
EECS 481 — Software Engineering
Spring 2020 — Exam #1

• There are seven (7) questions in this exam, each with multiple parts. Some questions
span multiple pages. If you get stuck on a question, move on and come back to it later.

• Once you download this exam, you have two (2) hours to complete and upload it. If
you encounter technical difficulties, email the staff immediately.

• This exam is open book, notes, and Internet. You may not communicate with others
while completing this exam. You can email the staff, make private Piazza posts, or
use Slack to send direct messages to staff. We will try to respond during the hours of
11AM to 11PM Eastern time on Friday, Saturday, and Sunday.

• You will complete the exam by filling in the accompanying exam-answers.txt files.
Once complete, submit exam-answers.txt alone to the course website: https://

dijkstra.eecs.umich.edu/kleach/eecs481/shibboleth/exam-submit.php.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We may deduct points if your solution is far more
complicated than necessary.

• If you leave a non-extra-credit portion of the exam blank or drawn an X through it,
you will receive one-third of the points (e.g., 4/3 = 1.33), for that portion
for not wasting time.

UM uniqname: Generated for weimerw.

1

1 Software Process Narrative (13 points)

(1 pt. each) Read the following narrative. Fill in each blank with the single most specific
or appropriate corresponding concept from the answer bank. (Each blank does have
exactly one corresponding answer.) Each option can be used more than once.

A. Alpha Testing B. Agile Development C. Beta Testing D. Build Automation
E. Comparator F. Dataflow Analysis G. Development Process H. Dynamic Analysis
I. Formal Code Inspection J. Invariant K. Integration Testing L. Maintainability
M. Mocking N. Oracle O. Passaround Code Review P. Path Predicate
Q. Perverse Incentive R. Quality Property S. Risk T. Requirements
V. Software Metric W. Spiral Development X. Static Analysis Y. Threat to Validity
Z. Waterfall Model

(a) W The database company Debacle decides to adopt a procss where they deliver prototypes
every three months. Each prototype phase, they gather any changing requirements,
design and implement software that meet these new requirements, and deliver the next
prototype.

(b) S In class, we discussed pacemaker software that allowed attackers to kill patients by
wirelessly disabling pacemakers. A company responsible for such software can consid-
ering adopting various processes to help account for this aspect of project delivery.

(c) B The manager of the Sprightly Software Company decides to plan effort in two-week
sprints, with daily stand-up meetings.

(d) M The Obscure Song Identifier API allows you to upload audio files and returns a string
containing the song’s title and artist. However, each invocation of this API costs $1.00.
To save development costs, you hardcode the string “Qing Fei De Yi – Harlem Yu”
every time your software tries to invoke that API.

(e) D The new intern uses this set of scripts to specify gcc-9 and pass -O2 to compile the
company’s program on their computer.

(f) L Your teammate, Walter Melon, never documents any of their code. When your new
intern joins during the summer, you have to spend several hours with the intern walking
through and explaining the code. If only Mr. Melon had considered this aspect of
software and code.

(g) R In an effort to reduce networking costs, the video streaming service YouKu compresses
all videos, saving 50% on networking costs. However, users begin complaining of un-
watchable, blurry videos. Even if the service works fine, YouKu may consider improving
video quality to improve the end user’s experience.

(h) Y In an effort to improve the readability of your code, your teammate reduces its Hal-
stead volume. He says that maintainable code must have a minimal Halstead volume.
However, you point out that his most recent commit was an unreadable mess with a
deceptively low Halstead volume. What does that say about the applicability of the
Halstead volume?

Page 2

(i) V Visual Studio embeds a numerical computation for approximating the complexity of
code.

(j) R The autonomous car company Farad has an algorithm that is 99% accurate at detecting
pedestrians from camera data. However, it takes 10 seconds to return any results; the
company might want to reduce latency next.

(k) Z A technique for reducing risk in a long-term software project where effort is divided
into sequential phases like requirements elicitation and implementation.

(l) E A retail company called Tarjeh decides to implement machine learning algorithms on
their website to predict shopping suggestions. During testing, they must carefully
consider how to establish the algorithm’s correctness.

(m) Y Your teammate calls your code unmaintainable because it is too long, even though it
takes you both the same amount of time to read as similar code. Does length really
reflect maintainability?

Page 3

2 Testing and Coverage (22 points)

Consider the following program. Statements of interest are labeled S 1 through S 5.

1 int amazing (int x, int y, int z) {

2 if ((x + y) < 1) {

3 S_1;

4 if (y != 2) {

5 S_2;

6 } else {

7 S_3;

8 }

9 }

10 if (x > 0 || y == 0 || z < 2) {

11 S_4;

12 } else {

13 S_5;

14 }

15 }

(a) (1 pt. each row) In the table below, identify integer values for x, y, and z that result
in the coverage specified in the table, or indicate that it is not possible.

Statements covered x y z Not possible

S 2, S 3, S 4 N

S 4 -5 6 -6

S 2, S 3, S 4 N

S 1 N

S 1, S 2, S 3 N

S 1, S 3, S 4 -6 2 -6

S 1, S 3, S 5 -6 2 2

S 2, S 4 N

Answers will vary. The bank of statements often required conflicting,
impossible predicates. For example, if you see S1, then you must cover
S3 or S4 as well.

Page 4

Next, consider the function below. Against, statements of interest are labelled S 1

through S 4.

1 int ShuaiDaiLe (int x, int y, int z) {

2 if (y != 3) {

3 S_1;

4 if (x > 0 && x != 3) {

5 S_2;

6 } else {

7 S_3;

8 }

9 }

10 if (x <= 0 || y > 2) {

11 S_4;

12 }

13 }

(b) (2 pts. each row) In the table below, you are given values of x, y, and z. In the
corresponding blanks, fill in the Path Coverage count for each test case (i.e., report
how many unique paths are executed; do not report a percentage).

x y z Path coverage (count)

2 2 -1 1

-1 2 0 1

2 1 -1 1

2 -1 -1 1

2 -1 1 1

-1 -1 -1 1

All answers were 1. Every set of variables executes exactly one path.
(An initial revision of this question was much more involved; unfortu-
nately, later revisions mistakenly oversimplified this problem)

(c) (2 pts.) Identify any one path predicate from the program above that executes a unique
path through the program.

Page 5

3 Short Answer (20 points)

(a) (2 pts.) In two or fewer sentences, support or refute the claim that all developers
should participate in alpha testing at the end of every sprint or project milestone.

Support: Sufficient testing will increase delivered software quality and keep developers
on track. This is particularly relevant in safety-critical software, where alpha testing
may reveal severe defects.

Refute: The resources required to implement alpha testing every sprint may detract
too much from productive development. The benefit of the testing may not make up
for the decreased productivity.

Other answers may apply. No partial credit.

(b) (2 pts.) In three sentences or fewer, describe the differences between spiral development
and waterfall development.

Full credit answer will discuss how spiral relies on continuous releases of prototypes
to reduce risk. Waterfall is divided into discrete phases over the course of an entire
project. Spiral contains aspects of waterfall, just iterated multiple times during a
project.

(c) (2 pts.) Consider a program with five sequential if statements that accepts five boolean
inputs. Assuming each condition evaluates a single unique input, what is the minimum
number of test cases required to achieve 100% Path coverage? Condition coverage?

Sequential if statements means that there are 32 possible paths to cover. The assump-
tion is that each of the 5 if’s has one input to evaluate, so condition coverage is achieved
with 10 tests (2 for each outcome of each if).

No partial credit.

(d) (1 pt.) What program was used to produce coverage in libpng?

gcov.

(e) (1 pt.) Give one example of a tool used for code review.

GitLab. There were other examples shown in lecture, such as an integrated Visual
Studio tool.

Page 6

(f) (1 pt.) In a few words, identify which phase of software development costs the most
amount of money and resources?

Maintenance. Lecture and readings covered industrial reports about costs of fixing
defects at various phases of development. Maintenance rules all.

(g) (3 pts.) A fresh startup called FaceBack has designed software that can identify the
back of a person’s head given a picture of their face. Some team members support
adopting an official company list restricting which programming languages can be
used as the team grows. In three or fewer sentences, support or refute the use of such
approved programming language lists in terms of risk management and process.

Support: A restricted set of programming languages may ease code reviews as reviewers
know what to expect (lowered risk, process simplification). It will also lower overhead
associated with enforcing code style (lowered risk). There may also be benefits to
simplifying integration testing (process simpliciation).

Refute: May diminish developer productivity, especially if parts of the team are more
familiar with one language over another (increased risk and uncertainty; how to plan/al-
locate developer effort?). Additionally, such a practice may increase defects among
developers who are not familiar with approved languages (increased risk). Encourages
implementation bias by eliminating potential languages that may simplify some aspect
of the project (increased risk, process complexity).

Other answers may apply. Partial credit given if discussion of risk or process is present,
but not both.

(h) (2 pts.) Suppose you are building a large C program that comes with a configure

script. Further suppose that you want to use a custom version of gcc located in
/usr/local/bin/481-gcc and pass the flags -O3 -Wall. Assuming you are working in
the same directory as the configure script. Identify the command input to successfully
configure this project.

./configure CC=/usr/local/bin/481-gcc CFLAGS=”-O3 -Wall”

(i) (3 pts.) Identify two risks associated with adopting dynamic analysis techniques at a
company that currently does not use any. Identify a measurement that could be used
to reduce each risk.

Instrumentation for DA may incur runtime performance penalty. Need to measure
execution time and slowdown caused.

Page 7

Developer effort required to bootstrap a new DA (e.g., a new a test suite), perhaps
resulting in delays in current plans or projections. Company could fold DA development
into current process; start measuring developer activity wrt new DA.

DA rig may introduce complexity in the repository. What if DA takes too long? Start
measuring time taken to complete DA.

DAs introduce statistical errors. If we replace sound SA with unsound and incomplete
DA, developers may miss issues that would have been caught by SA. Measure types of
defects fixed resulting from DA vs. SA.

Others may be correct. Evaluated case by case. -1 for each risk or measurement not
present, down to a minimum of 0/3.

(j) (3 pts.) Give three examples to support or refute the claim that data science should
be used to measure developer performance (hint: Begel and Zimmerman).

One point per example provided. Here’s a couple examples.

Support:

- Developers report caring about one set of metrics, but assessments of their develop-
ment history may reveal otherwise (e.g., number of bugs fixed vs. number of features
desired by customers). Finding what actually matters may benefit developers on a
project.

- The survey suggests workers in different geographic regions may benefit personally
from knowing which metrics they should work to improve. For example, the survey
suggests more testing is done in Asia, so workers in Asia may care about effectiveness
of unit vs. integration testing.

- Startups with developers that have less experience may benefit from data-driven
measurement.

Refute:

- Risk creating perverse incentives. If developers learn what data are collected to
measure them, they may begin to game the system.

- Highly experienced developers may not internalize data-driven results. For example,
the reading described managed vs. native code as being a ‘religious debate.’

- Conflicting results. The survey suggests more experienced workers care about code
clones, but also report caring less about code quality. There is a risk in incorporating
results from such data.

Page 8

4 Invariant Detection and Mutants (15 points)

Consider the code snippet below:

1 int rose (int a, int b) {

2 int x = 0;

3

4 if (a <= 0 || b <= 0) {

5 return -1;

6 }

7 if (a > 6 || b > 6) {

8 return -1;

9 }

10

11 if (a == 3 || a == 5) {

12 x += (a - 1);

13 }

14 if (b == 3 || b == 5) {

15 x += (b - 1);

16 }

17 return x;

18 }

(a) (3 pts. each row) In the table below, several candidate invariants are listed. For
each candidate, EITHER (1) specify a test case in terms of a and b that falsifies the
candidate, OR (2) identify a first-order mutant that leads you to retain the candidate.
(Fill in the appropriate column).

Page 9

Invariant Description a b Falsifying mutation (if needed)

rose <= 2b for all a and b a=5 b=1

rose <= 2a for all a and b a=1 b=5

rose <= a + b for all a and b Change (a-1) to (a+1)

rose < 12 for all a and b Change return x to return x*2

rose >= 0 for all a and b a=-1 b=-1

Answers can vary. *One banked invariant was impossible to answer,
thus everyone receives a minimum of 3 points on this question

Page 10

5 Dataflow Analysis (20 points)

Consider a live variable dataflow analysis for three variables, a, b and c. We associate
with each variable a separate analysis fact: either the variable is possibly read on a later
path before it is overwritten (live) or it is not (dead). We track the set of live variables at
each point: for example, if a and b are alive but c is not, we write { a, b }. The special
statement return reads, but does not write, its argument. (You must determine if this is a
forward or backward analysis.)

(a) (18 pts.) Complete this live variable dataflow analysis for a, b and c by filling in each
Live Vars. box with the set of live variables just before that point in the program.

START

if a < b

Live vars:

’a’, ’b’, ’c’
(B1)

a = b * 2

Live vars:

’b’, ’c’
(B2)

b = b - 1

Live vars:

’a’, ’b’, ’c’
(B3)

return a

Live vars:

’a’
(B4)

b = a + 1

Live vars:

’a’, ’c’
(B5)

if a < 5

Live vars:

’a’, ’c’
(B6) a = a - 1

Live vars:

’a’, ’c’
(B7)

while c < a

Live vars:

’a’, ’c’
(B8) c = c + 1

Live vars:

’c’
(B9)

b = c - 1

Live vars:

’c’
(B10)

return b

Live vars:

’b’
(B11)

Page 11

(b) (2 pts.) Support or refute the claim that a statement with no live variables can be
removed without affecting the program’s correctness.

Support: Statements with dead variables implies the statement affects nothing. Such
dead code can be removed without loss. Refute: Statements like x = 1/0 might appear
dead, but removing them may influence intended behavior.

Page 12

6 Dynamic Analyses (10 points)

Consider a concurrent system in which two threads share a common variable, m. Each thread
is executing the code shown below.

1 while (true) {

2 lock(A);

3 m := 6;

4 m := m + 1;

5 unlock(A);

6 m := 8;

7 lock(B);

8 m := m + 1;

9 unlock(B);

10 }

1 while (true) {

2 lock(B);

3 z := 1;

4 lock(A);

5 m := m + 1;

6 unlock(A);

7 unlock(B);

8 }

Assume that two mutual exclusion locks are present: A and B. In this setup, the lock

method acquires the named lock, while unlock releases it. If thread 1 attempts to run
lock(A) but thread 2 currently holds the lock, then thread 1 must wait until thread 2 runs
unlock(A).

(a) (2 pts.) Identify whether any race conditions are present with respect to variable m.

Answers will vary. Both locks A and B must be acquired to safely modify variable m.
If one thread acquires lock A but not B, then there is a race condition.

Note that we technically are not talking about deadlock here, which is a separate issue.
It is possible for a circular wait to occur. Thread 1 acquires A, thread 2 acquires B,
Thread 1 attempts to acquire B, thread 2 attempts to acquire A. Deadlock.

(b) (8 pts.) Justify your answer. If there is a race condition present, specify the line
number, then explain the sequence of events that exposes the race condition. If there
is no race condition, explain why the calls to lock and unlock will never allow unsafe
access to variable m. In either case, you can say things like “Thread 1 acquires lock
A” or “Thread 2 writes x + 1 to variable y.”

Answers can vary. You will get credit if you indicate operations leading to a race
condition, or if you indicate that both threads acquire both locks before modifying m,
depending on which is appropriate for your version of the question.

Page 13

7 Extra Credit (1 pt each; we are tough on reading questions)

(a) (Feedback) What is your least favorite thing about this class?

Any non-blank answer receives credit. (correct answer: NOTHING)

(b) (Feedback) What is your most favorite thing about this class?

any non-blank answer receives credit. (correct answer: EVERYTHING)

(c) (Pyschology) Provide an example of confirmation bias.

Any example of confirmation bias will receive credit. Example: I believe the Earth is
flat. I go to Kansas and see a lot of flat land, confirming my belief.

(d) (Psychology) Explain the McNamara fallacy in your own words.

Strictly using quantitative metrics for decision making, ignoring other factors. For
example, students may believe that mastering an autograder rubric means that they
have mastered all class material.

(e) (Random) What is your favorite text editor?

We used this to look for discrepancies from the Quiz question. The correct answer is
vim!

(f) (Your Choice Reading) Identify any optional reading. Write a sentence about it that
convinces us that you read it critically. (Our subjective judgment applies here!).

We’re tough on these. Basically, we’re looking for something more than copying and
pasting text from an optional reading. For example, “it seems like CHESS is quite pow-
erful and can be used to rigorously debug concurrent programs by treating scheduler
interleavings as input.”

(g) (Your Choice Reading 2) Identify any different optional reading. Write a sentence
about it that convinces us that you read it critically. (Our subjective judgment applies
here!).

Page 14

