
Advanced Programming Languages
Homework Assignment 3F and 3C

EECS 590

Logistics. You must work alone. Your name and Michigan email address must appear on
the first page of your PDF submission but may not appear anywhere else. This is to protect
your identity during peer review. The first page of your submission is not shared during
peer view but all subsequent pages are.

Exercise 3F-1. Bookkeeping [2 points]. These answers should appear on the first page
of your submission and are kept private.

1. Indicate in a sentence or two how much time you spent on this homework.

2. Indicate in a sentence or two how difficult you found it subjectively.

All subsequent answers should appear after the first page of your submission and may be
shared publicly during peer review.

Exercise 3F-2. Regular Expression, Large-Step [10 points]. Regular Expressions
are commonly used as abstractions for string matching. Here is an abstract grammar for
regular expressions:

e ::= ”x” singleton — matches the character �x
| empty skip — matches the empty string
| e1 e2 concatenation — matches e1 followed by e2
| e1 | e2 or — matches e1 or e2
| e∗ Kleene star — matches 0 or more occurrence of e

| . matches any single character
| [”x”− ”y”] matches any character between �x and �y inclusive
| e+ matches 1 or more occurrences of e
| e? matches 0 or 1 occurrence of e

We will call the first five cases the primary forms of regular expressions. The last four
cases can be defined in terms of the first five. We also give an abstract grammar for strings

1

(modeled as lists of characters):

s ::= nil empty string
| ”x” :: s string with first character �x and other characters s

We write ”bye” as shorthand for ”b” :: ”y” :: ”e” :: nil. This exercise requires you to give
large-step operational semantics rules of inference related to regular expressions matching
strings. We introduce a judgment:

` e matches s leaving s′

The interpretation of the judgment is that the regular expression e matches some prefix of
the string s, leaving the suffix s′ unmatched. If s′ = nil then r matched s exactly. Examples:

` ”h”(”e”+) matches ”hello” leaving ”llo”

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

` (”h” | ”e”)∗ matches ”hello” leaving ”ello”
` (”h” | ”e”)∗ matches ”hello” leaving ”hello”
` (”h” | ”e”)∗ matches ”hello” leaving ”llo”

Here are two rules of inference:

s = ”x” :: s′

` ”x” matches s leaving s′ ` empty matches s leaving s

Give large-step operational semantics rules of inference for the other three primal regular
expressions.

Exercise 3F-3. Regular Expression and Sets [5 points]. We want to update our
operational semantics for regular expressions to capture multiple suffices. We want our new
operational semantics to be deterministic — it return the set of all possible answers from
the single-answer operational semantics above. We introduce a new judgment:

` e matches s leaving S

And use rules of inference like the following:

` ”x” matches s leaving {s′ | s = ”x” :: s′} ` empty matches s leaving {s}

` e1 matches s leaving S ` e2 matches s leaving S ′

` e1 | e2 matches s leaving S ∪ S ′

You must do one of the following:

2

• either give operational semantics rules of inference for e∗ and e1e2. You may not place
a derivation inside a set constructor, as in: {x | ∃y. ` e matches x leaving y}. Each
inference rules must have a finite and fixed set of hypotheses.

• or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of
inference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research is getting stuck. When you get stuck, you must be able to recognize
whether “you are just missing something” or “the problem is actually impossible”.

Exercise 3F-4. Equivalence [7 points]. In the class notes (usually marked as “optional
material” for the lecture component of the class but relevant for this question) we defined
an equivalence relation c1 ∼ c2 for IMP commands. Computing equivalence turned out to
be undecideable: c ∼ c iff c halts. We can define a similar equivalence relation for regular
expressions: e1 ∼ e2 iff ∀s ∈ S. ` e1 matches s leaving S1 ∧ ` e2 matches s leaving S2 =⇒
S1 = S2 (note that we are using an “updated” operational semantics that returns the set of
all possible matched suffices, as in the previous problem).

You must either claim that e1 ∼ e2 is undecideable by reducing it to the halting problem
or explain in two or three sentences how to compute it. You may assume that I the reader
is familiar with the relevant literature.

Exercise 3C. SAT Solving. Download the Homework 3 code pack from the course web
page. Update the skeletal SMT solver so that it correctly integrates the given DPLL-style
CNF SAT solver with the given theory of bounded arithmetic. In particular, you must
update only the Main.solve function. Your updated solver must be correct. This notably
implies that it must correctly handle all of the included test cases — we use diff for some
testing, but if you change only the listed method you should end up with the same answers
as the reference.

In addition, create an example “tricky” input that can be parsed by our test harness.
Submit your .ml and .input files.

Exercise 3F-5. SAT Solving [6 points]. Why do the last two included tests take such
a comparatively long time? Impress me with your knowledge of DPLL(T) — feel free to use
information from the assigned reading or related papers, not just from the lecture slides. I
am looking for a reasonably detailed answer. Include a discussion of which single module you
would rewrite first to improve performance, as well as how you would change that module.

Potential bonus point: The provided code contains at least one fairly egregious defect.
Comment.

3

Submission. Turn in the formal component of the assignment as a single PDF document
via the gradescope website. Your name and Michigan email address must appear on the
first page of your PDF submission but may not appear anywhere else. Turn in the coding
component of the assignment via the autograder.io website.

4

