

Question 1. Word Bank
Matching (1 point each, 14 points total)

For each statement below, input the letter of the term that
is best described.
Note that you can click each word (cell) to mark it
off. Each word
is used at most once.

A. — A/B Testing B. — Agile
Development

C. — Alpha Testing D. — Beta Testing

E. — Competent Programmer
Hypothesis

F. — Confounding
Variable

G. — Dynamic Analysis H. — Formal Code
Inspection

I. — Fuzz Testing J. — Integration
Testing

K. — Milestone L. — Mocking

M. — Oracle N. — Pair
Programming

O. — Passaround Code
Review

P. — Perverse
Incentives

Q. — Race Condition R. — Regression
Testing

S. — Risk T. — Sampling Bias

U. — Software Metric V. — Static Analysis W. — Streetlight Effect X. — Triage

Y. — Unit Testing Z. — Waterfall Model

Q1.1:
The company GlazeBook wants to reward programmers for their bakery social media website with a pay
raise for finding more bugs than other programmers. This leads to programmers intentionally creating

and reporting new bugs, rather than finding and resolving existing ones.

Q1.2:
When writing any sort of innovative software, developers often use several processes to account for this

important source of uncertainty. Once considered, it is typically mitigated or reduced.

Q1.3:

Startup winter social media company Sleddit just released their website and received over 1000 bug

reports in the span of a week. They only have 10 programmers so they have to prioritize some bugs over
others and decide which to address first.

Q1.4:
Developers want to check how fast their program runs under a variety of conditions. They use execution
time profiling to run their instrumented code on a variety of test inputs.

Q1.5:

Train company StationWide wants to be reactive to changing requirements as they create software that
shows users the trains they can ride from one place to another. They created a very early prototype of the

software during a two-week sprint to get feedback and fix problems the original code had during the next
sprint. Daily meetings are used to keep everyone on the same page.

Q1.6: For each class Aidan writes, they include local test cases to ensure that class is working as intended.

Q1.7:

Video conferencing company Nyoom wants to test their latest chat feature to include custom emojis. To

do so, they randomly generate 1000 valid and invalid emojis and use them in the chat feature to see
whether the program responds as it should.

Q1.8:
To check how well-received their new yellow colored buttons are, video-sharing company BlueTube sends
out a survey to a group of people that only like the color green. Based on the survey results, BlueTube

mistakenly concludes that the new yellow colored buttons would be disliked by all users.

Q1.9:

After implementing a more advanced internet structure to their old fighting game, the company Twister

sends a version of the game to a small number of end users to make sure it works before the feature
releases.

Q1.10:

BlipPng is a program that generates special pngs that automatically delete themselves after a period of
time. They want to add a notification feature to tell users that the generated png has deleted itself. They

release this feature to half of users but not to the other half of users. They include a survey to see how
satisfied users are with the new feature.

Q1.11:
After Mollie fixed a small mistake where they had a less-than (<) sign instead of a less-than-or-equal-to
(<=) sign, Mollie's grade went from 5% to 100% on the Autograder.

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Q1.12:
Bird adoption company Flapple uses inexpensive functions with pre-determined outputs while initially

testing their code base.

Q1.13:
Daniel finds a bug in their code and fixes it. To prevent this same bug from recurring later, Daniel writes a

test case to detect the presence of that bug.

Q1.14:

Conner is trying to find which methods take longer to run. A first analysis finds that methods with more

lines of code often have longer running times. However, this analysis does not account for the algorithmic
complexity (e.g., Big-Oh) of the code. Ignoring that aspect means the analysis is misleading: some

methods with fewer lines of code may still take a long time to run because they contain complex
algorithms.

Question 2. Code Coverage (20 points)

You are given the following C functions. Assume that statement coverage applies only to statements marked STMT_#. In this
question, we consider the entire program. That is, even if program execution starts from one particular method, we consider

coverage with respect to the contents of all methods shown.

(a) (6 points) Provide 1 input (i.e., all four arguments) to Euphoria(str a, str b, int c, int d) such that the statement
coverage will be 50%. (We only consider statements marked STMT_#.) Use a format such as ("hello", "goodbye", 123,
456) if possible.

Your answer here.

(b) (2 points) True / False: there exists a test suite of size > 0 such that the test suite obtains 100% statement coverage. (We

only consider statements marked STMT_#.)

True

False

(c) (2 points) True / False: your answer from Q2a provides the lowest possible path coverage for the given code snippet.

True
False

(d) (5 points) Give a minimum test suite to reach 100% branch coverage. Provide the test cases with their input in the form

void Euphoria(str a, str b, int c, int d) {

 STMT_1;
 if (c < d) {

 medicine(b, a);
 }

 STMT_2;
 apple_juice(d, c);

}
​

void medicine(str a, str b) {
 STMT_3;

 if (a == 'rue') {
 STMT_4;

 }
 if (b == 'jules') {

 STMT_5;
 }

}
​

void apple_juice(int c, int d) {
 if (c == d) {

 STMT_6;
 return;

 }
 STMT_7;

 apple_juice(c, c);
 STMT_8;

}
​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Euphoria(str a, str b, int c, int d). For a and b, choose from only the values {'rue', 'jules'}. For c and d,

choose from only the values {1, 2}. Write each test input on a separate line, using a format such as ("hello", "goodbye",
123, 456) for each input if possible.

Your answer here.

(e) (5 points) Describe a scenario in which a test suite that achieves 100% statement coverage might miss a bug in a program.
Then describe what other approach (testing, coverage, analysis, etc.) could find that bug. Use 4 sentences or fewer.

Your answer here.

Question 3. Short Answer (5 points each, 25 points)

(a) (5 points) Consider the following two pairs of tools, techniques, or processes. For
each pair, give a class of defects or a

situation for which the
first element performs
better than the second (i.e., is more likely to succeed and reduce
software
engineering effort and/or improve software engineering
outcomes) and explain why.

a. integration testing better than maximizing branch coverage
b. spiral development better than waterfall model

Your answer here.

(b) (5 points) Identify two risks associated with Netflix's adaptation and usage of
the Chaos Monkey dynamic analysis. Identify a
measurement
that could be used to guide decisions to reduce each risk.

Your answer here.

(c) (5 points) Here are two examples of bugs that need to be triaged:

A conversion error causes integers to occasionally flip signs (e.g., 4 becomes -4 and -4 becomes 4).

A graphical error causes images to display 1.5x as large as expected, resulting in cropping.

For each bug, give an example of a situation where it would have high
severity and a situation where the bug would have low

severity and explain why.

Your answer here.

(d) (5 points) Give an example of a software situation where fuzzing would be a better testing method than unit testing in

terms of finding many bugs. Then give a situation where unit testing would be a better
testing method than fuzzing in terms of
the time or cost
required. What kinds of bugs are likely to be revealed by fuzzing?

Your answer here.

(e) (5 points) You are a new team lead at Mozzarella and are in charge of leading a group of several developers. Your manager
asks you to begin collecting the following developer efficacy data:

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Lines of code written per day

Pull requests accepted into the master branch per month
Peer ratings from an annual survey completed by coworkers

For each measurement, describe why it might not accurately represent a worker's efficacy and explain one way a malicious
worker might exploit it.

Your answer here.

Question 4. Mutation Testing & Invariants (15 points)

Consider the code snippet below defining a function modest_liskov.

(a) (5 points) A postcondition is similar to an invariant, but is always true
just as or just after a function returns. (Informally, you

can think of it
as an assertion right at the end of the function.)

Consider the postcondition: baz >= 7.

The postcondition, baz >= 7, may be falsified by a first-order
mutant of the original modest_liskov function. Create that
mutant by making at most one edit to the below definition of modest_liskov.
(To phrase this another way, you should make a

single change to the program
so that on some input it does not satisfy the postcondition.) Create the mutant by clicking inside
the code window below and directly changing the initial code.

Mutant 1 (click inside to edit this directly):

(b) (10 points) Create two additional first-order mutants of modest_liskov by making
exactly one edit to each of the following

definitions of modest_liskov.
These two should target the same postcondition as your first mutant. (There is only one
postcondition: consider the same one each time.) Note that the mutants you create must be different from the original

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

modest_liskov,
the first mutant above, and from each other.

Below, you will then be asked to provide a single test input to modest_liskov such that the mutation adequacy score of your
suite of three mutants, when each is given that single input, is exactly
1/3. We consider a mutant that fails to satisfy a

postcondition as failing that test (i.e., such a mutant is
killed). You may use this requirement to guide how you create the
mutants.

Mutant 2:

Mutant 3:

What is a single test input to modest_liskov such that the
mutation adequacy score for the three mutants is 1/3?
All test
inputs must be integers. Express your answer as a list in the
form [x, y, z]. For example, if your inputs are x = 3, y = 4,
z = 5, then you would write [3, 4, 5].

Your answer here.

Question 5: Dataflow Analysis (11 points total)

Consider a live variable dataflow analysis
for three variables, a, x, and
q used in the control-flow graph below. We associate
with each variable a separate
analysis fact: either the variable is possibly read on a later path
before it is overwritten (live) or it

is not (dead). We track the set of
live variables at each point: for example, if a and
x are alive but
q is not,
we write {a, x}. The

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

def modest_liskov(x: int, y: int, z: int):

 baz = 7
 garply = 0

​
 if (z >= y) or (z > x):

 baz = baz + 5
 elif (z < y):

 baz = baz + 7
​

 if (x != y):
 baz = baz - 5

 if (z == y) and (z == x):

 garply = garply - 1
​

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

special statement return reads, but does not write,
its argument. In addition, if and while
read, but do not write, all of the

variables in their predicates.
(You must determine if this is a forward or backward
analysis.)

(1 point each) For each basic block B1 through B11, write down the
list of variables that are live right before the start of the

corresponding block in the control flow graph above. Please list only
the variable names in lowercase without commas or other
spacing (e.g.,
use either ab or ba to indicate that a and
b are alive before that block).

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

Question 6. Dynamic Analysis (15 points)

We decide to write our own dynamic analysis tool, Checkers, to help
us deal with race conditions. Checkers works by following

a standard lockset
algorithm. For each shared variable, Checkers maintains a candidate set
of locks that might protect that
variable. The first time a shared variable is accessed by a thread, Checkers notes the
set locks that thread currently holds.

Every subsequent time that shared variable
is accessed by a thread, the candidate set of locks guarding that variable is
intersected with the currently-held locks of that thread. At the end, if a shared variable
is not protected by any locks, a race

condition is reported.

As part of its operation, Checkers instruments the program to
log variable reads, variable writes, lock acquisition,
and lock

release. All such operations are instrumented to write the name and
arguments of the operation, as well as a thread ID, to a
log file.

(Note: This lockset algorithm works just like the one discussed in
class. There are no hidden tricks or mistakes or changes in
the description
above, it is simply a summary for your convenience.)

(a) (2 points each, 4 points) We run Checkers on a series of programs and examine its output. For each of the programs below,

consider if Checkers would report a race condition (i.e., if the computed
lockset for a shared variable is empty) by examining
the contents of the Checkers log file.

Variables with names that include local are thread-local variables
that are not relevant for race conditions. Variables with
names that
include shared are shared variables that can
be involved in race conditions. Variables with names that include
mu
are locks (short for mutex or
mutual exclusion).

(ai) (2 points) Program:

int sharedA = 0;
mutex muA;

int sharedB = 0;
mutex muB;

​
void thread1() {

 muA.lock();
 muB.lock();

1
2

3
4

5
6

7
8

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Checkers log file:

True/False: a race condition can be detected from the log file.

(aii) (2 points) Program:

Checkers log file:

True/False: a race condition can be detected from the log file.

True
False

True
False

(b) (4 points) We view Checkers as an analysis for helping us to conclude that a program
has no race conditions. In this view,

Checkers is sound if and only if it reports all
such defects (i.e., has no false negatives). Is Checkers a sound analysis? Is it
complete? Explain your reasoning in at most four sentences.

 sharedA = 10;

 sharedB = 20;
 muB.unlock();

 muA.unlock();
}

​
void thread2() {

 muB.lock();
 sharedB = 20;

 muA.lock();
 sharedA = 10;

 muA.unlock();
 muB.unlock();

}

thread 1: lock muA
thread 2: lock muB

thread 2: write sharedB
thread 1: lock muB

thread 2: lock muA

int shared = 0;
mutex mu;

​
void thread1() {

 mu.lock();
 shared += shared;

 mu.unlock();
}

​
void thread2() {

 int local;
 local = 12;

 mu.lock();
 shared -= 2;

 mu.unlock();
}

thread 2: write local
thread 1: lock mu

thread 1: read shared
thread 1: read shared

thread 1: write shared
thread 1: unlock mu

thread 2: lock mu
thread 2: read shared

thread 2: write shared
thread 2: unlock mu

9

10
11

12
13

14
15

16
17

18
19

20
21

22

1
2

3
4

5

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
2

3
4

5
6

7
8

9
10

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Your answer here.

(c) (4 points) Support or refute the following statement: "A dynamic lockset algorithm
such as Checkers is better suited than a

static analysis tool would be for
race condition detection."

Your answer here.

(d) (3 points) Suppose we want to test our dynamic analysis — that is, we want to
gain confidence that it correctly reports a

race condition if and only if
the subject program has a race condition. To do so, we need a suite of
subject programs for which
we know whether each subject program has
a race condition or not. Creating such a suite would be expensive. We decide to

use just one part of mutation from mutation analysis: start
with a single known-good program and randomly delete a call to
lock or
unlock to produce a new subject program that should now have a race
condition. Support or refute the claim that using

this simple part of mutation would be a good way to produce a test suite for Checkers. (Note that in this question a test input
to the Checkers analysis is,
itself, another program, which also has its own input. Note also that this
question is about using a

mutation operator, but is not about standard
mutation analysis.)

Your answer here.

Extra Credit

Each question below is for 1 point of extra credit unless
noted otherwise. We are
strict about giving points for these answers.
No partial credit.

(1) What is your favorite part of the class so far?

Your answer here.

(2) What is your least favorite part of the class so
far?

Your answer here.

(3) If you read any optional reading, identify it and
demonstrate to us that you have read it critically. (2 points)

Your answer here.

(4) If you read any other optional reading, identify it and
demonstrate to us that you have read it critically. (2 points)

Your answer here.

(5) In your own words, identify and explain any of
the bonus psychology effects or ethical considerations presented in class on
the colored bordered slides or in a
"long instructor post" on Piazza. (2 points)

Your answer here.

Honor Pledge and Exam Submission

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

You must check the boxes below before you can submit your exam.

I have neither given nor received unauthorized aid on this exam.

I am ready to submit my exam.

Note that your submission will be marked as late. You can still submit, and we will retain all submissions you make, but
unless you have a documented extenuating circumstance, we will not consider this submission.

Submit My Exam

Once you submit, you will be able to leave the page without issue. Please don't try to mash the button.

The exam is graded out of 100 points.

LATE
minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

