
HOMEWORK 6
Cody Croletto (ccrolett)

Laurel Williams (lwillia)

EECS 481 -- Software Engineering

NAME AND EMAIL IDS
Cody Croletto ccrolett@umich.edu

Laurel Williams lwillia@umich.edu

SELECTED PROJECT

We chose Microsoft’s Visual Studio Code (https://github.com/Microsoft/vscode), an open
source text editor that is meant to be entirely independent of the company’s other IDE,
Visual Studio. The text editor includes its own debugger and a dedicated terminal in
hopes of creating a harmonious unity of the quick and easy-to-use functionality of a text
editor and the core capabilities of a debugger. It is intended to be lightweight, with the
option to install extensions to allow for more functionality.

PROJECT CONTEXT
VS Code was developed as an alternative to Visual Studio, which was only available on
Windows, so Microsoft wanted a cross-platform option. It is not intended to be a full IDE,
but instead, a lightweight code editor. It is similar to text editors like Sublime and Atom.
VS Code is free, open-source and available on macOS, Linux and Windows. VS Code
distinguishes itself from other text editors with its dedicated, fully operational terminal
and its debugging mode, complete with breakpoint functionality.

From a business standpoint, Microsoft does not directly earn money from VS Code. The
goal was to encourage developers to use more of their products, such as their Azure
cloud services and their full-blown IDE, Visual Studio. They hope to garner customer
satisfaction with their products and engage with more developers. A positive experience
with VS Code could result in developers choosing other Microsoft products.

mailto:ccrolett@umich.edu
mailto:lwillia@umich.edu
https://github.com/Microsoft/vscode

PROJECT GOVERNANCE
Visual Studio Code is made publically available on GitHub for users to contribute.
Contributors communicate almost exclusively on GitHub. For a user requesting a feature
to be implemented or a defected to be resolved, he or she must simply post an issue, and
has the opportunity to use a set of descriptive tags, including help wanted and good first
issue, which are recommended issues for people looking for issues to fix. The process of
communicating an issue to the VS Code community is given in a set of guidelines for
contributors to follow. First of all, users are expected to search for the issue before
posting and only post if the search is unsuccessful. Secondly, only one bug is permitted
per report. Thirdly, the user must provide some key information: the version of VS Code
along with any and all extensions installed, the steps necessary to reproduce the defect
detected or witness or understand where the requested feature will occur and be used.

There are several guidelines regarding the actual code that users wish to push. Type and
enum names use PascalCase, while function, method, property, and local variable names
use camelCase. Moreover, it is expected that users pick whole words in names whenever
it is possible to do so. Microsoft specifies that contributors should not export functions or
types (unless it is to be shared across different components) or make anything global.
Commenting is highly encouraged and done in JSDoc style.

Additionally, there are guidelines specifically to code style given. Loops and other
conditional bodies should be enclosed by braces. Any time a comma, semicolon, or colon
appears, there should be a whitespace that follows.

For a contributor to either push a newly implemented feature or resolve a reported
defect, it is expected that before a pull request is made, he or she run the automated test
script provided by VS Code. Also, Travis CI tests will be run automatically when a pull
request is made.

To ensure good code style of submitted implementations and fixes, VS Code expects
contributors to run TSlint on their code.

TASK DESCRIPTION
Triple Click Extension ID

In Visual Studio Code, when one would attempt to highlight and copy the ID of any given
extension by triple clicking, a massive amount of extra text would be copied as well. This
included menu and button names, and header titles. It was requested that this defect be
fixed. Another user proposed one solution, but it was noted that this caused the same
issue to appear elsewhere, just not with the extension ID.

We were able to resolve the defect by adding a user-select property to a parent class of
the extension ID, which effectively allowed the user to triple-click to solely select the ID.
We also needed to add the user-select property to the following tag and set it to none, so
that the following tags did not have the same issue.

1

Disable Breakpoint Keybinding

While in debugging mode, a user is able to add and remove breakpoints, as well as select
different breakpoints to enable and disable. In regular mode, however, a user only has
the options to either disable or enable all breakpoints--it cannot be done individually.

Originally, the source code for VS Code separated the methods used by debugging mode
and editor mode. That is, creating a breakpoint had two different methods: one for editor
mode and one for debugging mode. The editor version of enabling and disabling
breakpoints did allow for individual breakpoints to be disabled or enabled. Thus, instead
of implementing a new version of the method for editing mode, we chose to rework the
code to instead call the same method that was used by debugging mode, which had
already been verified and tested, effectively adding the new feature.

Line-by-Line Selection in Terminal

When looking at output in the terminal, there are keybindings to select the previous or
next command that was entered into it, but no keybinding to select the previous or next
line (command or output). A feature request asked for these keybindings and the
accompanying functionality to be added.

We were unable to fully implement this task, due to its complexity. We had assumed that
they were tracking the lines in the terminal and it would be straightforward to
increment or decrement the lines. However, they were apparently not tracking all of the
lines in the terminal; they only tracked commands. Obtaining the line numbers of the
lines between proved tricky. We added the keybindings for the commands but ran out of
time to implement the actual functionality behind the keybindings.

SUBMITTED ARTIFACTS
Triple Click Extension ID

https://github.com/lwillia/vscode/tree/lwillia/extension-id-select leads to the branch
where we pushed our changes.

https://github.com/Microsoft/vscode/pull/47921 leads to the pull request to merge this fix
into their master branch. The pull request also contains evidence of the checks they ran
on our code: Travis CI and another continuous integration check, AppVeyor.

Disable Breakpoint Keybinding

https://github.com/lwillia/vscode/tree/lwillia/debug-disable-breakpoint leads to the
branch where we pushed our changes.

We did not submit this one, due to another VS Code contributor submitting a pull request
before we finished.

Line-by-Line Selection in Terminal

2

https://github.com/lwillia/vscode/tree/lwillia/extension-id-select
https://github.com/Microsoft/vscode/pull/47921
https://github.com/lwillia/vscode/tree/lwillia/debug-disable-breakpoint

https://github.com/lwillia/vscode/tree/lwillia/terminal-line-selection leads to the branch
where we pushed our changes.

We did not fully implement this, so we did not submit it as a pull request. Moreover,
another contributor submitted a pull request first.

QA STRATEGY
Testing

We used both Travis CI to perform very standard integration testing on the code we
produced and successfully passed all cases. Beyond that, we performed a significant
amount of static analysis to seek out any potential defects. All three of our tasks dealt
with human input and thus, in order to fully test our implementations, we interacted
with VS Code after our changes had been applied to demonstrate the behavior.
Additionally, we ran the automated test suite included in the source code to verify that
the code worked.

Styling

In an effort to hold our code readability to Microsoft’s standards, we used TSLint as a
style guide as well as VS Code’s naming standards, space and tabbing standards, and style
standards.

Reasons for choosing

We chose to perform these strategies for a few reasons, but mainly because they were
very well spelled out and mandated by Microsoft as part of the guidelines for
contributors. As a result of this, the readability will be very decent and completely match
the styling standards that Microsoft desires.

QA EVIDENCE
Triple Click Extension ID

Successful Travis CI run:
https://travis-ci.org/Microsoft/vscode/builds/366944491?utm_source=github_status&utm_
medium=notification

Disable Breakpoint Keybinding

The disable breakpoint keybinding is listed in the menu now:

3

https://github.com/lwillia/vscode/tree/lwillia/terminal-line-selection
https://travis-ci.org/Microsoft/vscode/builds/366944491?utm_source=github_status&utm_medium=notification
https://travis-ci.org/Microsoft/vscode/builds/366944491?utm_source=github_status&utm_medium=notification

We ran the included tests on our code and it successfully applied breakpoints, as seen in
the screenshot below.

Line-by-Line Selection in Terminal

As we did not complete our implementation, we also did not perform any quality
assurance on it.

PLAN UPDATES
We deviated from our original plan, particularly with the line-by-line selection task. We
started out with this task, but found it considerably more complex than we had
anticipated. Once we realized this task was this complicated, we decided to implement
the other tasks first. We came back to the line-by-line selection task toward the end of
our work, but did not have a sufficiently long enough amount of time to complete it.

4

The triple click bug task was considerably easier to implement a fix for than we
anticipated, but the debugging aspect of it took much longer than expected.

Our entire schedule was also shifted back several days, due to studying for exams and
other projects.

Updated Schedule
Friday, 04/13 – Explore line-by-line section task and start implementing (4 hours)
Saturday, 04/14 – Identify bug and implement triple click bug task (4 hours)
Sunday, 04/15 – Triple click bug task QA (2 hours), explore breakpoint disabling task (2
hours), implemented breakpoint disabling task (2 hours) and perform QA on it (3 hours)
Monday, 04/16 – Continue implementing line-by-line selection task and report (8 hours)

This entire homework took roughly 25 hours for each of us.

EXPERIENCES AND RECOMMENDATIONS

Introduction

Contributing to an open source project was a very new experience and we learned a lot
from it. Between the two of us, we have had experience working in industry on large
software programs, but it was in a professional, structured environment. Having the
opportunity to work on an open source project as large as Microsoft’s Visual Studio Code,
independently, with no actual deadlines--at least, none given by the actual company--was
both a very foreign experience and enlightening one. Overall, we learned a lot from
working on our contributions to Visual Studio Code, and had a wonderful opportunity to
apply many of the concepts we had learned in EECS 481 to a real world scenario and
fully demonstrate our software engineering prowesses.

Surprising Aspects

Over the course of reading the issues and implementing the resolutions, we actually
came across multiple surprising aspects resulting from this process. One of the more
prominent ones was the fact that some of the defect issues that are posted have very
trivial solutions. We did learn, however, that this triviality does not imply a quick and
easy resolution. As it turns out, a significant amount of time is spent resolving defects,
some of which would have been very easy to fix if it were caught early in the game. It
still took us a decent amount of time to locate and fix the defect, but the actual way to fix
it was fairly short.

Difficulties with the Source Code

As we spent time examining and familiarizing ourselves with the source code, we ran
into a few difficulties. One of the most frustrating of these was the lack of spacing

5

between lines of code. While there was sufficient tabbing, this simply was not enough to
compensate for the poor choices in spacing. We, on the other hand, made a decent
attempt to space out anything that would require it to have as good of quality assurance
as possible. Furthermore, there clearly was commenting throughout the code, but it was
not what we would have considered sufficient. There was little commenting within
functions. Additionally, none of the comments we observed included any sort of “why”
statement, only “what” and not necessarily a good one. This made it particularly difficult
to understand the code dealing with line selection in the terminal. The code regarding
the terminal was a lot more complex than in the other two tasks. It was not very clear
what data structures were holding what data. Moreover, several of the names were fairly
ambiguous, despite the fact that, for the most part, they met the guidelines of using
whole words when possible. One variable in particular was named Boundary and had a
member variable, Bottom. We spent a decent amount of time attempting to learn
whether this function call with this variable implied that we were looking at the last line
of the terminal, or the last visible line of the terminal. Had the developers spent more
time making the code readable, even if they were less certain if it was correct, we would
have spent less time attempting to understand the code and had a much easier time
correcting any mistakes and implementing the new feature.

Challenges Implementing and Submitting

As mentioned above, we were surprised by the lack of difficulties presented by actually
submitting our changes to github. For the most part, it was straight-forward process and
the steps to making the code ready for submission were very clear. The only real
challenge we faced regarding submitting revolved around the fact that it was an open
source project with several hundred contributors; we were not the only ones looking at
this issue and another contributor submitted an implementation of the Disabling
Individual Breakpoints feature before we were able to do so. Beyond that, however, it
was fairly easy.

We did, however, run into a few issues actually implementing the code. Most of our
problems were results of not understanding how the structure of the code worked. As
was mentioned earlier, the readability of the code and the organization was a bit subpar.
This made implementing the Line Selection feature significantly more challenging than
the other two tasks. Despite the time spent familiarizing ourselves with the organization
of the code, we were, in fact, not able to successfully complete this task.

Interacting with the Community

The community was active for all three tasks and each one had a decent thread of
conversations and comments. There were several instances of members who, even
without implementing the task themselves, were able to provide advice or guidance for
what should be done, which was very helpful. Whenever we would make any sort of
post, someone in the community was fairly quick at getting back to us with a response.
Even when we made our pull request for the solution we had designed for the Triple

6

Click Selection task, a fellow contributor was very quick at letting us know that our
solution “looks good to [him]” and thanking us before it was merged into the master
branch.

Another concept we observed about the community was their development process.
They worked in monthly iterations and planned out milestones. They triaged each issue
and assigned it to a milestone, based on assigned priorities. They documented their
development process on the VS Code wiki.

Changes to the Community Dynamics

While the community was, overall fairly well run, there were a few changes we would
like to have seen while we were working. First of all, we really would have enjoyed
seeing more commit messages that incorporated a “why” factor, as opposed to
exclusively describing what was being done--there is readily available software that can
describe what happened; we need the person to provide the “why.” This would have
made trying to work off of another implementation that a different contributor was
unable to finish a very reasonable task.

Recommendations

Holistically, the Visual Studio Code open source repository is very well-managed, but no
project is without its flaws. While we were working on making contributions, we noticed
that most of our problems revolved around the organization of the code. The lack of
spacing and complex data structures presented a strong learning curve. The code is,
however, meeting all of the functional requirements its been given thus far, but seems to
be lacking a few properties that would (and should) have been considered quality
requirements. As a result, the code works, but it is not very well designed for
maintenance activities, particularly comprehension, testing, and change. As was stated
previously, understanding the already existing code and attempting to add new features
was difficult. It is for this reason that our biggest recommendation is to refactor at least
some of the the code. Above all, extracting some of the larger classes would provide a
significant amount of help in understanding the structure of the code.

ADVICE FOR FUTURE STUDENTS
You may let future students view our materials.

From Laurel:

Skimming the reading assignments is not sufficient for the reading quizzes, and they
contain a lot of useful information for the exam.

From Cody:

Understand that EECS 481 is about learning and will give you the skills to excel at

7

interviews, so take your time to genuinely learn the material covered, speak with the
staff about how you can use the information to improve your abilities personally,
and enjoy your time!

EXTRA CREDIT
https://github.com/Microsoft/vscode/pull/47921

This link shows the pull request for our fix for the triple click on extension id that was
merged into their master branch.

8

https://github.com/Microsoft/vscode/pull/47921

