
EECS 481 - Homework 6b
Project Report - neovim

Yilin Yang ➖ yiliny@umich.edu

Selected Project and Context
neovim (https://neovim.io) is an open-source text editor forked from the well-known editor vim.
Its creators were principally motivated by a desire to open the editor’s codebase to wider
community contribution, in addition to extending vim’s features, providing better support for
plugin development, and generally refactoring vim’s codebase. Though I have not found
concrete user statistics, neovim is likely used by the same groups with which vim is popular, i.e.
Unix developers, sysadmins, computer science students, and so on.

The past reticence of the vim community to merge large feature patches from neovim’s
maintainers was a key impetus for the neovim project’s inception. neovim prides itself on having
a more “newbie friendly” development community than vim, and does see more community
engagement. As of April 8th, 2019, neovim had seen 88 pull requests over the previous month
of which 71 were merged into master; over that same period, vim saw six pull requests on
GitHub, none of which were merged.

Project Governance
neovim’s development is centered on its GitHub repository, with additional discussion occurring
on the neovim gitter messaging app. To contribute, developers follow the standard GitHub
workflow of forking the main repository, creating a feature branch, implementing their changes,
opening a pull request, and responding to whatever points are raised.

neovim has a few “full-time” maintainers who handle most development tasks with incidental
contributions from other community members, many of whom are prominent plugin developers.
The project also accepts donations through BountySource, which (when frequent enough) are
used to hire a developer to work on neovim full time: some of neovim’s key features, like its
built-in terminal emulator, were developed in this fashion.

neovim pull requests have a three stage lifecycle: [WIP] (“Work In Progress”), [RFC] (“Request
For Comment”), and [RDY] (“ReaDY to Merge”). The square-bracketed tags are prepended to
the title of the pull request to indicate its progress. A [WIP] pull request simply announces to the
community that a task has been “taken,” a [RFC] is a request for code review by a project
maintainer, and [RDY] indicates that the pull request has passed review and is ready to be
merged into the master branch. Discussion may still take place on a [WIP] pull request to decide

1

mailto:yiliny@umich.edu
https://neovim.io/

the best approach to implementation, even though the pull request isn’t strictly ready for code
review.

To be considered for acceptance, submitted pull requests must include tests that cover the
changed portions of the code base, in addition to passing a fairly comprehensive CI test suite.
The CI tests typically take more than 90 minutes to run to completion, and include concurrent
builds using Travis CI, AppVeyor, QuickBuild, and CodeCov.io. The submitted code is built using
multiple different compilers (gcc, clang-4.0, “clang Xcode,” MSVC), linted, and run through its
test suite using an LLVM address sanitizer. The CONTRIBUTING.md claims that submitted PRs
must pass all CI builds to be merged, but this doesn’t seem to be strictly true; the CI builds
sometimes fail nondeterministically, producing “false positive” build failures, but so long as any
reported errors seem like false positives, the PR may still be merged.

Task Description
https://github.com/neovim/neovim/issues/9136
This task would involved adding, testing, and documenting an nvim_set_keymap function to
neovim’s remote plugins API; once implemented, users and plugin developers would gain the
ability to set custom keymappings through remote procedure calls written in languages other
than vimscript.

I started by writing a stub function (that would just assert(false) and crash the program), and
invoked it from a test case to verify that I had a workable starting point. From there, I wrote a
crude “draft” implementation that accepted arguments (mapmode, options, the mapping’s
“left-hand side,” the mapping’s “right-hand side”), concatenated them into an allocated C-string,
and passed them into the “legacy” vim function for creating a keymapping, writing tests as I
went. This implementation essentially consisted of declaring a vimscript “declare mapping”
command and passing it to an “eval statement.” In response to suggestions from project
maintainers, I refined the function signature and added stricter input validation.

Having received comments from a maintainer during a recent code review, I plan to make
further changes, most of which involve refactoring the legacy functions that I invoke rather than
treating them as pure black boxes.

Submitted Artifacts
Pull Request
https://github.com/neovim/neovim/pull/9924

This pull request adds approximately 600 lines to the neovim codebase. About half of these are
tests, a quarter are my implementation of nvim_set_keymap , and the remaining quarter is a
helper function named strip_whitespace .

2

https://github.com/neovim/neovim/issues/9136
https://github.com/neovim/neovim/pull/9924

Actual code changes can be found here: https://github.com/neovim/neovim/pull/9924/files

QA Strategy
I followed a loosely test- and behavior-driven development process. I would write new code,
write tests for that code, fix issues exposed by test failures, and then repeat that process.

I did this for two reasons: first, this is already my preferred process; and second, this is explicitly
required by neovim’s maintainers. neovim’s codebase is large and unfamiliar to me, so running
tests (both newly written and already existing tests) was the only way to gain confidence that my
implementation worked as expected. They also gave an additional “entrance point” into my
changes: though I was not able to directly attach to the running tests in GDB, I was able to
copy-paste failing test inputs into the command line of a neovim instance and step through GDB
from there. CodeCov.io reports that 92.9% of the lines touched by my changes were covered by
the tests that I had written, greater than the 83.92% mandated by the CI build.

Aside from direct testing, I sought feedback from project maintainers regarding my work plan.
neovim has an “api-contract” which, among other things, absolutely guarantees that remote
plugin API call signatures will never change once they’ve been included in a release build. For
this reason, it’s particularly vital that the interface of nvim_set_keymap be robust to future
change. neovim’s maintainers have considerable experience with writing other components of
the remote plugin API, and the suggestions that they made were authoritative and extremely
useful.

3

https://github.com/neovim/neovim/pull/9924/files

QA Evidence
The test suite that I wrote can be found here:
https://github.com/neovim/neovim/pull/9924/files#diff-cfa8cca5afdd6030fe328d65e3eec567

The tests I wrote for nvim_set_keymap .

The most recent Travis CI build (as of the time of writing), which runs the tests shown above,
can be found here:
https://travis-ci.org/neovim/neovim/builds/522620100

4

https://github.com/neovim/neovim/pull/9924/files#diff-cfa8cca5afdd6030fe328d65e3eec567
https://travis-ci.org/neovim/neovim/builds/522620100

A sampling of output from my tests for nvim_set_keymap . (The total number of tests reported

also includes tests for nvim_get_keymap , which I did not write.)

My discussions with the neovim maintainers and their code review comments can be found at
the pull request thread here:
https://github.com/neovim/neovim/pull/9924

Deviations from Initial Plan
The outcome of this project deviated from expectations in two major ways:

1. My pull request’s life cycle was much longer than expected, and,
2. I was totally unable to work on my second proposed task (indent highlight groups/text

objects) for lack of time.

I anticipated the latter item, to a degree; from the start, it was meant to act as a “fallback” option
in case I completed nvim_set_keymap significantly faster than expected. nvim_set_keymap
was nontrivial, and was – by itself – large enough to dominate the entirety of my work time.

The former came as a genuine surprise; I had hoped to submit my pull request and have it
merged by the time I’d started writing this report. That was overly optimistic, in hindsight: it
typically takes a few days for a pull request to be formally reviewed by a maintainer (as their
attention is divided between multiple issues, pull requests, and their own personal lives), and
when my pull request was reviewed, the maintainers noted substantial issues with my code’s

5

https://github.com/neovim/neovim/pull/9924

design. I intend to continue working, but it may take twice or even three times as long to
complete my pull request than I’d initially expected. This speaks to some degree of
overconfidence on my part, while also demonstrating that – as is common wisdom in industry –
one’s first implementation isn’t necessarily the best implementation, and software projects in
general can and will overrun their schedules at inopportune times.

Experiences and Recommendations
The following are several key lessons that this experience either reinforced or taught to me.

Documentation is vital to maintainable software
Between one third and half of the time I spent working was devoted to reading through existing
code to understand its functionality and structure. I had chosen to contribute to neovim, in part,
because of the quality of its developer documentation, and this proved to be a wise decision.
The depth and extent of neovim’s documentation made it much easier to construct a
work plan, and cut down the “warm-up time” necessary for me to develop a workflow.

neovim’s “own” functions are well documented with inline code comments and doxygen
headers. The larger structure of its codebase is usefully summarized on its GitHub wiki. Even if
a developer’s text editor does not support a VSCode-esque “go-to definition” functionality for
looking up function or variable declarations, that developer may search for that declaration on
the neovim SourceGraph page, which performs automatic static analysis on neovim’s code to
better rank its results. For instance, if the user searches for “IS_WHITESPACE”, SourceGraph
will rank results that include a programming symbol (macro declaration, function, variable, etc.)
named “IS_WHITESPACE” higher than results that include it incidentally, e.g. files that only
include “IS_WHITESPACE” in a code comment.

Productive contributors must learn new tools quickly
neovim has a massive infrastructure devoted to improving developer productivity, most of which
is built atop existing libraries. neovim’s build system relies on CMake – a popular, cross-platform
build system that essentially automates Makefile generation – and ninja , an open-source
replacement for make that can compile codebases orders of magnitude more quickly than the
same. Its tests are written using busted , a testing library comparable to Mocha.js, but which is
written in Lua rather than JavaScript.

All of these these tools solve important problems. The use of a monolithic Makefile, while ideal
for course projects, becomes impractical – or at least suboptimal – when working with a
codebase of neovim’s size; CMake hides the boilerplate of code compilation behind a layer of
abstraction. ninja massively accelerates the common compile-test-debug workflow, though it
requires the installation and use of a new and unfamiliar software tool. busted tests allow
developers to write white box and black box tests in the Lua scripting language, rather than C;
this makes testing (writing helper functions, etc.) much easier – especially the boilerplate of

6

initializing and communicating with neovim instances between tests – but adds a layer of
complexity, as tests must cross a language barrier.

Learning to work with these tools is difficult, but refusing to learn or use those tools due
to unfamiliarity would, in the long run, be even harder. For instance, the productivity lost to
babysitting a custom Makefile, multiplied by dozens or hundreds of developers, is much greater
than the “up-front” cost of teaching each developer to use CMake. A productive developer must
be comfortable with learning new tools as the task requires.

Productive contributors communicate well and frequently, OR, Properly executed
code review is an extremely valuable resource
I’m happy to report that my interactions with neovim’s developer community has been almost
universally positive. The maintainers that commented on my pull request were positive,
encouraging, and respectful, on top of offering feedback that helped me gain insight into
neovim’s code structure.

The most valuable feedback the maintainers offered pertained to nvim_set_keymap ’s function
signature. These are important, “high-level” design decisions; eliciting these requirements

early proved wise, since a radical change to the function signature later on might have
demanded a radical restructuring of the code that I’d written.

This feedback was less helpful; the highlighted changes were suggested as “convenience code”
for debugging by the neovim contributor’s wiki, and were not intended as part of the actual pull

request. At the time, the pull request was still in [WIP].

7

neovim has a style guide to which its contributors stringently adhere. While some developers

might use code review as an opportunity to “put down” their colleagues by nitpicking their style,
this comment’s feedback distinguished itself by being legitimate (“one-liners” are prohibited by

the style guide), non-threatening, and friendly in tone.

Legacy code poses significant challenges
While neovim’s “own” functions tend to be both elegant and well-commented, it is still built atop
the codebase of “old” vim, which (itself) was built atop the older codebase of classic vi. Much of
this legacy code (some might argue) does not adhere to established good practices and coding
style: variables aren’t descriptively named, function preconditions are undocumented, important
code is heavily duplicated, function bodies are several hundred lines long, and the editor’s state
is largely maintained using global variables. Worse still, these functions are typically so tightly
coupled to a global editor state that they are difficult, if not impossible to test; consequently,
many of them are not directly covered by neovim’s test suites.

I avoided modifying these functions for fear of breaking functionality in a manner that wouldn’t
be exposed by tests, even when doing so would have produced a “more elegant” solution. This
experience clearly demonstrated the importance of designing for maintainability : much code,
once written, will “live forever,” and anticipating future developer needs, within reason, is key to
the construction of long-lived software projects.

EECS exams may be more instructive than EECS projects, OR, Many impossible
problems are tractable if you stop to seriously think about them
The single piece of legacy code with which I’ve spent the most time is the int do_map()
function, which reads a command from the user and:

8

● Displays all user-set mappings and abbreviations, or,
● Displays all user-set mappings and abbreviations that match a particular “pattern,” or,
● Deletes a user-set mapping or abbreviation, or,
● Modifies a user-set mapping or abbreviation, or,
● Declares a new user-set mapping or abbreviation.

It does this with multiple consecutive for-loops that iterate over the global hashtables in which
existing mappings and abbreviations are stored.

The sheer size of this function convinced me, at first sight, that modifying this function would be
impossible, that I should treat it as a complete black box, and that I should work around it and its
idiosyncrasies as much as possible. While I produced a workable solution using this approach,
neovim’s maintainers pointed out, during code review, that an optimal implementation of
nvim_set_keymap would necessarily refactor int do_map() rather than “acquiescing” to its
faults, to the future benefit of plugin developers (who use the remote plugin API), but also to
later neovim contributors who might want to call those refactored functions in the future.

Having decided to follow their advice, I literally printed the body of do_map() on paper and went
over it in pen, as if I were taking an ENGR 101 or EECS 280 exam that asked me to determine
the behavior of a code sample through bottom-up comprehension. While still difficult, this was
easier than I expected (to their credit, vi/vim’s developers still did a good job of writing “why”
documentation for this function, despite its lack of “prettiness”), and it was also very
illuminating.

Understanding do_map ’s implementation requires no more knowledge than that taught by EECS
280/281 and EECS 370. The function stores mappings and abbreviations in a (hardcoded)
256-bucket hash table that performs collision resolution using separately chained linked lists. (It
hashes the “mapmode” and first character of each mapping using bitwise operations.) Though
this revelation may seem obvious, recognizing this reaffirmed that our EECS courses do
actually teach us material that is useful in the real world, and that in some respects, the
skills we learn from taking EECS exams may be more representative of industry practice
than our EECS projects.

In summary,
If I were to start a similar open source project, being informed by my experiences contributing to
neovim, I would:

● Strongly emphasize the value of openness and professionalism, especially when dealing
with new contributors,

○ Opening my pull request was intimidating, but the friendliness of the maintainers
who responded allayed most of my fears.

● Encourage communication between contributors and experienced “senior” developers,
especially with respect to code review or requirements elicitation,

9

○ Learning that “you did a marvelous job doing the wrong thing” would be as
demoralizing as it would be devastating, due to the amount of code that would
need to be scrapped. Identifying problems early reduces the expense of
changing course.

● Heavily document the “why” and “how” of any code that I write, as well as the initial
“set-up process” necessary to build the project and run its tests.

○ Knowing “why” certain code is present helps future developers understand its
purpose, making it easier for them to use it, and helping them to feel safe from
“gotchas” if they were ever to refactor it.

● Reduce code coupling as much as possible, to maximize the degree to which code can
be tested in isolation.

○ A comprehensive test suite is arguably the single most valuable quality
assurance tool that a software project can have.

Advice for Future Students
You don’t understand something until you can explain it simply in your own words; study until
you reach that point.

(I’m willing to let future students read this report.)

10

