
Games, Time, and Probability:

Graph Models for System Design and Analysis?

Thomas A. Henzinger1

EPFL, Switzerland
tah@epfl.ch

Abstract. Digital technology is increasingly deployed in safety-critical
situations. This calls for systematic design and verification methodologies
that can cope with three major sources of system complexity: concur-
rency, real time, and uncertainty. We advocate a two-step process: formal
modeling followed by algorithmic analysis (or, “model building” followed
by “model checking”). We model the concurrent components of a reactive
system as potential collaborators or adversaries in a multi-player game
with temporal objectives, such as system safety. The real-time aspect of
embedded systems requires models that combine discrete state transi-
tions and continuous state evolutions. Uncertainty in the environment is
naturally modeled by probabilistic state changes. As a result, we obtain
three orthogonal extensions of the basic state-transition graph model for
reactive systems —game graphs, timed graphs, and stochastic graphs—
as well as combinations thereof. In this short text, we provide a uniform
exposition of the underlying definitions. For verification algorithms, we
refer the reader to the literature.

1 Graph Models

In graph models of reactive systems, the vertices of a graph represent system
states, and the edges represent state transitions. Formally, a graph model G =
(Q, Γ, δ) consists of a set Q of states, a set Γ of choices, and a transition function
δ: Q × Γ → Q. Given a state q ∈ Q, each choice γ ∈ Γ determines a successor
state δ(q, γ) ∈ Q. The choices represent nondeterminism in state transitions. In
the following, we fix the graph model G. A Boolean valuation v: Q → {0, 1}
assigns to each state a truth value; a Markovian valuation p: Q → [0, 1] assigns
to each state a real value denoting a probability.

If a reactive system is modeled as a graph, then paths in the graph represent
possible behaviors of the system. A finite or infinite sequence of states is called
a trace. We write q0..i short for the finite trace q0, q1, . . . , qi. Traces are gener-
ated by schedulers. A scheduler σ: Q+ → Γ maps every nonempty finite trace,
representing the past behavior of the system, to a choice, which determines the
next state of the system. We write Σ for the set of schedulers. Given a scheduler

? This research was supported in part by the Swiss National Science Foundation, and
by the NSF ITR grant CCR-0225610.



σ ∈ Σ and a start state q ∈ Q, the infinite trace σ∗(q) = q0, q1, q2, . . . generated

by σ from q is defined by (1) q0 = q and (2) qi+1 = δ(qi, σ(q0..i)) for all i ≥ 0.

Consider the Cantor topology on infinite traces, whose basic open sets have
the form q0..iQ

ω; that is, each basic open set contains all infinite extensions of
some finite trace q0..i ∈ Q∗. A property Φ ⊆ Qω is a Borel set of infinite traces.
We write F for the set of properties. In our usage (which is dual to the standard
usage), a reactive system satisfies the property Φ iff all possible behaviors of the
system lie outside Φ; in other words, the set Φ specifies the undesirable traces.
An example of a safety property is Q∗qerrQ

ω, where qerr ∈ Q represents an
error state: this property is violated iff some scheduler causes the error state
to be visited. An example of a liveness property is Q∗qreq(Q\{qgrnt})

ω, where
qreq represents a state where a request is made, and qgrnt represents a state
where the request is granted: this property is violated iff some scheduler causes
a request not to be followed by a grant. Formally, given a start state q ∈ Q

and a scheduler σ ∈ Σ, the payoff function P(q, σ): F → {0, 1} assigns to each
property a truth value, namely, P(q, σ)(Φ) = 1 iff σ∗(q) ∈ Φ. For a property
Φ ∈ F , the value function val(Φ): Q → {0, 1} is the Boolean valuation defined
by val(Φ)(q) = supσ∈Σ P(q, σ)(Φ); that is, the value of Φ at a state q is 1 if there
exists a scheduler that generates from q a trace in Φ, and otherwise the value of
Φ at q is 0. If val(Φ)(q) = 0, then we say that the state q satisfies the property Φ;
if val(Φ)(q) = 1, then q violates Φ. In the latter case, the witnessing scheduler
σ is called a counterexample to Φ at q. If the graph model is not fixed, then we
write valG(Φ) for the value function of a property Φ on a graph model G.

A scheduler σ is memoryfree if qi = q′j implies σ(q0..i) = σ(q′0..j); that is,
each choice of the scheduler depends only on the current state, and not on the
past behavior of the system. It should be noted that counterexamples may need
memory. For instance, the state q0 of the graph model with Q = {q0, q1, q2}, Γ =
{1, 2}, and δ = {(q0, 1, q1), (q0, 2, q2), (q1, ·, q0), (q2, ·, q0)} violates the generalized
Büchi property (Q∗q1Q

∗q2)
ω , but there is no memoryfree counterexample.

Graph models are often very large (even infinite) objects, and properties
are usually infinite sets. In practice, graph models and properties are specified
by succinct, finite descriptions given in a particular syntax. For example, the
terms of a process algebra, or a class of programs written in a programming
language, may be used to specify graph models; the formulae of a temporal
logic, or a class of finite automata over infinite words, may be used to specify
properties. Let L1 be a system description language, whose expressions specify
graph models, and let L2 be a property description language, whose expressions
specify properties. For an expression e ∈ L, we write [[e]] for the graph model
(resp. property) specified by e. The model-checking problem for L1 and L2 asks,
given two expressions e1 ∈ L1 and e2 ∈ L2, to compute the Boolean valuation
val[[e1]]([[e2]]). Moreover, for each violating state q of the graph model [[e1]], a
counterexample to the property [[e2]] at q is desired.

For algorithms that solve important instances of the model-checking problem
and compute counterexamples, start with [CGP99].



2 Game Models

Game models of reactive systems are extensions of graph models, where the
players in the game represent different components of the system (or the envi-
ronment). Formally, a two-player game model (Q, Γ1, Γ2, δ) consists of a set Q of
states, two sets Γ1 and Γ2 of choices for the two players, and a transition function
δ: Q×Γ1×Γ2 → Q. Given a state q ∈ Q, if player 1 chooses γ1 ∈ Γ1 and player 2
chooses γ2 ∈ Γ2, then the successor state is δ(q, γ1, γ2) ∈ Q. A generalization to
more than two players is possible, but not discussed here. These graph games are
called concurrent [AHK02]; the special case of turn-based games occurs if every
state q ∈ Q is either a player-1 state or a player-2 state. The state q is a player-1

state if for all choices γ1 ∈ Γ1 and γ2, γ
′
2 ∈ Γ2, we have δ(q, γ1, γ2) = δ(q, γ1, γ

′
2);

that is, player 1 determines the successor state. The player-2 states are defined
symmetrically.

In games, schedulers are called strategies, properties are called objectives,
and counterexamples are called winning strategies. For k ∈ {1, 2}, a player-

k strategy σk : Q+ → Γk maps every nonempty finite trace to a choice for
player k. We write Σk for the set of player-k strategies. Given a start state
q ∈ Q and strategies σ1 ∈ Σ1 and σ2 ∈ Σ2 for the two players, the gener-
ated trace (σ1, σ2)

∗(q) = q0, q1, q2, . . . is defined by (1) q0 = q and (2) qi+1 =
δ(qi, σ1(q0..i), σ2(q0..i)) for all i ≥ 0. The payoff function P(q, σ1, σ2): F → {0, 1}
is defined by P(q, σ1, σ2)(Φ) = 1 iff (σ1, σ2)

∗(q) ∈ Φ. For an objective Φ ∈ F , the
player-1 value function val1(Φ): Q → {0, 1} is the Boolean valuation defined by
val1(Φ)(q) = supσ1∈Σ1

infσ2∈Σ2
P(q, σ1, σ2)(Φ); that is, the value of Φ at a state

q is 1 iff there exists a player-1 strategy such that for all player-2 strategies, the
trace generated from q lies in Φ. If val1(Φ)(q) = 1, then the state q is player-1

winning for the objective Φ; in this case, the witnessing player-1 strategy σ1 is
called a winning strategy for Φ at q.

The player-2 value function val2(Φ) is defined symmetrically, by val2(Φ)(q) =
supσ2∈Σ2

infσ1∈Σ1
P(q, σ1, σ2)(Φ). The game is zero-sum if the objectives of the

two players are complementary. Turn-based graph games with zero-sum Borel ob-
jectives are determined: each state of a turn-based game model is either player-1
winning for the objective Φ, or player-2 winning for the complementary objective
Qω\Φ [Mar75].

Let L1 be a system description language whose expressions specify game mod-
els, and let L2 be an objective description language. The game-solving problem
for L1 and L2 asks, given two expressions e1 ∈ L1 and e2 ∈ L2, to compute the

Boolean valuation val
[[e1]]
1 ([[e2]]). Moreover, for each player-1 winning state q of

the game model [[e1]], a winning strategy for the objective [[e1]] at q is desired.
For algorithms that solve turn-based games and compute winning strategies,

start with [Tho95,GTW03]; for concurrent games, see [AHK02].

3 Stochastic Models

Stochastic models allow probabilistic transition functions and probabilistic sched-
ulers. We write D(S) for the probability distributions on a set S. A stochastic



graph model (a.k.a. Markov decision process) (Q, Γ, δ) consists of a set Q of
states, a set Γ of choices, and a transition function δ: Q × Γ → D(Q) which
assigns to each state q ∈ Q and choice γ ∈ Γ a probability distribution δ(q, γ):
Q → [0, 1] on the successor state.

A probabilistic scheduler σ: Q+ → D(Γ ) maps every nonempty finite trace
to a probability distribution on the next choice. We write Σp for the set of prob-
abilistic schedulers. To distinguish the nonprobabilistic schedulers in Σ, we call
them pure. The outcome of applying a probabilistic scheduler to a state of a
graph model, or of applying a pure scheduler to a state of a stochastic model,
is not a single infinite trace, but a probability distribution on the generated
infinite trace. Formally, given a start state q ∈ Q of a stochastic model and
a probabilistic scheduler σ ∈ Σp, the payoff function P(q, σ): F → [0, 1] is a
probability measure that assigns to each property Φ ∈ F the probability that
the generated infinite trace lies in Φ. In order to define the function P(q, σ),
it suffices to define its value on the basic open sets. This is done inductively:
(1) P(q, σ)(q0Q

ω) is 1 if q0 = q, and 0 otherwise; (2) P(q, σ)(q0..iqi+1Q
ω) =

P(q, σ)(q0..iQ
ω) ·

∑
γ∈Γ (σ(q0..i)(γ) · δ(qi, γ)(qi+1)). For a property Φ ∈ F , the

value function val(Φ): Q → [0, 1] is the Markovian (rather than Boolean) val-
uation defined by val(Φ)(q) = supσ∈Σp P(q, σ)(Φ); that is, the value of Φ at a
state q is the maximal probability with which any scheduler can ensure that an
infinite trace generated from q lies in Φ. The witnessing scheduler σ is called an
optimal scheduler for Φ at q.

A stochastic game model (Q, Γ1, Γ2, δ) is a game model with a probabilistic
transition function δ: Q × Γ1 × Γ2 → D(Q). In such games, the two players are
allowed probabilistic strategies σ1 ∈ Σ

p
1 and σ2 ∈ Σ

p
2 . In the definition of payoffs,

let P(q, σ1, σ2)(q0..iqi+1Q
ω) = P(q, σ1, σ2)(q0..iQ

ω)·
∑

γ1∈Γ1

∑
γ2∈Γ2

(σ1(q0..i)(γ1)·
σ2(q0..i)(γ2) ·δ(qi, γ1, γ2)(qi+1)). For an objective Φ ∈ F , the player-1 value func-
tion val1(Φ): Q → {0, 1} is the Markovian valuation defined by val1(Φ)(q) =
supσ1∈Σ

p

1

infσ2∈Σ
p

2

P(q, σ1, σ2)(Φ); that is, the value of Φ at a state q is the max-
imal probability with which player 1 can ensure, against any player-2 strategy,
that an infinite trace generated from q lies in Φ.

Stochastic graph games with zero-sum Borel objectives are determined: for
all objectives Φ ∈ F and all states q ∈ Q, we have val1(Φ)(q) + val2(Q

ω\Φ)(q) =
1 [Mar98]. It should be noted that probabilistic strategies are required for de-
terminacy: even for nonstochastic game models, optimal strategies may need to
be probabilistic. For instance, the objective Q∗q1Q

ω has the player-1 value 1 at
the state q0 of the game model with Q = {q0, q1}, Γ1 = {1, 2}, Γ2 = {1, 2},
and δ = {(q0, 1, 2, q0), (q0, 2, 1, q0), (q0, 1, 1, q1), (q0, 2, 2, q1), (q1, ·, ·, q1)}. To see
this, observe that any memoryfree player-1 strategy σ1 with σ1(q0)(1) > 0 and
σ1(q0)(2) > 0 is optimal. However, there is no optimal pure strategy for player 1.

Let L1 be a system description language whose expressions specify stochastic
graph or game models, and let L2 be a property description language. The
quantitative-solution problem for L1 and L2 asks, given two expressions e1 ∈
L1 and e2 ∈ L2 and a desired degree of numerical precision, to compute the

Markovian valuation val[[e1]]([[e2]]) (resp. val
[[e1]]
1 ([[e2]])). For a Markovian valuation



v: Q → [0, 1], let bvc: Q → {0, 1} be the Boolean valuation defined by bvc(q) = 1
if v(q) = 1, and bvc(q) = 0 if v(q) < 1. The qualitative-solution problem asks to
compute the Boolean valuation bvc, where v is the answer to the quantitative
problem. Many qualitative problems can be solved in a 3-valued probability
model, which distinguishes only the three probability values 0, (0,1), and 1.

For an introduction to stochastic graph games, start with [FV97]. For algo-
rithms that solve stochastic turn-based games (including Markov decision pro-
cesses) and compute optimal strategies, see [Con92,Con93,CY95,dAlf97] and,
more recently, [CJH03,CJH04,CdAH05,CH06a,CH06b]. For the qualitative so-
lution of concurrent games, see [dAHK98,dAH00,CdAH06b]; for the quantitative
solution of concurrent games, see [dAM04,CdAH06a].

4 Timed Models

We model time by the real numbers, although other choices are possible. In a
timed graph model, each state q ∈ Q is annotated with a real-valued timeout

u(q) ∈ R≥0 ∪ {∞}, which provides an upper bound on the amount of time that
may be spent in the state. A timed graph model (Q, Γ, u, δ) consists of a set Q

of states, a set Γ of choices, a timeout function u: Q → R≥0, and a transition
function δ: Q×R≥0 × Γ → Q. If in state q ∈ Q, choice γ ∈ Γ is scheduled after
a time delay of t ≤ u(q), then the successor state is δ(q, t, γ).

The behaviors of a real-time system are represented as timed traces. A timed

trace τ = q0, t0, q1, t1, q2, . . . is a finite or infinite sequence of alternating states
qi ∈ Q and time delays ti ∈ R≥0. The timed trace τ diverges if

∑
i≥0 ti = ∞. Let

T = Q×R≥0. We write T div ⊆ T ω for the set of divergent timed traces. A timed

scheduler σ: T ∗Q → R≥0 ×Γ maps every finite timed trace that ends in a state,
to both a time delay and a choice. We require that if σ(τq) = (t, ·), then t ≤ u(q).
We write Σt for the set of timed schedulers. Given a timed scheduler σ ∈ Σt and
a start state q ∈ Q, the infinite timed trace σ∗(q) = q0, t0, q1, t1, q2, . . . generated

by σ from q is defined by (1) q0 = q and (2) for all i ≥ 0, if σ(q0, . . . , qi) = (t, γ),
then ti = t and qi+1 = δ(qi, t, γ).

A timed property Φ ⊆ T ω is a set of infinite timed traces. We write F t for the
set of timed properties. Given a start state q ∈ Q and a timed scheduler σ ∈ Σt,
the payoff function P(q, σ): F t → {0, 1} is defined by P(q, σ)(Φ) = 1 iff σ∗(q) ∈
(Φ ∩ T div ). Note that for payoff 1 we require that the generated trace diverges;
this is because a physically realizable scheduler must not enforce a property by
preventing time from diverging. For a timed property Φ ∈ F t, the value function
val(Φ): Q → {0, 1} is defined as usual, by val(Φ)(q) = supσ∈Σt P(q, σ)(Φ).

Some timed graph models are not well-formed, in the sense that they contain
states from which no scheduler can ensure the divergence of time. Formally, a
timed graph model is nonzeno if val(T ω)(q) = 1 for all states q ∈ Q. Thus,
checking nonzenoness is a special instance of the model-checking problem for
timed graph models. Only nonzeno models represent physical systems.

A timed game model (Q, Γ1, Γ2, u, δ) has a timeout function u: Q → R≥0 and
a transition function of type δ: Q × R≥0 × (Γ1 ∪ Γ2) → Q. If in state q ∈ Q,



player 1 schedules choice γ1 ∈ Γ1 after time delay t1 ≤ u(q), and player 2
schedules choice γ2 ∈ Γ2 after time delay t2 ≤ u(q), then the successor state is
δ(q, t1, γ1) if t1 < t2; otherwise the successor state is δ(q, t2, γ2). In other words,
both players propose time delays, and the proposal for the shorter delay “wins.”
Note that the definition breaks ties (t1 = t2) arbitrarily in favor of player 2;
a symmetric resolution, such as defining concurrent outcomes for simultaneous
choices, would be more desirable, but the issue altogether disappears in a suitable
stochastic model, where the time delays are chosen at random. However, we do
not define such a model here.

We wish to restrict both players to use physically realizable strategies, which
do not prevent time from diverging. This restriction is surprisingly subtle, be-
cause any one player cannot ensure the divergence of time if the other player
chooses to block the advance of time [dAFH+03]. In order to decide which player
is to “blame” for a convergent trace, we need to slightly generalize the notion of
timed trace: we now consider a timed trace τ = q0, t0, b0, q1, t1, b1, q2, . . . to be a
sequence of alternating states qi ∈ Q, time delays ti ∈ R≥0, and player names
bi ∈ {1, 2}. The bit bi = k indicates that the i-th time delay ti is chosen by
player k. Player k cannot be held responsible for causing the convergence of τ if
bi = k for only finitely many i ≥ 0. In the following, let T = Q × R≥0 × {1, 2}.
For k ∈ {1, 2}, let T noblame

k be the set of timed traces τ = q0, t0, b0, q1, . . . such
that (1)

∑
i≥0 ti < ∞ (that is, τ converges), and (2) there exists a j ≥ 0 such

that bi 6= k for all i ≥ j (that is, player k is not to blame for the convergence
of τ). Given a start state q ∈ Q and two timed schedulers σ1 ∈ Σt

1 and σ2 ∈ Σt
2,

the generated timed trace (σ1, σ2)
∗(q) = q0, t0, b0, q1, . . . is defined by (1) q0 = q

and (2) for all i ≥ 0, if σ1(q0, . . . , qi) = (t1, γ1) and σ2(q0, . . . , qi) = (t2, γ2),
then (2a) if t1 < t2, then ti = t1 and bi = 1 and qi+1 = δ(qi, t1, γ1); and (2b) if
t2 ≤ t1, then ti = t2 and bi = 2 and qi+1 = δ(qi, t2, γ2).

The restriction to strategies that do not prevent time from diverging leads
to nonzero-sum games: for player k ∈ {1, 2}, start state q ∈ Q, and strategies
σ1 ∈ Σ1 and σ2 ∈ Σ2, the player-k payoff function Pk(q, σ1, σ2): F

t → {0, 1}
is defined by Pk(q, σ1, σ2)(Φ) = 1 iff (σ1, σ2)

∗(q) ∈ ((Φ ∩ T div) ∪ T noblame
k ).

Note that player k receives payoff 1 for objective Φ on a convergent trace if she
cannot be held responsible for the convergence of time, irrespective of whether
or not the trace lies in Φ. For an objective Φ ∈ F t, the player-1 values are
defined by val1(Φ)(q) = supσ1∈Σt

1

infσ2∈Σt
2

P1(q, σ1, σ2)(Φ); that is, player 1 must
ensure that either the generated trace diverges and lies in Φ, or that she is not
held responsible for the convergence of time. The player-2 values are defined
symmetrically. Even if both players have complementary objectives Φ and T ω\Φ,
both may receive payoff 0 on a convergent trace; indeed, there are states q

with both val1(Φ)(q) = 0 and val2(T
ω\Φ)(q) = 0 [dAFH+03]. However, for a

timed game to be well-formed, each player must be able to win for the trivial
objective Φ = T ω: a timed game model is nonzeno if both val1(T

ω)(q) = 1 and
val2(T

ω)(q) = 1 for all states q ∈ Q [HP06].

A popular system description language whose expressions specify timed graph
or timed game models is the formalism of timed automata [AD94]. This language



has the advantage that, even over infinite state spaces, important model-checking
and game-solving problems can be decided. For model checking timed graphs
that are specified by timed automata, see [ACD93,HNSY94]; for the solution of
timed games that are specified by timed automata, see [WH91,MPS95,dAFH+03].

References

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104:2–34, 1993.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

[CdAH05] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of stochas-
tic Rabin and Streett games. In ICALP: Automata, Languages, and Programming,
Lecture Notes in Computer Science 3580, pages 878–890. Springer, 2005.

[CdAH06a] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of quan-
titative concurrent parity games. In Proceedings of the 17th Annual Symposium

on Discrete Algorithms, pages 678–687. ACM Press, 2006.

[CdAH06b] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Strategy improvement
for concurrent reachability games. In Proceedings of the Third Annual Conference

on Quantitative Evaluation of Systems. IEEE Computer Society Press, 2006.

[CH06a] K. Chatterjee and T.A. Henzinger. Strategy improvement and randomized
subexponential algorithms for stochastic parity games. In STACS: Theoretical

Aspects of Computer Science, Lecture Notes in Computer Science 3884, pages 512–
523. Springer, 2006.

[CH06b] K. Chatterjee and T.A. Henzinger. Strategy improvement for stochastic Ra-
bin and Streett games. In CONCUR: Concurrency Theory, Lecture Notes in Com-
puter Science 4137, pages 375–389. Springer, 2006.

[CJH03] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple stochastic parity
games. In CSL: Computer Science Logic, Lecture Notes in Computer Science 2803,
pages 100–113. Springer, 2003.

[CJH04] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic
parity games. In Proceedings of the 15th Annual Symposium on Discrete Algo-

rithms, pages 114–123. ACM Press, 2004.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[Con92] A. Condon. The complexity of stochastic games. Information and Computa-

tion, 96:203–224, 1992.

[Con93] A. Condon. On algorithms for simple stochastic games. In Advances in Com-

putational Complexity Theory, DIMACS Series in Discrete Mathematics and The-
oretical Computer Science 13, pages 51–73. AMS, 1993.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verifica-
tion. Journal of the ACM, 42:857–907, 1995.

[dAlf97] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stan-
ford University, 1997.

[dAFH+03] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga.
The element of surprise in timed games. In CONCUR: Concurrency Theory, Lec-
ture Notes in Computer Science 2761, pages 144–158. Springer, 2003.



[dAH00] L. de Alfaro and T.A. Henzinger. Concurrent omega-regular games. In Pro-

ceedings of the 15th Annual Symposium on Logic in Computer Science, pages 141–
154. IEEE Computer Society Press, 2000.

[dAHK98] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability
games. In Proceedings of the 39th Annual Symposium on Foundations of Computer

Science, pages 564–575. IEEE Computer Society Press, 1998.
[dAM04] L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular

games. Journal of Computer and System Sciences, 68:374–397, 2004.
[FV97] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
[GTW03] E. Gräedel, W. Thomas, and T. Wilke (eds.). Automata, Logics, and Infinite

Games. Lecture Notes in Computer Science 2500. Springer, 2003.
[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. Information and Computation, 111:193–244, 1994.
[HP06] T.A. Henzinger and V. Prabhu. Timed alternating-time temporal logic. In

FORMATS: Formal Modeling and Analysis of Timed Systems, Lecture Notes in
Computer Science 4202, pages 1–17. Springer, 2006.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In STACS: Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science 900, pages 229–242. Springer, 1995.

[Mar75] D.A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
[Mar98] D.A. Martin. The determinacy of Blackwell games. The Journal of Symbolic

Logic, 63:1565–1581, 1998.
[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In STACS:

Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 900,
pages 1–13. Springer, 1995.

[WH91] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In Proceedings of the 30th Annual Conference on Decision and Control,
pages 1527–1528. IEEE Press, 1991.


