
EECS481 HW6b - Project Report

1. Names and Email IDs

This is a joint project report by Shuta Suzuki (shutas) and William Dempsey

(wdempsee).

2. Selected Project

We selected Oppia (pronounced "O-pee-yah", which is Finnish for "to learn"), an

open-source, online educational platform provided at no cost. It allows anyone to

"create and share interactive activities," and it offers a wide range of lessons on topics

from math and sciences to foreign languages and humanities. At a high level, the project

is divided into frontend and backend. Frontend includes all of the relevant code for the

client-side website code, primarily written in HTML, CSS, and JavaScript. Backend

consists of server code which takes the users' requests and processes them, as well as

platform dependent code which provide interfaces of third-party services Oppia uses

(e.g. Google App Engine, ndb, etc.). Both components of the backend are written in

Python.

Oppia: ​https://www.oppia.org/splash

GitHub: ​https://github.com/oppia/oppia

3. Project Context

First publicly announced in 2014, Oppia originally started as one of the projects

by Google Open Source. As part of Google's mission to use technology to reimagine the

way we learn, Oppia began offering high-quality, interactive lessons which incorporate

videos, images, and open-ended questions designed to stimulate intellectual curiosity.

Currently, Oppia is owned by the Oppia Foundation, a non-profit organization based in

California "to provide high quality education to those who lack access to it." Since the

start of the project, Oppia has provided free lessons to "1 million learners in over 140

countries." Oppia is similar to other online education tools such as Udemy

(​https://www.udemy.com/​) and Coursera (​https://www.coursera.org/​), however

remains unique in that it is completely free to use and allows for users to create the

lessons.

https://www.oppia.org/splash
https://github.com/oppia/oppia
https://www.udemy.com/
https://www.coursera.org/

4. Project Governance

There are two platforms that contributors use to communicate with each other:

GitHub and Gitter. Like many open-source projects, GitHub is used as the primary

communication platform once a pull request has been issued. Under each issue, the

issuer of the pull request discusses the potential changes with a project owner and the

developer who opened the issue. This is done via (often long) chains of comments,

where you can directly reference code snippets from the codebase.

Gitter is an online instant messaging platform which is also used by Oppia's

developer community. Gitter provides a dedicated chatroom for Oppia developers, and

it is primarily used to communicate with other developers for hints and ideas regarding

code implementation. Unlike GitHub's pull request threads, this platform allows

developers to discuss about code snippets prior to making a pull request. Furthermore,

many people often ask more general questions such as how to run and test certain parts

of the codebase. The use of GitHub and Gitter are strictly informal, and there are no

guidelines on how the communication must take place. For example, you can submit a

pull request and have your changes approved without using Gitter at all. However, each

pull request on Github must follow a certain formula called a “checklist,” which

describes how a pull request should be laid out, what information it should include, who

should be assigned as a reviewer, etc.

The overall acceptance process for Oppia works as follows: submit a pull request

to an existing issue in the tracker, fix any errors caused by any of the five continuous

integration tests/builds (four tests via Circle CI, one build via Travis CI), and get approval

by at least one of the project owners. After successful approval, the proposed changes

are merged into the Oppia's production branch.

Oppia's developer community defines a general style guide for Python,

JavaScript, and CSS code. Developers are encouraged to follow this predetermined style

to reduce "unnecessary back-and-forth during code review." Beyond this, every line of

code submitted as part of a pull request must pass static linters (e.g. pylint for Python

code etc.) and integration tests, otherwise, submitted code is automatically rejected.

Furthermore, there are suggested guidelines for naming variables and labeling pull

requests which are not strictly enforced, but recommended (project owners will let you

know when these can be improved for future contributions).

Gitter (Oppia chat page): ​https://gitter.im/oppia/oppia-chat

Oppia's Coding Style Guide: ​https://github.com/oppia/oppia/wiki/Coding-style-guide

https://gitter.im/oppia/oppia-chat
https://github.com/oppia/oppia/wiki/Coding-style-guide

5. Task Description

Task 1 (Backend Test)

Description​: Raise the code coverage of one of the backend's platform-dependent code

(​core.storage.question.gae_model​) to 100%.

Implementation​: We added a new test case that uses mocking to replace a dependent

method used in the ​create​ function for the ​QuestionModel​ class. This new test

case simulates an unlikely scenario where the ID generator generates 10 hashes in a

row, all of which causes a collision with previously generated ID hashes.

Task 2 (Backend Test)

Description​: Raise the code coverage of one the backend's server code

(​core.domain.topic_services​) to 100%.

Implementation​: We added several test cases for various functions in

topic_services.py​. Test cases spanned from testing for raising exceptions under

certain circumstances to determining whether a user had specific rights to edit “topics.”

One specific issue we ran into with this set of tests is how to test “protected functions”

without directly calling them, as this would trigger an error while linting the Python

backend tests. In order to workaround this issue, we implemented tests that called

public functions within the same class as the protected function that also called the

protected functions. This allowed us to test these protected functions without actually

having to call them directly in our test. Due to current version constraints, we were ​not

able to raise coverage to 100%, but were able to raise coverage to 97%.

6. Submitted Artifacts

Task 1 (Backend Test)

The artifact for this task was a new test case that was added to increase the code

coverage of ​core.storage.question.gae_model​ to 100%.

File Changed: ​https://github.com/oppia/oppia/pull/6558/files

Task 2 (Backend Test)

The artifact for this task was several new test cases that were added to increase

the code coverage of ​core.domain.topic_services.py​ from 89.7% to 97%.

File Changed: ​https://github.com/oppia/oppia/pull/6628/files

https://github.com/oppia/oppia/pull/6558/files
https://github.com/oppia/oppia/pull/6628/files

7. QA Strategy

Perhaps the most obvious QA activity we performed was ​code review​. For each task we

implemented and made a pull-request for, we reviewed the changes with one of the

project owners and made changes to our submitted code per their requests. This

activity was enforced and necessary in order to have any code merged.

With every push to the Git repository, Oppia runs several QA procedures. One such

procedure is ​linting​. In order for our code to successfully push to the repo, it must pass

several linting checks including Python linting (this was most important to us as all of

our tasks were in Python). The metric for passing the Python linting is to have a perfect

10/10 Pylint rating. Like code reviews, linting is enforced by the Oppia acceptance

procedure and was thus a necessary step in having our code successfully push and

eventually be merged.

In order to have a pull-request merged into the production codebase, it must first pass

several ​continuous integration​ builds. Four of the CI builds are done via Circle CI and

consist of standard tests such as front-end and back-end tests. The last of the CI builds is

a Travis CI build. As with code reviews and linting, CI builds are an automated feature of

the Oppia acceptance procedure so it was absolutely necessary our code pass these

checks.

Like most projects, one of the more involved QA activities we performed was ​testing​.
Our first two tasks were completely wrapped up in this as they sought to increase

backend code coverage. The metric for these tasks was increasing ​code coverage​ to

100%.

8. QA Evidence

Task 1:

- Implemented tests: ​https://github.com/oppia/oppia/pull/6558/files

- Code review:

- Travis CI build:

https://travis-ci.org/oppia/oppia/builds/519924675?utm_source=github_status

&utm_medium=notification

- Linting:

https://circleci.com/gh/oppia/oppia/4098?utm_campaign=vcs-integration-link&

utm_medium=referral&utm_source=github-build-link

https://github.com/oppia/oppia/pull/6558/files
https://travis-ci.org/oppia/oppia/builds/519924675?utm_source=github_status&utm_medium=notification
https://travis-ci.org/oppia/oppia/builds/519924675?utm_source=github_status&utm_medium=notification
https://circleci.com/gh/oppia/oppia/4098?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link
https://circleci.com/gh/oppia/oppia/4098?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link

Task 2:

- Implemented tests: ​https://github.com/oppia/oppia/pull/6628/files

- Code Review:

- Travis CI build:

https://travis-ci.org/oppia/oppia/builds/522377530?utm_source=github_status

&utm_medium=notification

- Linting: Local lint check prior to push

https://github.com/oppia/oppia/pull/6628/files
https://travis-ci.org/oppia/oppia/builds/522377530?utm_source=github_status&utm_medium=notification
https://travis-ci.org/oppia/oppia/builds/522377530?utm_source=github_status&utm_medium=notification

9. Plan Updates

The most significant mistake we made in our original planning was underestimating the

amount of time necessary for tasks 1 and 2. We had originally scheduled time for a third

task, however this underestimation ultimately lead us to ​dropping​ task 3 all together.

In our original plan we devoted the same schedule and time to tasks 1 & 2 because they

are the same task (writing test cases) for different files. However, we quickly learned

that due to the additional coverage necessary in task 2 (13% to raise task 2 to 100% vs.

99% to raise task 1 to 100%), task 2 was most likely going to require more time to

complete.

Because of the additional time task 2 required, we decided to utilize pair programming

to implement this task (an activity we originally planned on using for task 3). This meant

that our original plan of implementing tasks 1 and 2 separately was also changed in

order to account for the time and effort underestimation on these tasks.

The largest deviation from the original plan for Task 2 was the actual ability to raise

coverage to 100%. Due to version constraints of the current release of Oppia, 100%

coverage was not possible for this task, and instead we were able to raise it to 97%.

Project Schedule:

*Note: Our original report broke down our plan by date, however here we break it down

by hours in order to be more precise. Furthermore, times listed below may overlap. For

example, hours of writing tests in response to project owner requests coincide with hours

collaborating with project owners.

Task 1:

- Analyze relevant parts of the codebase: ​3 hours

- 2 hours​ reviewing Oppia-provided documentation for writing backend

test cases and generating coverage reports

- 1 hour​ reviewing the current test suite, the file to be tested, and files that

the target file depends

- The amount of time necessary for this individual task was inline with our

original estimation.

- Write tests: ​7 hours

- 1 hours​ writing original set of test cases

- 6 hours ​writing test cases in response to requests from project owners

during code review

- Generate & Review Coverage: ​4 hours

- 4 hours​ waiting for coverage generation and review relevant changes in

coverage report

- PR & Integration tests: ​2 hours

- 2 hours​ resolving Python linting errors during integration tests

- Collaborating with Project Owners to get PR accepted: ​10 hours

- 9 hours​ to write tests in response to project owners’ requests

- 1 hour​ of other communication regarding code style and discussion of

specific implementation

Task 2:

- Analyze relevant parts of the codebase: ​6 hours

- 2 hours​ reviewing Oppia-provided documentation for writing backend

test cases and generating coverage reports

- 4 hours​ reviewing the current test suite, the file to be tested, and files

that the target file depends

- The amount of time necessary for this individual task is accurate to our

original estimation.

- Write tests: ​11 hours

- 3 hours​ writing original set of test cases

- 8 hours ​writing test cases in response to requests from project owners

during code review

- The amount of time necessary for this individual task was longer than our

original estimation.

- Generate & Review Coverage: ​3 hours

- 3 hours​ waiting for coverage generation and review relevant changes in

coverage report

- The amount of time necessary for this individual task is accurate to our

original estimation.

- PR & Integration tests: ​4 hours

- 4 hours​ resolving Python linting errors during integration tests

- The amount of time necessary for this individual task was much longer

than our original estimation.

- Collaborating with Project Owners to get PR accepted: ​9 hours

- 8 hours​ to write tests in response to project owners’ requests

- 1 hour​ of other communication regarding build success and other

miscellaneous topics.

- The amount of time necessary for this individual task was longer than our

original estimation.

10. Our Experiences and Recommendations

Task Selection:

In order to start working towards contributing to an open-source project, we first had to

actually choose a project. Choosing Oppia proved to be a great choice due to the wide

availability of “first-time contributor” tasks, active communication in the

Oppia-contributor community, and huge amount of documentation. Oppia offers

documentation on everything from forking the repo and creating a branch to implement

your changes on to generating coverage reports to resolving merge conflicts in a

pull-request. Because the plentiful documentation made getting started quick and easy,

with minimal communication with the project owners, we highly recommended looking

for well-documented projects to contribute to.

Effort Estimation and Planning:

As we have explained in the Plan Updates section, we have greatly underestimated the

amount of time needed to complete tasks 1 and 2, leading us to drop task 3 altogether.

One of the main reasons for this underestimation was due to the fact that code

comprehension was significantly harder and time-consuming than we expected. It was

difficult because many classes/modules we were writing test cases for did not have

inline comments, so we were forced to read each line carefully and reason through the

logic from scratch (there are no explicit guidelines for inline comments, so some

developers get away with writing little or no comments beyond function docstrings).

Furthermore, some modules we were testing were low-level interface modules which

took us a longer time to investigate how they fit in the overall project. Code review on

GitHub was also more time-consuming than we initially thought, since project owners

seemed to have very high standards for any proposed changes to the production code

(from new variable names to overall structure of individual test cases), so the discussion

with project owners alone spanned over a week.

Perverse Incentives and Incomplete Requirements in Testing:

The topic of perverse incentives was frequently mentioned throughout the course and

was one of the topics we discussed while working on tasks 1 and 2. Tasks 1 and 2 were

raising coverage of certain backend files to 100%. However, the task description fails to

mention any stringent testing guidelines outside of raising coverage to 100%. These

incomplete task requirements lead to a perverse incentive in writing test cases that

simply cover the necessary lines without actually testing anything. In other words, one

can write test cases that don’t actually assert anything, which is typically the standard

pattern for unit testing, but still manage to generate coverage. This leads back to the

topic discussed in class that although code coverage is a very popular metric, it can be a

false sense of security if used wrong.

Code Inspection and Review for Pull Requests:

The most time consuming and perhaps most important QA activity we utilized was code

review. Participating in code reviews with the project owners was extremely helpful in

understanding the task scope in the project, understanding and debugging any issues

that come up in integration tests, and understanding the Oppia guidelines regarding

tests. One thing we did not expect in these procedures is the time delay when

communicating with reviewers and project owners. Being an open-source project, it’s

very possible you are working through your code review with someone on the other

side of the world, meaning it could be ​hours​ before you receive feedback for every

modification you make to your pull-request. We recommend starting communication

with project owners and possible reviewers very early, even before you initiate a

pull-request if possible, in order to counteract any delays in communication.

Writing Oracles for Test Cases:

Much of our task work involved writing test cases. As discussed before, the only criteria

for successful test cases described in the task outline was generating coverage.

However, Oppia uses unit testing on the backend and we know this means the need for

a test Oracle (in this case via assertions). As discussed in class, writing an oracle can be

one of the most difficult parts of implementing a test and that was also the case for our

tasks here. By looking at the coverage reports, it was easy to determine where the test

cases needed to cover and it was even relatively easy to generate that coverage in most

cases. However, because Oppia is a large project and we were very unfamiliar with the

codebase when we started, it was very difficult to determine what effect the test case

has and ​should ​have and thus very difficult to write an assertion for a complete test

case. We recommend allocating more time to analyze the relevant parts of the

codebase you will be testing, as this will make it easier to write oracles.

Pair Programming in Task Implementation:

In the “Plan updates” section, we mentioned that we utilized pair programming in

implementing task 2. We decided that in order to even the workload and ensure both

partners get the most out of the task we would alternate between the “Driver” role and

“Observer” role. This had the effect of taking a bit longer to write the tests (as expected

with pair programming), but also rose coverage ​6%​ from the work accomplished on this

task prior to switching to pair programming. This significant rise in implementation

effectiveness (i.e. generated coverage) is a great example of how pair programming

makes for better code. Luckily, because this task involved writing unit tests and each

test involved a new section of code, the effect of “adding programmers to a late project

makes it later” was not seen here. In our case, utilizing pair programming after one

programmer “gets stuck” was very beneficial, however we urge caution in doing this for

other projects as it could make the project even later.

11. Advice for Future Students

Shuta: "Start assignments early! I hear effort estimation is hard... give enough time for

yourself and your programs/tools!!!"

William: “Start HW6 early! Like beginning of the semester early! You’ll get much more

out of it and it’s a great talking point for interviews.”

We permit future students to see our material.

12. Optional Extra Credit

Task 1 has been successfully approved by a project owner, and it was merged

into the production code.

Link: ​https://github.com/oppia/oppia/pull/6558

https://github.com/oppia/oppia/pull/6558

