks for ‘a tool that connects everything;
your requirement with design documents with test cases with your code maybe even
your planning document,’ (F5:17). In a large, complex system and its development
organisation, there is a need for ‘mapping towards all kinds of directions—per function
group, per test cases, and from the requirement level’ (F11:139).

Many interviewees had complaints about their tools, and the integration between
them. Merely having tool support in place is not sufficient, but it must be efficient and
useable. For example, company E have tools for supporting traceability between re-
quirements and test state of connected test cases but ‘we don’t do it because the tool we
have is simply not efficient enough’ (E3:57) to handle the test state for the huge amount
of verified variants. Similarly, at company E the integration solution (involving a special
module for integrating different tools) is no longer in use and they have reverted to
manual tracing practices: ‘In some way we are doing it, but I think we are doing it
manually in Excel sheets’ (E2:49).

Finally, companies moving from waterfall processes towards agile practices tend to
find their tool suite too heavy weight for the new situation (E3:89). Users of these tools
not only include engineers, but also management, which implies different demands. A
test manager states: ‘Things are easy to do if you have a lot of hands on experience with
the tools but what you really need is something that the [higher level] managers can use’
(F10:249).

4.2.9 Alignment Metrics (P9)

Measurements can be used to gain control of the alignment between requirements and
testing. The most commonly mentioned metrics concern test case coverage of requirements.
For example, company C ‘measure[s] how many requirements are already covered with test
cases and how many are not’ (C1:64). These metrics are derived from the combined
requirements and test management tool. Companies E and F have a similar approach,
although with two different tools. They both point out that, in addition to the metrics, it is
a matter of judgment to assess full requirements coverage. ‘If you have one requirement, that
requirement may need 16 test cases to be fully compliant. But you implement only 14 out of
those. And we don’t have any system to see that these 2 are missing.’ (E3:81) And, ‘just
because there are 10 test cases, we don’t know if [the requirement] is fully covered’
(F11:34). Furthermore, there is a versioning issue to be taken into account when assessing
the requirements coverage for verification. ‘It is hard to say if it [coverage] should be on the
latest software [version] before delivery or …?’ (F10:224) The reverse relationship of
requirements coverage of all test cases is not always in place or measured. ‘Sometimes we
have test cases testing functionality not specified in the requirements database.’ (F11:133)
Other alignment metrics were mentioned, for example, missing links between requirements
and tests, number of requirements at different levels (F5:112), test costs for changed
requirements (F14:205), and requirements review status (F14:205). Not all of these practices

Empir Software Eng (2014) 19:1809–1855 1839

were practiced at the studied companies even though some mentioned that such measures
would be useful (F14:219).

4.2.10 Job Rotation Practices (P10)

Job rotation was suggested in interviews at companies D and F as a way to improve alignment
by extending contact networks and experiences across departments and roles, and thereby
supporting spreading and sharing perspectives within an organisation. In general, the interviews
revealed that alignment is very dependent on individuals, their experience, competence and
their ability to communicate and align with others. The practice of job rotation was mentioned
as a proposal for the future and not currently implemented at any of the included companies.

4.3 Practices that Address the Challenges

This section provides an overview of the relationships between the alignment challenges and
practices identified in this study (and reported in Sections 4.1 and 4.2). The mapping is
intended as an initial guide for practitioners in identifying practices to consider in addressing
the most pressing alignment challenges in their organisations. The connections have been
derived through analysis of the parts of the interview transcripts connected to each challenge
and practice, summarised in Table 6 and elaborated next. The mapping clearly shows that
there are many-to-many relations between challenges and practices. There is no single
practice that solves each challenge. Consequently, the mapping is aimed at a strategic level
of improvement processes within a company, rather than a lower level of practical imple-
mentation. After having assessed the challenges and practices of REVV alignment within a
company, the provided mapping can support strategic decisions concerning which areas to
improve. Thereafter, relevant practices can be tailored for use within the specific context.
Below we discuss our findings, challenge by challenge.

The practices observed to address the challenge of having common goals within an
organisation (Ch1) mainly concern increasing the synchronisation and communication
between different units and roles. This can be achieved through involving customers and
development-near roles in the requirements process (P1.1, P1.2, P1.3, P1.5); documenting
requirement decision rationale (P1.6); validating requirements through test case reviews
(P2.1) and product managers reviewing prototypes (P2.3); and involving testing roles in
change management (P4.1). Goal alignment is also increased by the practice of basing
launch decisions made by management on test reports (P2.4) produced by testers. Further-
more, tracing between artefacts (P6.1–6.4) provides a technical basis for supporting efficient
communication of requirements. Job rotation (P10) is mentioned as a long-term practice for
sharing goals and synchronising perspectives across the organisation. In the mid-term
perspective, customer feedback received by testers for previous projects (P3.3) can be re-
used as input when defining roadmaps and products plans thereby further coordinating the
testers with the requirements engineers responsible for the future requirements.

The challenge of cooperating successfully (Ch2) is closely related to the first challenge
(Ch1) as being a means to foster common goals. Practices to achieve close cooperation
across roles and organisational borders hence include cross-functional involvement (P1.2,
P1.5, P2.4) and reviews (P1.3, P2.1, P2.3), feedback through early and continuous test
activities (P3.1), as well as, joint decisions about changes in change control boards (P4.1)
and documenting requirement decision rationales (P1.6). The former are practices are
embraced in agile processes, while the latter practices of change control boards and
documentation of rationales were removed for the studied cases when agile processes were

1840 Empir Software Eng (2014) 19:1809–1855

T
ab

le
6

M
ap
pi
ng

of
pr
ac
tic
es

to
th
e
ch
al
le
ng
es

th
ey

ar
e
fo
un
d
to

ad
dr
es
s.
A
n
S
re
pr
es
en
ts
a
su
gg
es
te
d,

bu
t
no
t
im

pl
em

en
te
d
pr
ac
tic
e

P
1
R
E

pr
ac
tic
es

P
2
V
al
id
at
io
n

pr
ac
tic
es

P
3
V
er
if
ic
at
io
n

pr
ac
tic
es

P
4
C
ha
ng

e
m
an
ag
em

en
t

P
5
P
ro
ce
ss

en
fo
rc
em

en
t

P
6
T
ra
ci
ng

be
tw
ee
n

ar
te
fa
ct
s

P
7
T
ra
ce
ab
ili
ty

re
sp
on

si
bi
lit
y

ro
le

P
8
To

ol
pr
ac
tic
es

P
9
A
lig

nm
en
t

m
et
ri
cs

P
10

Jo
b

ro
ta
tio

n

C
h1

A
lig

ni
ng

go
al
s
an
d

pe
rs
pe
ct
iv
es

w
ith

in
or
ga
ni
sa
tio

n

P
1.
1–
1.
3,

1.
5–
1.
6

P
2.
1,

2.
3–
2.
4

P
3.
3

P
4.
1

P
6.
1–
6.
4

P
10

(S
)

C
h2

C
oo

pe
ra
tin

g
su
cc
es
sf
ul
ly

P
1.
2–
1.
3,

1.
5–
1.
6

P
2.
1,

2.
3,

2.
4

P
3.
1

P
4.
1

P
10

(S
)

C
h3

R
eq
ui
re
m
en
ts

sp
ec
if
ic
at
io
n
qu
al
ity

P
1.
1–
1.
5

P
2.
1,

2.
5

P
4.
1

P
5

P
6.
2–
6.
3

P
9

C
h4

V
V

qu
al
ity

P
1.
1–
1.
5

P
2.
1–
2.
3,

2.
5

P
3.
1–
3.
3

P
5

P
6.
1–
6.
4

P
9

C
h5

M
ai
nt
ai
ni
ng

al
ig
nm

en
t

w
he
n
re
qu
ir
em

en
ts
ch
an
ge

P
2.
2,

P
2.
5

P
4.
1–

4.
2

P
5

P
6.
1–
6.
4

P
7

P
9

C
h6

R
eq
ui
re
m
en
ts
ab
st
ra
ct
io
n

le
ve
ls

P
1.
1,

1.
6

P
6.
4

C
h7

T
ra
ce
ab
ili
ty

P
2.
1

P
5

P
6.
1–
6.
4

P
7

P
8.
1–
8.
2

P
9

C
h8

T
im

e
an
d
re
so
ur
ce

av
ai
la
bi
lit
y

P
4.
1

P
5

C
h9

M
an
ag
in
g
a
la
rg
e
do

cu
m
en
t

sp
ac
e

P
6.
1–
6.
4

P
7

P
8.
1–
8.
2

P
9

C
h1

0
O
ut
so
ur
ci
ng

of
co
m
po

ne
nt
s

or
te
st
in
g

P
1.
1–
1.
5

P
2.
1–
2.
3

P
3.
4

P
6.
4

A
bl
an
k
ce
ll
in
di
ca
te
s
th
at

no
co
nn
ec
tio

n
w
as

m
en
tio

ne
d
du
ri
ng

th
e
in
te
rv
ie
w
s

Empir Software Eng (2014) 19:1809–1855 1841

introduced. Job rotation (P10), with its general contribution to building networks, is
expected to facilitate closer cooperation across organisational units and between roles.

The challenge of achieving good requirements specification quality (Ch3) is primarily
addressed by the practices for requirements engineering (P1.1–1.5), validation (P2.1, P2.5)
and managing requirement changes (P4.1). Some of the traceability practices (P6.2, P6.3)
also address the quality of requirements in terms of being well structured and defined at the
right level of detail. Furthermore, awareness of the importance of alignment and full
requirements coverage may induce and enable organisations in producing better require-
ments specifications. This awareness can be encouraged with the use of alignment metrics
(P9) or enforced (P5) through regulations for safety-critical software and/or by integrating
process adherence in development tools.

The challenge of achieving good validation and verification quality (Ch4) is addressed
by practices to ensure clear and agreed requirements, such as cross-functional reviews (P1.3,
P2.1), involving development roles in detailing requirements (P1.2) and customers in
defining acceptance criteria (P2.2). Validation is supported by product managers reviewing
prototypes (P2.3) and by user/customer testing (P2.5). Verification is improved by early
verification activities (P3.1) and through independent testing (P3.2) where testers are not
influenced by other engineers’ interpretation of the requirements. Complete and up-to-date
requirements information is a prerequisite for full test coverage, which can be addressed by
requirements engineering practices (P1.1–1.5), testers re-using customer feedback (P3.3)
(rather than incorrect requirements specification) and indirectly by traceability practices
(P6.1–6.4). The external enforcement (P5) of the full test coverage and alignment metrics
(P9) are practices that provide incentives for full test coverage including quality
requirements.

Maintaining alignment when requirements change (Ch5) is a challenge that clearly
connects to change and traceability practices (P4.1–4.2, P6.1–6.4 and P7). However, also the
validation practices of having acceptance tests based on user scenarios (P2.2) and
user/customer testing (P2.5) address this challenge by providing feedback on incorrectly
updated requirements, test cases and/or software. Furthermore, having alignment metrics in
place (P9) and external regulations on documentation and traceability (P5) is an incentive to
maintain alignment as requirements change.

The challenge of managing requirements abstraction levels (Ch6) is addressed by the
requirements practice of including the customer in requirements work throughout a project
(P1.1) and the tracing practices of matching abstractions levels for requirements and test
artefacts (P6.4). Both of these practices exercise the different requirements levels and
thereby support identifying mismatches. This challenge is also supported by documentation
of requirement decision rationales (P1.6) by providing additional requirements information
to the roles at the different abstraction level.

Traceability (Ch7) in itself is identified as a challenge in the study, and interviewees
identified practices on the information items to be traced (P6.1–6.4), as well as, tools (P8.1–
8.2) to enable tracing. In addition, the practice of reviewing test cases against requirements
(P2.1) may also support identifying sufficient and/or missing traces. Furthermore, require-
ments coverage metrics (P9) are proposed as a means to monitor and support traceability.
However, as noticed by companies E and F, simple coverage metrics are not sufficient to
ensure ample alignment. Process enforcement practices (P5) and assigning specific roles
responsible for traceability (P7) are identified as key practices in creating and maintaining
traces between artefacts.

The practical aspects of the challenge on availability of time and resources (Ch8) are
mainly a matter of project management practices, and hence not directly linked to the

1842 Empir Software Eng (2014) 19:1809–1855

alignment practices. However, the practice of involving testing roles in the change manage-
ment process (P4.1) may partly mitigate this challenge by supporting an increased awareness
of the verification cost and impact of changes. Furthermore, in companies for which
alignment practices are externally enforced (P5) there is an awareness of the importance
of alignment of software development, but also an increased willingness to take the cost of
alignment including tracing.

The large document space (Ch9) is a challenge that can be partly addressed with good tool
support (P8.1–8.2) and tracing (P6.1–6.4, P7) practices. The study specifically identifies that a
tool that fits a medium-sized project may be very hard to use in a large one. One way of getting a
synthesised view of the level of alignment between large sets of information is to characterise it,
using quantitative alignment measurements (P9). It does not solve the large-scale problem, but
may help assess the current status and direct management attention to problem areas.

Outsourcing (Ch10) is a challenge that is related to timing, which is a project management
issue, and to communication of the requirements, which are to be developed or tested by an
external team. The primary practice to apply to outsourcing is customer communication (P1.1).
Frequent and good communication can ensure a common perspective and direction, in particular
in the early project phases. In addition, other practices for improved cooperation (P1.2–P1.5,
P2.1–P2.3) are even more important when working in different organisational units, times
zones, and cultural contexts. Furthermore, in an outsourcing situation the requirements speci-
fication is a key channel of communication, often also in contractual form. Thus, having
requirements and tests specified at the same level of abstraction (P6.4), feasible for the purpose,
is a practice to facilitate the outsourcing. Finally, training the outsourced or off-shored team
(P3.4) in company practices and tools also addresses this challenge.

In summary, the interviewees brought forward practices, which address some of the
identified challenges in aligning requirements and testing. The practices are no quick-fix
solutions, but the mapping should be seen as a guideline to recommend areas for long-term
improvement, based on empirical observations of industry practice.

5 Discussion

Alignment between requirements and test ranges not only the life-cycle of a software
development project, but also company goals and strategy, and affects a variety of issues,
from human communication to tools and their usage. Practices differ largely between
companies of varying size and maturity, domain and product type, etc. One-size alignment
practices clearly do not fit all.

A wide collection of alignment challenges and practices have been identified based on the
large amount of experiences represented by our 30 interviewees from six different companies,
covering multiple roles, domains and situations. Through analysing this data and deriving
results from it, the following general observations have been made by the researchers:

1) The human and organisational sides of software development are at the core of
industrial alignment practices

2)The requirements are the frame of reference for the software to be built, and hence the
quality of the requirements is critical for alignment with testing activities
3) The large difference in size (factor 20) between the companies, in combination

with variations in domain and product type, affects the characteristics of the
alignment challenges and applicable practices

4) The incentives for investing in good alignment practices vary between domains

Empir Software Eng (2014) 19:1809–1855 1843

Organisational and human issues are related to several of the identified challenges
(Ch1, Ch2, Ch8, and Ch10). Successful cooperation and collaboration (Ch2) is a human
issue. Having common goals and perspectives for a development project is initially a matter
of clear communication of company strategies and goals, and ultimately dependant on
human-to-human communication (Ch1). Failures to meet customer requirements and expec-
tations are often related to misunderstanding and misconception; a human failure although
technical limitations, tools, equipment, specifications and so on, also play a role. It does not
mean that the human factor should be blamed in every case and for each failure. However,
this factor should be taken into account when shaping the work conditions for software
engineers. These issues become even more pressing when outsourcing testing. Jones et al.
(2009) found that failure to align outsourced testing activities with in-house development
resulted in wasted effort, mainly due to weak communication of requirements and changes
of them.

Several of the identified alignment practices involve the human and organisational side of
software engineering. Examples include communication practices with customers, cross-role
and cross-functional meetings in requirements elicitation and reviews, communication of
changes, as well as, a proposed job rotation practice to improve human-to-human commu-
nication. This confirms previous research that alignment can be improved by increasing the
interaction between testers and requirements engineers. For example, including testers early
on and, in particular, when defining the requirements, can lead to improved requirements
quality (Uusitalo et al. 2008). However, Uusitalo also found that cross collaboration can be
hard to realise due to unavailability of requirements owners and testers on account of other
assignments and distributed development (Uusitalo et al. 2008). In general, processes and
roles that support and enforce the necessary communication paths may enhance alignment.
For example, Paci et al. (2012) report on a process for handling requirements changes
through clearly defined communication interfaces. This process relies on roles propagating
change information within their area, rather than relying on more general communication
and competence (Paci et al. 2012). This also confirms the findings of Uusitalo et al. that
increased cross communication reduces the amount of assumptions made by testers on
requirements interpretation, and results in an increased reliability of test results and subse-
quent products (Uusitalo et al. 2008). Similarly, Fogelström and Gorschek (2007) found that
involving testers as reviewers through test-case driven inspections of requirements
increases the interaction with requirements-related roles and can improve the overall
quality of the requirements, thereby supporting alignment. Furthermore, even technical
practices, such as tool support for requirements and test management, clearly have a human
side concerning degree of usability and usefulness for different groups of stakeholders in
an organisation.

Defining requirements of good quality (Ch3) is central to enabling good alignment and
coordination with other development activities, including validation and verification. This
challenge is not primarily related to the style of requirements, whether scenario based, plain
textual, or formal. But, rather the quality characteristics of the requirements are important,
i.e. being verifiable, clear, complete, at a suitable level of abstraction and up-to-date. This
relates to results from an empirical study by Ferguson and Lami (2006) that found that
unclear requirements have a higher risk of resulting in test failures. A similar reverse
relationship is reported by Graham (2002), that clearer and verifiable requirements enable
testers to define test cases that match the intended requirements. In addition, Uusitalo et al.
(2008) found that poor quality of requirements was a hindrance to maintaining traces from
test cases. Sikora et al. (2012) found that requirements reviews is the dominant practice
applied to address quality assurance of the requirements for embedded systems and that

1844 Empir Software Eng (2014) 19:1809–1855

industry need additional and improved techniques for achieving good requirements quality.
Furthermore, requirements quality is related to involving, not only requirements engineers in
the requirements engineering, but also VV roles in early stages. This can be achieved by
involving non-RE roles in reviews and in detailing requirements. This also contributes to
cross-organisational communication and learning, and supports producing requirements that
are both useful and used. Uusitalo et al. (2008) found that testers have a different viewpoint
that makes them well suited to identifying deficiencies in the requirements including un-
verifiability and omissions. Martin and Melnik (2008) take this approach one step further by
suggesting that the requirements themselves be specified as acceptance test cases, which are
then used to verify the behaviour of the software. This approach was evaluated through an
experiment by Ricca et al. (2009) who found that this helped to clarify and increase the joint
understanding of requirements with substantially the same amount of effort. Furthermore, our
findings that RE practices play a vital role in supporting REVV alignment confirm previous
conclusions that the requirements process is an important enabler for testing activities and that
RE improvements can support alignment with testing (Uusitalo et al. 2008).

Company size varies largely between the six companies in this study. Similarly, the
challenges and practices also vary between the companies. While smaller project groups of
5–10 persons can handle alignment through a combination of informal and formal project
meetings. Large-scale projects require more powerful process and tool support to ensure
coordination and navigation of the (larger) information space between different phases and
hierarchies in the organisation. This was illustrated by different views on the same state-of-
the-art requirements management tool. The tool supported alignment well in one medium-
sized project (company C), but was frequently mentioned by the interviewees for the largest
company (company F) as a huge alignment challenge.

In some cases (e.g. company F), agile practices are introduced to manage large projects
by creating several smaller, self-governing and less dependent units. Our study shows that
this supports control and alignment at the local level, but, at the expense of global control
and alignment (company E). The size-related alignment challenges then re-appear in a new
shape, at another level in the organisation. For example, granting development teams
mandate to define and change detailed requirements increases speed and efficiency at the
team level, but increases the challenge of communicating and coordinating these changes
wider within a large organisation.

The incentives for applying alignment practices, specifically tracing between require-
ments and test artefacts, vary across the studied companies. Applying alignment practices
seems to be connected to the incentives for enforcing certain practices, such as tracing and
extensive documentation. The companies reporting the most rigid and continuously
maintained alignment practices are those working in domains where customers or regulatory
bodies require such practices. Both of these companies (C and D) have enforced alignment
practices in their development including tracing between requirements and tests. Interest-
ingly these are also the companies in our study which apply a traditional and rigorous
development model. It is our interpretation that the companies with the most agile, and least
rigorous, development processes (A and B) are also the companies which rely heavily on
people-based alignment and tracing, rather than on investing in more structured practices.
These are also the two companies that do not have tracing between artefacts in place, even
partially. While for the remaining companies (E and F) which apply agile-inspired processes,
but with structured elements (e.g. eRUP), traceability is in place partly or locally. Our
interpretation of the relationship between the included companies concerning incentives
and degree of rigour in applying structured alignment practices is illustrated in Fig. 4
together with the relative size of their software development. The observed connection

Empir Software Eng (2014) 19:1809–1855 1845

between degree of rigour and incentives for alignment are similar to other findings
concerning safety-critical development. Namely, that alignment is enabled by more rigorous
practices such as concurrently designed processes (Kukkanen et al. 2009) or model-based
testing (Nebut et al. 2006, Hasling et al. 2008). Furthermore, companies in safety-critical
domains have been found to apply more rigorous processes and testing practices (Runeson et
al. 2003). In contrast, neglect of quality requirements, including safety aspects has been
found to one of the challenges of agile RE (Cao and Ramesh 2008).

Interestingly, several alignment challenges (e.g. tracing, communicating requirements
changes) were experienced also for the companies developing safety-critical software (C
and D) despite having tracing in place and applying practices to mitigate alignment chal-
lenges (e.g. frequent customer communication, tracing responsible role, change management
process involving testers etc.) This might be explained by a greater awareness of the issues at
hand, but also that the increased demands posed by the higher levels of quality demands
requires additional alignment practice beyond those needed for non-critical software.

When the documentation and tracing practices are directly enforced from outside the
organisation, they cannot be negotiated and the cost has to be taken (Watkins and Neal
1994). In organisations without these external requirements the business case for investing in
these practices needs to be defined, which does not seem to be the case for the studied
organisations. Despite the existence of frustration and rework due to bad alignment, the
corresponding costs are seldom quantified at any level. Improving alignment involves short
term investments in tools, work to recapture traces between large legacies of artefacts, and/or
in changed working practices. The returns on these investments are gained mainly in the

Little rigour Muchrigour

External
enforcement

Weak
enforcement

D

A

B

C

EF

Applied
alignment
practices

Incentives
for
alignment
practices

Fig. 4 Rough overview of the relationship between the variation factors size, rigour in applying alignment
practices and incentive for alignment practices for the studied companies. Number of people in software
development is reflected by the relative size of the circle

1846 Empir Software Eng (2014) 19:1809–1855

longer term. This makes it hard to put focus and priority on alignment practices in a short-
sighted financial and management culture. Finally, requirements volatility increases the
importance and cost to achieve REVValignment. This need to manage a rate of requirements
changes often drives the introduction of agile practices. These practices are strong in team
cooperation, but weak in documentation and traceability between artefacts. The companies
(C and D) with lower requirements volatility and where development is mainly plan-driven
and bespoken, have the most elaborated documentation and traceability practices. In both
cases, the practices are enforced by regulatory requirements. However, in our study, it is not
possible to distinguish between the effects of different rates of change and the effects of
operating in a safety-critical domain with regulations on documentation and traceability.

In summary, challenges and practices for REVV alignment span the whole development
life cycle. Alignment involves the human and organisational side of software engineering
and requires the requirements to be of good quality. In addition, the incentives for alignment
greatly vary between companies of different size and application domain. Future research
and practice should consider these variations in identifying suitable practices for REVV
alignment, tailored to different domains and organisations.

6 Conclusions

Successful and efficient software development, in particular on the large scale, requires
coordination of the people, activities and artefacts involved (Kraut and Streeter 1995, Damian
et al. 2005, Damian and Chisan 2006). This includes alignment of the areas of requirements and
test (Damian and Chisan 2006, Uusitalo et al. 2008, Kukkanen et al. 2009, Sabaliauskaite et al.
2010).Methods and techniques for linking artefacts abound including tracing and use of model-
based engineering. However, companies experience challenges in achieving alignment includ-
ing full traceability. These challenges are faced also by companies with strong incentives for
investing in REVV alignment such as for safety critical software where documentation and
tracing is regulated. This indicates that the underlying issues lie elsewhere and require aligning
of not only the artefacts, but also of other factors. In order to gain a deeper understanding of the
industrial challenges and practices for aligning RE with VV, we launched a case study covering
six companies of varying size, domain, and history. This paper reports the outcome of that study
and provides a description of the industrial state of practice in six companies. We provide
categorised lists of (RQ1) industrial alignment challenges and (RQ2) industrial practices for
improving alignment, and (RQ3) a mapping between challenges and practices. Our results,
based on 30 interviews with different roles in the six companies, add extensive empirical input
to the existing scarce knowledge of industrial practice in this field (Uusitalo et al. 2008,
Sabaliauskaite et al. 2010). In addition, this paper presents new insights into factors that explain
needs and define solutions for overcoming REVValignment challenges.

We conclude with four high-level observations on the alignment between requirements
and testing. Firstly, as in many other branches of software engineering, the human side is
central, and communication and coordination between people is vital, so also between
requirements engineers and testers, as one interviewee said: ‘start talking to each other!’
(F7:88) Further, the quality and accuracy of the requirements is a crucial starting point for
testing the produced software in-line with the defined and agreed requirements. Additionally,
the size of the development organisation and its projects is a key variation factor for both
challenges and practices of alignment. Tools and practices may not be scalable, but rather
need to be selected and tailored to suit the specific company, size and domain. Finally,
alignment practices such as good requirements documentation and tracing seem to be

Empir Software Eng (2014) 19:1809–1855 1847

applied for safety-critical development through external enforcement. In contrast, for non-
safety critical cases only internal motivation exists for the alignment practices even though
these companies report facing large challenges caused by misalignment such as incorrectly
implemented requirements, delays and wasted effort. For these cases, support for assessing
the cost and benefits of REVValignment could provide a means for organisations to increase
the awareness of the importance of alignment and also tailor their processes to a certain level
of alignment, suitable and cost effective for their specific situation and domain.

In summary, our study reports on the current practice in several industrial domains.
Practical means are provided for recognising challenges and problems in this field and
matching them with potential improvement practices. Furthermore, the identified challenges
pose a wide assortment of issues for researchers to address in order to improve REVV
alignment practice, and ultimately the software engineering practices.

Acknowledgment We want to thank Börje Haugset for acting as interviewer in three of the interviews. We
would also like to thank all the participating companies and anonymous interviewees for their contribution to
this project. The research was funded by EASE Industrial Excellence Center for Embedded Applications
Software Engineering (http://ease.cs.lth.se).

References

Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of requirements specification and testing: A systematic
mapping study. In: Proc 4th Int. Conf. On Software Testing, Verification and Validation Workshops
(ICSTW) pp. 476–485

Cao L, Ramesh B (2008) Agile requirements engineering practices: An empirical study. In: IEEE Software
Jan/Feb 2008

Cheng BH, Atlee JM (2007) Research directions in requirements engineering. In: Proc. Future of Software
Engineering (FOSE) pp. 285–303

Cleland-Huang J, Chang CK, Christensen M (2003) Event-based traceability for managing evolutionary
change. In: IEEE Transactions on Software 29(9)

Damian D, Chisan J, Vaidyanathasamy L, Pal Y (2005) Requirements engineering and downstream software
development: findings from a case study. Empir Softw Eng 10:255–283

Damian D, Chisan J (2006) An empirical study of the complex relationship between requirements engineering
processes and other processes that lead to payoffs in productivity, quality, and risk management. IEEE
Trans Softw Eng 32(7):33–453

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering traceability links in software artifact
management systems using information retrieval methods. In: ACM Transactions on Software Engineer-
ing and Methodology, 16(4):Article 13

Dias Neto AC, Arilo C, Subramanyan R, Vieira M, Travassos GH (2007) A survey on model-based testing
approaches: A systematic review. In: Proc of 1st ACM Int workshop on Empirical Assessment of
Software Engineering Languages and Technologies, pp. 31–36

Ferguson RW, Lami G (2006) An empirical study on the relationship between defective requirements and test
failures. In: Proc of 30th Annual IEEE/NASA Software Engineering Workshop SEW-30 (SEW’06)

Fogelström N, Gorschek T (2007) Test-case driven versus checklist-based inspections of software requirements—an
experimental evaluation, In: Proc. of 10th Workshop on Requirements Engineering (WER’07)

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In: Proc. First Int Conf.
Requirements Eng., pp. 94–101

Gorschek T, Davis AM (2007) Requirements engineering: in search of the dependent variables. Inf Softw
Technol 50(1–2):67–75

Gorschek T, Wohlin C (2004) Packaging software process improvement issues—a method and a case study.
Softw Pract & Experience 34:1311–1344

Gorschek T, Wohlin C (2006) Requirements abstraction model. Requir Eng J 11:79–101

1848 Empir Software Eng (2014) 19:1809–1855

http://ease.cs.lth.se/

Graham D (2002) Requirements and testing: seven missing-link myths. IEEE Softw 19:15–17
Grieskamp W, Kicillof N, Stobie K, Braberman V (2011) Model-based quality assurance of protocol

documentation: tools and methodology. Softw Test Verification Reliab 21(1):55–71
Hasling B, Goetz H, Beetz K (2008) Model based testing of system requirements using UML use case models.

In: Proc of 2008 international Conference on Software Testing, Verification, and Validation
Hayes JH, Dekhtyar A, Sundaram SK, Holbrook EA, Vadlamudi S, April A (2007) REquirements TRacing

On target (RETRO): improving software maintenance through traceability recovery. Innov Syst Softw
Eng 3(3):193–202

Höst M, Feldt R, Lüders F (2010) Support for different stakeholders in software engineering master thesis
projects. IEEE Trans Educ 52(2):288–296. doi:10.1109/TE.2009.2016106

IEEE (1990) IEEE standard glossary of software engineering terminology. Technical Report 610.12–1990.
IEEE, New York

ISO/IEC. (2001) 9126–1:2001(E), International standard software engineering product quality part 1: Quality
model. Technical report, ISO/IEC

Jarke, M (1998) Requirements Traceability. Commun ACM 41(12):32–36
Jones JA, Grechanik M, van der Hoek A (2009) Enabling and enhancing collaborations between software

development organizations and independent test agencies. In: Cooperative and Human Aspects of
Software Engineering (CHASE’09), May 17, 2009, Vancouver, Canada

Kraut RE, Streeter L (1995) Coordination in software development. Commun ACM 38(3):69–81
Kukkanen J, Vakevainen K, Kauppinen M, Uusitalo E (2009) Applying a systematic approach to link requirements

and testing: A case study, In: Proc of Asia-Pacific Software Engineering Conference (APSEC ’09):482–488
Lormans M, van Deursen A, Gross H (2008) An industrial case study in reconstructing requirements views,

In: Empirical Software Engineering, online first, September 03, 2008
Lubars M, Potts C, Richter C (1993) A review of the state of the practice in requirements modelling. In: Proc

of 1st IEEE Int. Symposium on Requirements Engineering, pp. 2–14
Martin R, Melnik G (2008) Tests and requirements, requirements and tests a Möbius strip. IEEE Softw 25

(1):54–59
Melnik G, Maurer F, Chiasson M (2006) Executable acceptance tests for communicating business require-

ments: Customer perspective. In: Proc. of Agile Conference, Minneapolis, USA, pp. 12–46
Mohagheghi P, Dehlen V (2008) Where is the proof? - A review of experiences from applying MDE in

industry. In: LNCS, Model driven architecture—foundations and applications, vol 5095:432–443
Nebut C, Fleurey F, Traon YL, Jézéquel J (2006) Automatic test generation: a use case driven approach. IEEE

Trans Softw Eng 32(3):140–155
Paci F, Massacci F, Bouquet F, Debricon S (2012) Managing evolution by orchestrating requirements and

testing engineering processes. In: Proc. of IEEE 5th Int. Conf. On, pp.834–841, 17–21 April 2012
Pettersson F, Ivarsson M, Gorschek (2008) A practitioner’s guide to light weight software process assessment

and improvement planning. J Syst Softw 81(6):972–995
Post H, Sinz C, Merz F, Gorges T, Kropf T (2009) Linking functional requirements and software verification.

In: Proceedings of 17th IEEE International Requirements Engineering Conference, pp. 295–302
Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements traceability: theory and practice. Ann Softw

Eng 3(1):397–415
Ramesh B (1998) Factors influencing requirements traceability practice. In: Communications of the ACM

CACM Homepage archive, 41(12):37–44
Randell B (1969) Towards a methodology of computing system design. In: Naur P, Randell B (eds) NATO

working conference on software engineering 1968. Report on a Conference Sponsored by NATO
Scientific Committee, Garmisch, pp 204–208

Regnell B, Runeson P (1998) Combining scenario-based requirements with static verification and dynamic testing.
In: Proc. 4th Int. Working Conf. Requirements Engineering: Foundation for Software Quality, pp.195–206

Regnell B, Runeson P, Wohlin C (2000) Towards integration of use case modelling and usage-based testing. J
Syst Softw 50(2):117–130

Ricca F, Torchiano M, Di Penta M, Ceccato M, Tonella P (2009) Using acceptance tests as a support for
clarifying requirements: a series of experiments. Inf Softw Technol 51:270–283

Robson C (2002) Real world research: A resource for social scientists and practitioner researchers, 2nd
edition. Blackwell Publishing

Runeson P, Andersson C, Höst M (2003) Test processes in software product evolution—a qualitative survey
on the state of practice. J Softw Maint Evol Res Pract 15(1):41–59

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineer-
ing. Empir Softw Eng 14(2):131–164

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering—guidelines and
examples. Wiley

Empir Software Eng (2014) 19:1809–1855 1849

http://dx.doi.org/10.1109/TE.2009.2016106

Sabaliauskaite G, Loconsole A, Engström E, Unterkalmsteiner M, Regnell B, Runeson P, Gorschek T, Feldt R
(2010) Challenges in aligning requirements engineering and verification in a large-scale industrial
context. In: Proceedings of REFSQ 2010

Sikora E, Tenbergen B, Pohl K (2012) Industry needs and research directions in requirements engineering for
embedded systems. Requir Eng 17(1):57–78

Uusitalo EJ, Komassi M, Kauppinen M, Davis AM (2008) Linking requirements and testing in practice. In:
Proceedings of 16th IEEE International Requirements Engineering Conference, pp. 295–302

Watkins R, Neal M (1994) Why and how of requirements tracing. IEEE Softw 11(4):104–106
Yue T, Briand L, Labiche Y (2011) A systematic review of transformation approaches between user re-

quirements and analysis models. Requir Eng 16(2):75–99

Elizabeth Bjarnason is currently a doctoral candidate at Lund University, Sweden. She has long and wide
experience of software development for mobile phones and has for more than fifteen years worked with
software design, programming, project management, standardization, as well as, requirements within Sony
Mobile’s software development unit in Lund, Sweden. As part of the process team she was jointly responsible
for the processes for developing software for Sony’s Xperia phones, and in particular responsible for the
requirements aspects of those processes. Through her experience of requirements as an integrated part of
large-scale software development she has become interested in the area of requirements engineering and is
currently working with the Software Engineering Research Group (SERG) at Lund University. Her main
research interest is the role of requirements in the development process, including integrated and agile
requirements engineering, requirements communication, and alignment between requirements and later
development activities.

1850 Empir Software Eng (2014) 19:1809–1855

Dr. Per Runeson is a professor of software engineering at Lund University, Sweden, and is the leader of its
Software Engineering Research Group (SERG) and the Industrial Excellence Center on Embedded Applica-
tions Software Engineering (EASE). His research interests include empirical research on software develop-
ment and management methods, in particular for verification and validation. He is the principal author of
”Case study research in software engineering”, has coauthored ”Experimentation in software engineering”,
serves on the editorial board of Empirical Software Engineering and Software Testing, Verification and
Reliability, and is a member of several program committees.

Markus Borg is a PhD student at Lund University and a member of the Software Engineering Research
Group. His research interests are related to alleviating information overload in large-scale software develop-
ment, with a focus on information retrieval and recommendation systems. Prior to his PhD studies he worked
three years as a development engineer at ABB with safety-critical software engineering. He is a student
member of IEE, and the Swedish research school in Verification and Validation (SWELL).

Empir Software Eng (2014) 19:1809–1855 1851

Michael Unterkalmsteiner received a BSc degree in applied computer science from the Free University of
Bolzano/Bozen (FUB) in 2007 and a MSc degree in software engineering at the Blekinge Institute of
Technology (BTH) in 2009. He is currently working toward a PhD degree at BTH where he is with the
Software Engineering Research Lab. His research interests include software repository mining, software
measurement and testing, process improvement, and requirements engineering. His current research focuses
on the co-optimization of requirements engineering and verification and validation processes.

Dr. Emelie Engström is a postdoctoral researcher at Lund University, Sweden, and a member of the Software
Engineering Research Group. Her research interests include empirical software engineering, software testing,
test planning, large scale and variability intensive software development. She received her PhD in Software
Engineering from Lund University, Sweden and her M.Sc. in Engineering Physics/Computer Science from the
Royal Institute of Technology, Stockholm, Sweden.

1852 Empir Software Eng (2014) 19:1809–1855

Dr. Björn Regnell is a professor of Software Engineering at Lund University’s Department of Computer
Science and Vice Dean of Research at the Faculty of Engineering, LTH. His research interests include market-
driven software development, requirements engineering, software quality, software innovation, software
product management, and empirical research methods. He received his PhD in software engineering from
Lund University.

Dr. Giedre Sabaliauskaite is a postdoctoral researcher at the Information Systems Technology and Design
Pillar, Singapore University of Technology and Design. Her research interests include nonfunctional re-
quirements and design of software and cyber-physical systems, process improvement, risk management, and
empirical studies among others. She received her B.Sc. and M.Sc. degrees in informatics from the Kaunas
University of Technology, Lithuania, in 1996 and 1998, respectively, and the Ph.D. degree in engineering
from the Osaka University, Japan, in 2004.

Empir Software Eng (2014) 19:1809–1855 1853

Dr. Annabella Loconsole is an assistant professor at Malmö University. She obtained her PhD in software
engineering at the Department of Computing Science, Umeå University, Sweden in 2008. Her field of research
is in empirical software engineering, requirements engineering, software process improvement, and software
measurement. In particular, Annabella is interested in “measuring the unmeasurable” which means to measure
artefacts that are complex or fuzzy. Defining valid measures and defining standard methods to validate metrics
are also topics of interest for her. Annabella has been a postdoctoral researcher at Lund University where she
worked in the EASE project (theme D) whose goals where to align software requirements with verification
and validation. Annabella has also worked at Fraunhofer Institute, Darmstadt, on developing a virtual reality
system to visualize the content of large databases.

Dr. Tony Gorschek is a Professor of Software Engineering at Blekinge Institute of Technology (Sweden) and
part time at Chalmers University. He has over ten years industrial experience as a CTO, senior executive
consultant and engineer, but also as chief architect and product manager. In addition he has built up five start-
ups in fields ranging from logistics to internet based services. Currently he manages his own consultancy
company, works as a CTO, and serves on several boards in companies developing cutting edge technology
and products. His research interests include requirements engineering, technology and product management,
process assessment and improvement, quality assurance, and practical innovation. He is a member of IEEE
and ACM. For more information and publications or contact: www.gorschek.com

1854 Empir Software Eng (2014) 19:1809–1855

http://dx.doi.org/http://www.gorschek.com

Dr. Robert Feldt is a professor of software engineering at Chalmers University of Technology, Sweden and at
Blekinge Institute of Technology, Sweden. He has also worked as an IT and software consultant for more than
18 years. His research interests include human-centred software engineering, software testing and verification
and validation, automated software engineering, requirements engineering and user experience. Most of the
research is of empirical nature and conducted in close collaboration with industry partners. He received a
Ph.D. (Techn. Dr.) in computer engineering from Chalmers Universty of Technology in 2002.

Empir Software Eng (2014) 19:1809–1855 1855

	Challenges and practices in aligning requirements with verification and validation: a case study of six companies
	Abstract
	Introduction
	Related Work
	Case Study Design
	Definition of Research Goal and Questions
	Design and Planning
	Evidence Collection
	Data Analysis
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Results
	Alignment Challenges
	Challenge 1: Aligning Goals and Perspectives within an Organisation (Ch1)
	Challenge 2: Cooperating Successfully (Ch2)
	Challenge 3: Good Requirements Specification Quality (Ch3)
	Challenge 4: Validation and Verification Quality
	Challenge 5: Maintaining Alignment when Requirements Change (Ch5)
	Challenge 6: Requirements Abstraction Levels (Ch6)
	Challenge 7: Tracing Between Artefacts (Ch7)
	Challenge 8: Time and Resource Availability (Ch8)
	Challenge 9: Managing a Large Document Space (Ch9)
	Challenge 10: Outsourcing or Offshoring of Components or Testing (Ch10)

	Practices for Improved Alignment
	Requirements Engineering Practices
	Validation Practices
	Verification Practices
	Change Management Practices
	Process Enforcement Practices (P5)
	Tracing Between Artefacts
	Practice of Traceability Responsible Role (P7)
	Tool Support
	Alignment Metrics (P9)
	Job Rotation Practices (P10)

	Practices that Address the Challenges

	Discussion
	Conclusions
	References

