
Software Engineering

List of public
corporations
by market

capitalization

(as of Dec 31, 2021)

Find The “Mitten” of Michigan

Software is Critical: Power

Software is Critical: Defense

● Quoting an Air Force lieutenant general, “The
only thing you can do with an F- 22 that does
not require software is take a picture of it.”

[Crouching Dragon, Hidden Software: Software in DOD Weapon Systems (Ferguson,
IEEE Software, 2001)]

Software is Critical: Driving

Software is Critical: Privacy

● Equifax security breach impacts 145.5 million
● Name, SSN, DOB, Address. Also DL# and CC#.
● “I didn't have to do anything fancy,” the researcher told

Motherboard, explaining that the site was vulnerable to a
basic “forced browsing” bug. The researcher requested
anonymity out of professional concerns. “All you had to do
was put in a search term and get millions of results, just
instantly—in cleartext, through a web app,” they said. In
total, the researcher downloaded the data of hundreds of
thousands of Americans in order to show Equifax the
vulnerabilities within its systems. They said they could have
downloaded the data of all of Equifax's customers in 10
minutes: “I've seen a lot of bad things, but not this bad.”

Software is Critical: Healthcare

Software is Critical: Space

● The European Space
Agency's Ariane 5 Flight
501 was destroyed 40
seconds after takeoff
(June 4, 1996). The US$1
billion prototype rocket
self-destructed due to a
bug in the on-board
guidance software. (The
bug? Bad conversion of
double to short, leading
to an overflow.)

Software is Critical: Healthcare (!)

● Therac-25 radiation therapy machine
● At least six accidents in which patients were

given massive overdoses of radiation
● Because of concurrent programming errors, it

sometimes gave its patients radiation doses
that were hundreds of times greater than
normal, resulting in death or serious injury

11

What Is Software Engineering?

12

What Is Software Engineering?

● The majority of
industrial software
engineering is not
writing code.

● The dominant
activities in software
engineering are
comprehension and
maintenance.

13
[Peter Hallam. What Do Programmers Really Do Anyway? Microsoft.]

15

[Pigoski. Practical Software Maintenance: Best Practices for Managing Your Software
Investment. Seacord, Plakosh, and Lewis. Modernizing Legacy Systems: Software Technologies.]

16

[Minelli, Mocci, Lanza. I know what you did last summer: an investigation of how developers
spend their time. ICPC 2015.]

17[Fry. Leveraging Light-Weight Analyses to Aid Software Maintenance. 2014]

18

A Key Issue

“Half of software engineering is crap.”
– Your Instructor

19

Revolutionary Solution

20

Class Philosophy
“Anyway, here's the 'good parts' version. S.
Morgenstern wrote it. And my father read it to
me. And now I give it to you. What you do with
it will be of more than passing interest to us
all.” – William Goldman, The Princess Bride

23

This Course

● http://web.eecs.umich.edu/~weimerw/481/

● Administrivia
● Assignments and Grading
● Outline of Topics

http://web.eecs.umich.edu/~weimerw/481/

24

We Want To Be Here! (WW)

● Have your professors worked in industry?
● Green Hills Software (private mid-sized,

worked on debuggers for embedded systems)
● Sun Microsystems (large company, now Oracle,

worked on circuit compiler and simulator)
● Microsoft (large company, worked on tools to

find bugs in software)
● Also academia: works on advancing software

quality, manages research group, 4x “10-Year
Most Influential” research papers

25

We Want To Be Here! (XW)

● Have your professors worked in industry?
● Microsoft x2 (large company, worked on tools

to synthesize code automatically for you,
worked in RiSE team and PROSE team five
years later)

● Shanghai Jiao Tong University (Electrical
Engineering undergraduate)

● Also academia: best paper award 2020;
Programming Language Design and
Implementation, Human Factors in Computing
Systems, etc.

26

How will this help me graduate?

● Upper-Level CS/CE
Technical Elective

● ENGR and LSA

● Major Design
Experience

● Capstone

27

How Hard Is This Course?

● Workload Survey is
misleading!

● Easier than 281 (Data
Structures) or 482 (OS)

● Harder than 493 (UI)

● More “time
consuming” than
“difficult”

● See webpage quotes
from former students

28

Assignments and Grading

● Assigned reading due before each lecture
● Normal due dates even if you add late!
● Attend lecture, take notes, visit forum

● Synchronous lecture attendance is mandatory

● Six homework assignments (~65%)
● Comprehension, participation (~10%)
● Two examinations (~25%)
● See webpage for regrade and makeup policy

29

Why Participation?

● [Kothiyal. Effect of think-pair-share in a large
CS1 class: 83% sustained engagement.
Computing Education Research 2013.]

● “This study investigated the change in critical
thinking (CT) skills of baccalaureate nursing students
who were educated using a Think-Pair-Share (TPS) or
an equivalent Non-Think-Pair-Share (Non-TPS)
teaching method […] Findings revealed a significant
increase in CT over time, throughout the 17-week
course, with the use of TPS teaching/learning
strategy.” [Kaddoura. Think Pair Share: A Teaching Learning Strategy to Enhance Students'

Critical Thinking. Educational Research Quarterly, 2013]

Readings
● No expensive, outdated textbook
● Assigned reading to be done before lectures

● High-level summaries (e.g., Wikipedia)
● Industrial tech reports and academic research
● Homework assignment instructions
● Optional readings for further exploration

● Higher standard than the EECS usual

31

Assignments

● Seven Assignments
● Dev Setup, Test Coverage, Test Automation,

Mutation Testing, Defect Detection, Debugging
Automation, Open Source GitHub Contribution

● Coding: autograder.io (as in 280 and 490)
● Multiple object languages (C, Java, Python, etc.)

● Writing: gradescope

● Due dates posted in advance (now!)
● Materials available in advance (now!)

32

Optional Teams

● Modern industrial software engineering is
almost exclusively team-based

● But this is an ULCS, not a Capstone/MDE
● You will be exposed to building a large project in a

team elsewhere in the curriculum

● For most of the assignments, you may work
alone or in pairs of your own choosing
● We are not responsible if your partner disappears
● Use the forum to find partners, etc.

33

Lecture Time Slot Structure

● The last time 481 was offered to 300 students
was purely remotely under COVID
● There was one lecture and you either watched it

live or watched the recording

● This time we want to offer a bit more
● There is still one lecture and you can either watch

it live or watch it recorded
● But you can choose between attending the live

lecture slot (1:30) or a staffed lecture slot (3:00)
for the recording and structured activities (cont'd)

34

Lecture Slot 1 vs. 2

● Live Lecture Slot (1:30 in 1013 DOW)

● Attend lecture, answer questions, ask questions live, some
brief think-pair-share activities, few coding activities

● Participation check example: question notecards

● Recording Practice Slot (3:00 in 1610 IOE)

● Watch lecture (1.25x?). Activity, such as: 10-minute “try it
on a real website”, fill in the blanks on this note sheet to
guide your watching, practice (roleplay) requirements
elicitation, pair programming with partner on HW, etc.

● Participation check example: sign-in sheet

● Live recordings are always available, practice activity
instructions are always available: you never miss anything

35

Lecture Slot Considerations

● Can mix-and-match which you attend from day to day
(regardless of where you are registered/waitlisted)

● Some students are more comfortable being called on, others may prefer talking
with talking with friends. Some students find live lectures engaging, others
prefer to watch at their own pace. Some students have seen topic XYZ on an
internship and would rather have a structured time to practice a skill.

● We acknowledge some students have scheduling constraints and we
sympathize. (That's always true in CSE, sadly. Ask me about enrollment.)

● Previous 300-person semesters were “be there live vs.
(watch the recording + do nothing)”, this semester
we are trying “be there live vs. (watch the recording
+ do something)” to give students more options and
support.

36

Discussion Sections
● Homework help (!), exam

preparation, explain difficult
material, answer questions

● Discussion sections
● Half rephrasing lecture, hints

on homeworks, etc.
● Half office hours (we know

you can attend them)

● Online OH will use Queue
● No required attendance
● Attend any: mix/match

37

Software Engineering
You Can Believe In

● Citations for strong claims (or ask on forum)
● Guest Lectures (we hope!)

● Large companies, startups, etc.

● Readings from Industry
● Material from

● Prem Devanbu
● Christian Kästner
● Marouane Kessentini
● Kevin Leach
● Claire Le Goues

38

Changeups and Trivia

● “[Professors who] deliberately and consistently
interspersed their lectures with … some other
form of deliberate break … usually
commanded a better attention span from the
class, and these deliberate variations had the
effect of postponing or even eliminating the
occurrence of an attention break”

[Johnstone and Percival. Attention breaks in lectures. Education in
Chemistry, 13. 49-50, 1976.]

[Middendorf and Kalish. The “Change–up” in Lectures. TRC Newsletter,
8:1 (Fall 1996).]

39

Computer Science

● This English mathematician
and writer published the first
algorithm (~1842) to be carried
out by a general-purpose
computer and is often called
the first computer
programmer.

40

Computer Science

● What did that first program do?

42

“Amazon Prime” circa 1842

43

Psychology:
The Fundamental Attribution Error

● The fundamental attribution error is that people emphasize
internal characteristics when explaining the behavior of others
but external factors when explaining their own behavior.

● Example: cutting someone off in traffic.

● In an experiment, subjects read essays for and against Fidel
Castro and were asked to rate the pro-Castro attributes of the
writers. Conditions:

● When subjects believed the writers choose freely:

● Expect “pro-Castro” positive attitude→
● When subjects believed the positions were determined by a

coin toss:

● Expect neutral attitude on average

44

Psychology:
The Fundamental Attribution Error

● Experimental findings:

● Even when they knew the position came from a coin toss,
subjects rated pro-Castro essay writers as having a positive
Castro attitude.

● “The subjects were unable to properly see the influence of
the situational constraints placed upon the writers; they
could not refrain from attributing sincere belief to the
writers.”

[Jones, E. E.; Harris, V. A. (1967). "The attribution of attitudes".
Journal of Experimental Social Psychology. 3 (1): 1–24.]

● SE Implication: Teamwork. Be careful when you see defects
(mine just mean I made a typo, others mean they are stupid).

45

Blah blah laptops blah …
(up hill both ways ...)

46

Laptops and Cell Phones

“…participants who multitasked on a laptop
during a lecture scored lower on a test
compared to those who did not multitask, and
participants who were in direct view of a
multitasking peer scored lower on a test
compared to those who were not. The results
demonstrate that multitasking on a laptop
poses a significant distraction to both users
and fellow students and can be detrimental to
comprehension of lecture content.”

[Faria Sana, Tina Weston, and Nicholas J. Cepeda. 2013. Laptop multitasking hinders
classroom learning for both users and nearby peers. Comput. Educ. 62 (March 2013), 24-31.]

47

Laptops and Cell Phones

“…students who took notes on laptops
performed worse on conceptual questions than
students who took notes longhand. We show
that whereas taking more notes can be
beneficial, laptop note takers’ tendency to
transcribe lectures verbatim rather than
processing information and reframing it in
their own words is detrimental to learning.”

[Mueller PA1, Oppenheimer DM2. The pen is mightier than the keyboard:
advantages of longhand over laptop note taking. Psychol Sci. 2014 Jun;
25(6):Epub 2014 Apr 23.]

48

Core Course Topics
● Measurement and Risk

● Process, scheduling, and information

● Quality Assurance
● Code review, testing, and analysis

● Software Defects
● Reporting and localizing

● Software Design
● Requirements, patterns, and maintainability

● Productivity at Scale
● People, teams, interviews, synthesis, and brains

49

Course Themes

● Software engineering is a human process

● Software engineering deals with large scales

● Software engineering requires strategic
thinking

● Software engineering is constrained by reality

50

Analogy: Engineering Envy

● Producing a car

● Estimate costs, risks

● Expected results

● High quality

● Separate plan and
production

● Simulate before
constructing

● Quality assurance through
measurement

● Potential for automation

51

Dangerous Analogy

● Producing a car

● Estimate costs, risks

● Expected results

● High quality

● Separate plan and
production

● Simulate before
constructing

● Quality assurance through
measurement

● Potential for automation

● Software = Design = Plan

● Programming is design,
not production

● Production
(copying/loading a
program) is automated

● Simulation is not
necessary

● Quality measurement?

52

Software Engineering

“My favorite operational definition of engineering is
'design under constraint.' Engineering is creating,

designing what can be, but it is constrained by nature,
by cost, by concerns of safety, reliability, environmental

impact, manufacturability, maintainability, and many
other such 'ilities.'”

[Bill Wulf, NAE President, The Urgency of Engineering Education Reform, 2008]

“[Software Engineering is] The Establishment and use of
sound engineering principles in order to obtain

economically software that is reliable and works
efficiently on real machines.”

[Bauer 1975, S. 524]

53

Measurement Teaser

● What is Amdahl's
Law?

● Suppose you want a
program to run faster

● Suppose you want
software to be
created-and-sold
faster

54

Quality Assurance Teaser

● To assess quality, we can look at the source
code or run the program

● Testing is the dominant approach here
● But not all test suites are created equal!
● Statement coverage, branch coverage

● Mutation testing
● Automated test generation

55

Defect Teaser

● Just put in print statements
● Find the line with the bug
● Flail around, resubmit until it passes

● Automatic fault localization
● Debugging as Hypothesis Testing

56

Design Teaser

● Requirements and Specifications
● How can we elicit what people actually want?

● Validation and Risk
● Design for Maintainability

57

Productivity Teaser

● The ratio of programming time and program
performance between novices and experts has
been published at up to 28:1
● Why?

● Pair Programming, Agile, etc.
● How do experts and novices think?
● Medical Imaging Studies

58

Automation and Scale

● “[a new tool] allows me to partially guide the
synthesizer if I know the next few steps—I
don’t have to know the entire solution, but I
know how to start and I can let the synthesizer
fill in the holes.”
● Can tools really write high-quality code for us?

● How are big companies like Facebook
deploying automated bug repair or code
synthesis?

59

Questions?

● You are responsible for all assignments at their
listed times even if you add the course late.

● No office hours this week
● No discussion this week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

