
EECS 481 - Exam #2 - KEY 
Winter 2020 - Software Engineering 

Instructions (read carefully, please!) 
1. Please obtain your own editable copy via Google Docs (requires UM login):  

a. https://docs.google.com/document/d/1XVFoPFWCLwzEEbT1qhR86TkjvZPl74nDChLWC4yBQHk/copy  

2. The expected time for this take-home exam is two hours.  
a. Expected time-and-a-half for the exam is three hours (e.g., for SSD).  

3. The exam is optional. If you do not submit a valid exam file by the deadline, or if your 
last submission has “do not grade” instead of your name, you are skipping the exam.  

a. If you elect to skip the exam, your course grade will be out of 82 instead of out of 
100. See the course forum for details. 

b. If you do not elect to skip the exam, we will mark your exam and it will count for 
18% of your grade.  

4. The exam file is due Thursday, April 16th at 11:59pm Eastern via Gradescope.  
a. You may resubmit your exam file as often as you like. We will grade the last 

submission file (unless you mark it “do not grade”, in which case we will not 
grade your exam at all). Your PDF must be 12 pages matching this layout. 

5. You must use a word processor to type your answers by editing the exam file. You may 
not hand write the exam and scan it in.  

6. You must type your answers only in the framed answer boxes.  
7. You must not change the size or position or margins of the framed answer boxes.  
8. You must use the same 11 point Arial typeface for all of your answers. If your answer 

for a question does not fit in its provided box, edit and simplify your answer. 
9. If you leave a non-extra-credit answer box blank or type “skip” in it, you will receive 

one-third of the points for that subquestion.  
a. Because the exam is optional and you can skip questions, grading on answers 

you do include will be quite strict compared to other assignments.  
10. The exam is open book, open notes, open computer, and open Internet.  
11. You must work alone to complete the exam. You may quote or refer to text from the 

readings or Stack Overflow, for example, but you must turn in your own work and may 
not collaborate with other humans.  

12. On certain questions you will be required to craft examples. You will not receive credit 
for class-, reading- or Internet-derived examples. In other words, examples must be 
personal in some aspect (whether real, figurative or imaginative). 

a. Coincidental overlap with other students will be investigated manually. 
13. We will use prose plagiarism detection software and investigate reports manually. 
14. Please use the one stickied Piazzas forum thread for all public exam clarifications.  

a. As with in-person exams, we can’t say much beyond strict clarifications.  

Page 1 of 14 (KEY) 
 
 

https://docs.google.com/document/d/1XVFoPFWCLwzEEbT1qhR86TkjvZPl74nDChLWC4yBQHk/copy


Q1. Logistics and Extra Credit (3 points) 
 
Q1a (1 pt.). If you wish your exam to be graded and you understand the instructions from the 
previous page, type your name in the box below. If you previously submitted an exam file but no 
longer wish your exam to be graded, type “do not grade” in the box below and re-submit.  

ANSWER KEY 
// (This answer key focuses on the technical content rather than creative SE situations.)  

 
Q1b (2 pts.). Type an “X” to the left of every claim that is true about this exam. (Because this is 
a remote exam and many students are concerned about exam integrity, the instructions for this 
exam are quite specific. Refer to the Instructions above.) 

 I can resize answer boxes on this exam to make my answers fit. 

X I can use material from the Internet on this exam. 

 I can change the font on this exam to make my answers fit. 

 I can write examples from the lectures for short answer questions on this exam.  

X This exam will be graded more strictly than previous assignments. 

 
Q1c (2 pts extra credit). Suppose or refute the claim that Delta Debugging could be used to 
replace the input minimization algorithm in “Minotaur: Adapting Software Testing Techniques for 
Hardware Errors”.  

Very likely “support”.  
 
Minotaur measures hardware tests in terms of “resiliency” = “how many instructions are 
visited“ = “coverage” and seeks tests that have the same coverage but are smaller and faster. 
Minotaur already uses a “a simple, greedy algorithm based on binary search for the 
Minimizer.” Since Delta Debugging is also a heuristic algorithm based on binary search, it is 
likely applicable.  
 
However, a full discussion should cover Delta Debugging’s assumptions. Notably, this 
problem is not unambiguous: if {X,Y} has good coverage and {A,B} has good coverage, their 
intersection need not. This can be heuristically mitigated (e.g., for saving each “best champion 
minimized set so far” and double-checking each one at the end to see which one actually 
retains coverage). However, students who choose “refute” would likely argue against the use 
of Delta Debugging here based on the violation of that assumption.  

 
  

Page 2 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/readings/minotaur.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/minotaur.pdf


Q1d (2 pts extra credit). Argue in favor of one recommended guideline from “Hiring is Broken: 
What Do Developers Say About Technical Interviews?” and argue against another.  

“Use  rudimentary  questions  for  screening”, “Share the interview description in advance”, 
“Offer  alternative  interview  formats”, “Use  a  real  problem”, “Solve  problems  as 
colleagues,  not  as  examiners.” 
 
Typically arguing for one guideline involves just quoting the paper. Students could argue 
against certain guidelines, like “offer alternate interview formats”, in very specific situations. 
For example, if there is a very specific action that must be undertaken (e.g., “land this flying 
airplane”) it may be that you want to test exactly that action and not offer candidates the 
possibility of sketching it on paper. Pragmatically, you could argue against “solve problems 
with colleagues” on cost grounds (those colleagues are now spending time in the interview 
process).  

 
Q1e (2 pts extra credit). Identify a single case study company from Beck et al.’s “Industrial 
Experience with Design Patterns” that you think is most indicative of modern practice and 
support that claim. 

Students have free choice here; any well-supported argument would work. A popular choice 
might be Section 2.3 (“Motorola’s Cellular Infrastructure Group” + “Design Patterns”). Cell 
phone infrastructure is still timely, but more importantly, issues like coupling metrics and 
ambiguous specifications are still concerns in more modern times.  

 
Q1f (2 pts extra credit). What is one thing you liked about this class? What is one thing you 
would change for next semester? 

:-) 
:-( 

 
  

Page 3 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/readings/hiring-is-broken.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/hiring-is-broken.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/design.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/design.pdf


Q2. Delta Debugging (22 points) 
Q2a (10 pts.). Consider Delta Debugging (as defined on Slide 42 from the lecture) applied to 
the set {0, 1, …, 9}. Suppose Delta Debugging queries Interesting() on the following sets, in 
order:  
 
{0, 1, 2, 3, 4} // no 
{5, 6, 7, 8, 9} // no, so interference 
{0, 1, 5, 6, 7, 8, 9} // no 
{2, 3, 4, 5, 6, 7, 8, 9} // no, so interference again! 
{0, 2, 3, 4, 5, 6, 7, 8, 9} // no 
{1, 2, 3, 4, 5, 6, 7, 8, 9} // yes 
{0, 1, 2, 5, 6, 7, 8, 9} // no 
{0, 1, 3, 4, 5, 6, 7, 8, 9} // no, so interference again! 
{0, 1, 2, 3, 5, 6, 7, 8, 9} // yes 
{0, 1, 2, 3, 4, 5, 6} // no 
{0, 1, 2, 3, 4, 7, 8, 9} // yes 
{0, 1, 2, 3, 4, 7} // no 
{0, 1, 2, 3, 4, 8, 9} // no, so interference again! 
{0, 1, 2, 3, 4, 7, 8} // yes 
 
Assume Interesting() is monotonic, unambiguous and consistent. What was the final result (i.e., 
the returned one-minimal subset) from that run of Delta Debugging?  

{1,2,3,7,8}  
 
Interesting(X) is true of any superset of {1,2,3,7,8}. See // comments above in trace.  

 
Q2b (4 pts.). Consider Delta Debugging (as above) with Interesting(X) returning true iff the sum 
of the numbers in X is greater than 9. What will Delta Debugging return on the set {0, 1, …, 7}?  

{6,7} 
 
In this particular case, this answer is true regardless of whether you go “left” first or “right” first 
on splits.  
 
{0,1,2,3}  // no 
{4,5,6,7}  // yes 
{4,5} // no 
{6,7} // yes 
{6} // no 
{7} // no, so interferences 

Page 4 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/lectures/se-12-debug.pdf
https://web.eecs.umich.edu/~weimerw/481/lectures/se-12-debug.pdf


Final answer is {6,7}  

 
Q2c (5 pts.). Type X left of each claim that is true for the “greater than 9” situation from Q2b: 

X Interesting() is monotonic. 

 Interesting() is unambiguous.  
// {4,5,6} is interesting, {6,7} is interesting, but not {6}  

X Interesting() is consistent. 

X Delta Debugging returned a one-minimal subset. // {6} and {7} are uninteresting 

X Delta Debugging returned a minimal subset.  
// There is no subset of size one in {0,1,...,7} that sums to more than 9. 
// So “sets of size two” are minimal answers for this query. DD returned a 
// set of size two, so it returned a minimal subset.  

 
Q2d (3 pts.). Consider Delta Debugging on {0, 1, 2, 3}. Consider a definition for Interesting(X) 
such that: 

1. There is a set P = {1, 3} such that Interesting(P) is true but P is not one-minimal. 
2. There is a different set Q such that Interesting(Q) is true and Q is one-minimal. 
3. There is a different set R that is one-minimal but not minimal and Interesting(R) is true. 
4. Delta Debugging (from Slide 42 of the lecture) on {0, 1, 2, 3} returns R.  

 
Give a definition for Interesting(X) that accepts the smallest number of sets possible such that 
all four properties above are satisfied.  

# P = {1,3}, Q = {1}, R = {2,3} 
Interesting(X) = (X = P) or (X = Q) or (X = R) 
 

1. Interesting(P) is true, but P is not one-minimal (because you can remove {3} from it 
and get {1} which is also interesting). 

2. Interesting(Q) is true and Q is one-minimal (because if you remove anything from it 
you get {} which is not interesting). 

3. Interesting(R) is true. R is one-minimal, because both {2} and {3} alone are 
uninteresting. However, R is not one-minimal, because an answer of size 1 exists: 
|Q|=1 and Interesting(Q)=true.  

 
  

Page 5 of 14 (KEY) 
 
 



Q3. Localization and Profiling (14 points) 
Q3a (8 pts.). Create a small Python procedure harrold(x,y) with the following properties:  

1. It accepts two integer arguments x and y.  
2. It invokes a “divide(_, _)” function that fails when the second argument is zero.  
3. It has another line that is simply “safe_function() # false alarm” to mark a false alarm. 
4. The positive test {x=1,y=2} does not trigger the bug (i.e., does not divide by zero). 
5. The negative tests {x=3,y=4} and {x=5, y=6} do trigger the bug (i.e., divide by zero).  
6. A fault localizer, such as Tarantula or Ochiai, ranks the false alarm line as more 

suspicious than the line with the real bug on the tests {x=1,y=2} and {x=3,y=4} {x=5,y=6}.  
7. Your example cannot be taken from class or the readings or the Internet and should be 

distinct from other student examples if possible.  

1: def harrold(x,y): 
2:   if (x == 3) or (x == 5): 
3:     safe_function() # false alarm 
4:     x = 0 
5:   divide(y, x)  
 
Test T1 {x=1,y=2} does not divide by zero. It visits lines {1,2,5}. Passed test. 
Test T2 {x=3,y=4} does divide by zero. It visits lines {1,2,3,4,5}. Failed test. 
Test T3 {x=5,y=6} does divide by zero. It visits lines {1,2,3,5,5}. Failed test.  
 
Ochiai(S) = failed(s) / sqrt(totalfailed * (failed(s) + passed(s))) 
 
Ochiai(Line 3) = 2 / sqrt(2 * (2 + 0)) = 1.00 
Ochiai(Line 5) = 2 / sqrt(2 * (2 + 1)) = 0.82 
 
Ochiai ranks the false alarm line above the line with the real bug.  
 
The “trick” here is to arrange for the false alarm line to be visited only on negative runs but for 
the real bug line to be visited on every run.  

 
  

Page 6 of 14 (KEY) 
 
 



Q3b (6 pts.). You are the interviewer at a company. Type an interview question that centers 
around profiling. The question must include one opportunity for the applicant to fail to 
demonstrate technical mastery and also one opportunity for the applicant to fail a behavioral 
aspect. You must provide a hypothetical situation or framing for the question that is not from the 
class or the readings or the Internet and is distinct from other student answers if possible. 

Many answers are possible.  
 
A technical mastery aspect of profiling might relate to, for example, sampling-based profiling 
missing periodic behavior. 
 
A behavioral aspect might relate to, for example, a time when you had a conflict with a 
teammate.  
 
The framing could be anything. For example, you work for a company that makes software for 
butterflies.  
 
Putting it all together:  
 
“Tell me about a time you and a co-worker disagreed over the profile results for an activity 
that you know often happens regularly (e.g., the wings flapping) and how you resolve that 
conflict.”  

  

Page 7 of 14 (KEY) 
 
 



Q4. Design Patterns & Maintainability (14 points) 
Consider the following three maintenance design goals (A-C) and three design patterns (X-Z).  

A. Design for Code Comprehension X. Observer Pattern 

B. Design for Change Documentation Y. Singleton Pattern 

C. Design for Testability Z. Template Method Pattern 

In all parts of this question, any examples you devise may not refer to course or Internet 
material and must be distinct from other student examples if possible.  
 
Q4a (7 pts.). Choose one design goal (A-C) and one pattern (X-Z). Argue that the pattern 
specifically supports the design goal. Call out at least two properties of the pattern and two 
aspects of the goal. Devise a brief example setting in which the pattern supports the goal.  

Many answers are possible. Consider B-X. In class we argued that not using the Observer 
pattern leads to the publisher and subscriber being tightly coupled, so changes to one must 
be reflected in the other. That also applies to change documentation: a patch to such a 
system using the Observer pattern that only changes publisher-related behavior need only 
document publisher-related changes (unlike an anti-pattern system, where the change would 
touch both and thus the change documentation would touch both). You could also argue that 
it is easier to write “Why” documentation for Observer pattern changes, rather than focusing 
on the “What” of how the publisher and subscribed are coupled.  
 
Many example settings are possible.  

 
Q4b (7 pts.). Choose a different design goal (A-C) and a different pattern (X-Z). Argue that 
there is at least one example instance in which the pattern, even when applied correctly, 
specifically hinders the goal. Be concrete about the metric or fashion by which the goal is 
hindered.  

Many answers are possible. For example, you could pick C-Y and argue that the Singleton 
pattern complicates design for testability. Even when implemented correctly, the Singleton still 
encapsulates global state, so all of the testing problems associated with global variables 
apply. In addition, we described in class the Singleton.get_instance() problem (almost like a 
“race condition”). Testing whether your code correctly handles different concrete copies of the 
same logical item may be tricky: a special test harness that forces multiple concrete copies 
with different values may be required. Even if there is high coverage, the values may or may 
not show the bug: thus the metric or issue at hand is closer to “traceability to requirements” 
than pure “line coverage”.  

 

Page 8 of 14 (KEY) 
 
 



  

Page 9 of 14 (KEY) 
 
 



Q5. Requirements and Elicitation (15 points) 
Q5a (6 pts.). Consider a requirement elicitation and software development situation involving 

1. Requirements involving a quality property of interest are incorrectly captured 
2. Stakeholders do not believe the system satisfies that property 
3. That system failure is caught by testing but not by static analysis 
4. The resolution involves refining the requirements document and the source code 

Describe and detail a situation that satisfies the above criteria. You may not use an example 
from course material or the Internet, and must be distinct from other students if possible.  

Many answers are possible. The real constraint is (3): the problem has to be possible/likely to 
catch with testing but not with static analysis. A direct quality property that can be assessed 
by testing is “runtime” (performance): you run the program and see how long it takes. 
However, you cannot decide how many times a loop will execute via a static analysis in 
general (halting problem) so you cannot predict program runtimes in advance via static 
analysis in general. “Ambiguity” (as in slide 45 of 
https://web.eecs.umich.edu/~weimerw/481/lectures/se-13-req.pdf )  is a direct RE mistake to 
pick here. Something like “other modules shall be terminated as soon as the network file 
transfer occurs”. If stakeholder meant “other modules shall be terminated just before the 
network transfer completes” but the code implemented “other modules shall be terminated by 
the time the network transfer finishes”, then the resolution involves both refining the 
requirements documentation and also changing the source code to make it faster.  

  

Page 10 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/lectures/se-13-req.pdf


Q5b (9 pts.). Your software company plans to outsource its technical interview activities to a 
human resources subcontractor that specializes in assessing candidates. The subcontractor will 
inspect many applicants and identify those that meet your needs. The subcontractor wants a 
requirements document describing desired candidates. Identify one quality property and one 
functional property associated with modern skills-based interviews. For each, identify an error or 
mistake in a hypothetical RE (Requirements and Elicitation) conversation with the subcontractor 
and how you would correct it. Finally, phrase each as correctly as you can using terminology 
and best practices from RE. You may not use an example from course material or the Internet, 
and must be distinct from other students if possible.  

Quality 
Property 

Many examples are possible …  
Availability (when interviews can be conducted) 

RE Mistake 
& Correction 

Structure clash. Following the course slide example (which you’d have to 
reword here), the RE documentation might say both “interviews can take place 
Friday before 5pm” and also “interviews can take place Friday”. The 
hypothetical conversation would be about when on Friday an interview can 
start or take place (e.g., what if it starts at 4:59pm on Friday?).  

Correct 
Requirement 

Resolve weak conflict by clarifying boundary conditions. “Interviews may begin 
Mondays through Fridays, 9am to 4pm and must last no more than one hour 
each.”  

 

Functional 
Property 

Many examples are possible ... 
Interviews must identify candidates who have mastered “line coverage” 

RE Mistake 
& Correction 

Designation clash. “People involved in the interview must be able to correctly 
answer questions about line coverage.” It’s not clear if “people involved in the 
interview” are the job candidates or the people conducting the interview. 
Hypothetical question: “Are you saying that our interviewers have to have a 
certain mastery of the material to assess job applicants, or are you saying that 
you only want us to recommend job candidates who have mastered the 
material?”  

Correct 
Requirement 

“Job candidates must be able to correctly answer 9 out of 10 questions from 
the standard Line Coverage Question Bank, chosen at random, within 5 
minutes each per question.”  

 
 

 

  

Page 11 of 14 (KEY) 
 
 



Q6. Expertise and Productivity (18 points) 
Q6a (8 pts.). In Chi et al.’s “Expertise in Problem Solving”, a claim was made about how experts 
and novices cluster or categorize problems differently. In class and in the reading, physics 
problems were considered. You will consider test suite quality metric problems instead. Briefly 
describe four example problems (A, B, C and D) associated with test suite quality metrics. Your 
examples must not be isomorphic to each other or inverses of each other (e.g., you cannot base 
one on line coverage and another on lines not visited). Then explain why novices would cluster 
{A,B} together and {C,D} together, while experts would cluster {A,C} together and {B,D} 
together. Your explanations should highlight your mastery of both expertise and the nuances of 
test suite quality. You may not use examples from course material or the Internet (although you 
may, and likely will, use metrics from the course material, etc.), and must be distinct from other 
students if possible.  

A Many answers are possible … 
Compute line coverage of this program with while loops 

B Compute the mutation score of this program with while loops 

C Compute the branch coverage of this program with switch/case statements 

D Find all function calls in this program with switch/case statements 

Why 
Novices 
Cluster 
{A,B} and 
{C,D} 

In “Expertise in Problem Solving”, novices clustered problems based on gross 
surface feature similarity. Both A and B involve while loops, while C and D involve 
switch/case.  

Why 
Experts 
Cluster 
{A,C} and 
{B,D} 

Experts clustered problems based on how you would solve them under the hood. 
Both A and C involve instrumenting the program and printing out when various 
events are reached, then running the result and counting. Both B and D involve 
analyzing the AST to look for specific patterns (e.g., “find all X<Y comparisons 
and negate them” might be a possible mutation operator in B, while “find all 
function calls and print out each one” would work for D).  

 
  

Page 12 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/readings/productivity-expertise.pdf


Q6b (5 pts.). In Huang et al.’s “Distilling Neural Representations of Data Structure Manipulation 
using fMRI and fNIRS”, a paper not assigned for this class, the following result is reported: “The 
brain works measurably harder for more difficult [as measured by Big-Oh notation] software 
engineering problems (in terms of cognitive load). Moreover, the regions activated suggest a 
greater need for effortful, top-down cognitive control when completing challenging [array and list 
data structure] manipulation tasks.” Support or refute the claim that this result is aligned with the 
findings in Siegmund et al.’s “Measuring Neural Efficiency of Program Comprehension”. 

Both support and refute are possible. While both papers mention cognitive load, the former 
involves showing students graphical data structure problems and finds, informally, that more 
nodes = more work for your brain. The latter finds that beacons ease comprehension. You 
could argue, on the support side, that beacons give you fewer conceptual chunks to think 
about, thus reducing the “informal Big-Oh difficulty” of code comprehension, and thus they are 
aligned. You could argue, on the refute side, that one of the results is about reading code and 
one of the results is about doing pencil-and-paper tree problems (no code), so they are not 
even really talking about the same thing and are thus not aligned.  

 
Q6c (5 pts.). In “The Costs and Benefits of Pair Programming”, by Cockburn and Williams, the 
following example is considered: “A team leader given four junior designers to design a graphics 
workstation, was also given a private office. After a few weeks, he felt uncomfortable with the 
distance to his team, and moved his desk to the floor with the other designers. Although the 
distractions were great and his main focus was not teaching the other designers, he was able to 
discuss with them on a timely and casual basis. They became more capable, eventually 
reducing the time he had to spend with them and giving them skills for their next project.” Briefly 
describe an example software development situation (not from class, distinct from others, etc.). 
Then, with respect to that situation, support or refute the claim that pair programming or 
mentoring is effective process investment in maintainability.  

Many answers are possible. A key here is the notion of a software process investment in 
maintainability: that requires an analysis of bost costs and benefits. The costs are usually 
opportunity costs: time or personnel allocated to this activity could instead be allocated to 
some other baseline activity (e.g., simple testing or just writing documentation, etc.). So a key 
part of the argument would be claiming that pair programming or mentoring obtains some 
value for maintainability above and beyond other options.  
 
A support argument would likely build on the evidence (from the lectures and papers) that pair 
programming produces smaller code and fewer defects. Smaller code takes less time in code 
inspection and avoiding defects early is a significant investment win. The “example math 
slide” in the lecture does just this.  
 
You could argue refute (e.g., no evidence is available on mentoring helping maintainability), 
but support is likely a bit more direct given the material covered in class.  

Page 13 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/p/weimer-icse2019-preprint.pdf
https://web.eecs.umich.edu/~weimerw/p/weimer-icse2019-preprint.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/neural-efficiency.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/pairprogramming.pdf


Q7. Language and Repair (14 points) 
Q7a (8 pts.). Consider the Eraser analysis (from Savage et al.'s “Eraser: A Dynamic Data Race 
Detector for Multithreaded Programs”). It may or may not report a race condition and a real race 
condition may or may not actually be present. For each such combination, describe a situation 
involving a multi-language Java-and-C project that would result in that outcome. In each case, 
whether or not the report is made or not and whether it is correct or not should be described in 
terms of the multi-language aspect, not on other aspects of dynamic analyses (e.g., assume a 
high quality test suite, etc.). You should not use course examples or examples from the Internet 
directly, and must be distinct from other students if possible.  

True  
Positive 

Consider a Java-and-C project where Eraser can “see” both the Java locks and 
the C locks and it finds that a variable accessed from both the Java side and the C 
side has no consistent lock set: a real race condition (true positive).  

False  
Positive 

Consider a Java-and-C project where Eraser can only “see” the Java code and 
does not understand that a C variable is being used as a lock or mutex. Eraser will 
think a shared variable is being accessed with no locks because it cannot “see” the 
C lock.  

True  
Negative 

Consider a Java-and-C project where Erase can “see” both the Java locks and the 
C locks and a shared variable is accessed correctly by both C and Java code with 
a consistent lockset. No race condition, no report: true negative.  

False  
Negative 

This one is a bit tougher. Google will reveal some corner cases (e.g., thread 
initialization code). However, this is fairly easy in a multi-language setting: we just 
need eraser to think every memory access to a shared variable is guarded by a 
lock. Suppose Eraser can “see” memory accesses in Java but not in C (e.g., 
because it instruments Bytecode). If the variable is guarded by a lock in Java but 
not in C, every access Eraser “sees” will look fine, but there will really be a race 
condition.  

 
  

Page 14 of 14 (KEY) 
 
 

https://web.eecs.umich.edu/~weimerw/481/readings/eraser.pdf
https://web.eecs.umich.edu/~weimerw/481/readings/eraser.pdf


Q7b (6 pts). Support or refute the claim that “it is a better business decision, with respect to 
repair cost and repair quality, to use automated program repair in conjunction with automated 
test input generation than it is to use automated program repair alone”. Your argument should 
speak to these concepts and include an example situation that you devise. Your example 
should not come from class or the Internet and must be distinct from other students if possible. 

This is an active research area, so multiple answers are possible. GIven the context in this 
class, however, “refute” is the most likely. A key challenge in automated program repair is test 
suite quality: high-quality test cases (inputs and oracles) are necessary to ensure that the 
generated repair actually reflects stakeholder requirements (cf. traceability) rather than just 
cheating its way past the test cases. Automated test input generation (note: the question talks 
about input generation, not oracle generation!) does not provide any oracles, so it does not 
provide full test cases: additional high-coverage inputs with no way to tell if the behavior is 
right or wrong will not help guide automated program repair to produce high quality patches.  
 
Multiple example situations are possible, but for any setting, you could describe a situation in 
which there is an error-inducing input, and test input generation even produces that input, but 
since there are no oracles, a low-quality patch is still produced.  

 

Page 15 of 14 (KEY) 
 
 


