
Debugging asDebugging as
Hypothesis TestingHypothesis Testing

2

The Story So Far …
● Quality assurance is critical to software

engineering.
● Static and dynamic QA approaches are common

● Defect reports are tracked and assigned to
developers for resolution

● Modern software is so huge that simple
debugging approaches do not work

● How should we intelligently and scalably
approach debugging?

3

One-Slide Summary
● Delta debugging is an automated debugging

approach that finds a one-minimal interesting
subset of a given set. It is very efficient.

● Delta debugging is based on divide-and-
conquer and relies heavily on critical
assumptions (monotonicity, unambiguity, and
consistency).

● It can be used to find which code changes
cause a bug, to minimize failure-inducing
inputs, and even to find harmful thread
schedules.

4

Debugging Case Study

● Consider this deployment pipeline: Git Server
to Jenkins to GlassFish application server
● You have a known-valid test input (NetBeans git

commit) that leads to an incorrect WAR file
● What would you to do determine which pipeline

stage has the bug?

5

Real Life Motivation

● The Mozilla developers had a large number of
open bug reports in the queue that were not
even simplified

● The Mozilla engineers “faced imminent doom”
● Netscape product management sent out the

Mozilla Bug-A-Thon call for volunteers: people
who would help simplify bug reports.
● Simplify turn bug reports into minimal test →

cases, where each part of the input matters

6

Minimizing a Mozilla Bug

● We want something
that can simplify this
large HTML intput to
just “<SELECT>”
which causes the
crash

● Each character in
“SELECT” is relevant
(see 20-26)

7

8

Delta Debugging

● Three Problems: One Common Approach
● Simplifying Failure-Inducing Input
● Isolating Failure-Inducing Thread Schedules
● Identifying Failure-Inducing Code Changes

9

Failure-Inducing Input

● Having a test input may not be enough
● Even if you know the suspicious code, the input

may be too large to step through

● This HTML input makes a version of Mozilla
crash. Which portion is relevant?

10

Thread Scheduling

● Multithreaded programs can be non-
deterministic
● Can we find simple, bug-inducing thread

schedules?

11

Code Changes

● A new version of GDB has a UI bug
● The old version does not have that bug

● 178,000 lines of code have been modified
between the two versions
● Where is the bug?
● These days: continuous integration testing helps

● … but does not totally solve this. Why?

12

What is a Difference?

● With respect to debugging, a difference is a
change in the program configuration or state
that may lead to alternate observations
● Difference in the input: different character or bit in

the input stream

● Difference in thread schedule: difference in the time
before a given thread preemption is performed

● Difference in code: different statements or
expressions in two versions of a program

● Difference in program state: different values of
internal variables

13

Unified Solution

● Abstract Debugging Problem:
● Find which part of something (= which difference,

which input, which change) determines the failure
● “Find the smallest subset of a given set that is still

interesting”

● Divide and Conquer
● Applied to: working and failing inputs, code

versions, thread schedules, program states, etc.

14

Yesterday, My Program Worked
Today, It Does Not

● We will iteratively
● Hypothesize that a small subset is interesting

● Example: change set {1,3,8} causes the bug

● Run tests to falsify that hypothesis

15

Delta Debugging
● Given

● a set C = {c
1
, …, c

n
} (of changes)

● a function Interesting : C {Yes, No}→
● Interesting(C) = Yes
● Interesting is monotonic, unambiguous and

consistent (more on these later)

● The delta debugging algorithm returns a one-
minimal Interesting subset M of C:
● Interesting(M) = Yes
● Forall m in M, Interesting(M \ {m}) = No

16

One-Minimal Defined

● Students are often confused by one-minimal
● Interesting(M) = Yes
● Forall m in M, Interesting(M \ {m}) = No

● Suppose Interesting(M) = ints in M sum to 0
● Then M = { 7, -3, -4, 2, -2 } is one-minimal

● { -3, -4, 2, -2 }, { 7, -4, 2, -2}, { 7, -3, 2, -2} and
{7, -3, -4, 2} are all non-Interesting

● Note, however, that {2, -2} is a smaller subset
of M that is interesting! (Have to remove 3 elements, not 1 …)

● M is one-minimal, not (true) minimal

17

Example Use of Delta Debugging

● C = the set of n changes
● Interesting(X) = Apply the changes in X to

Yesterday's version and compile. Run the result
on the test. If it fails, return “Yes” (X is an
interesting failure-inducing change set),
otherwise return “No” (X is too small and does
not induce the failure)

18

Naive Approach

● We could just try all subsets of C to find the
smallest one that is Interesting
● Problem: if |C| = N, this takes 2N time
● Recall: real-world software is huge

● We want a polynomial-time solution
● Ideally one that is more like log(N)
● Or we'll loop for what feels like forever

19

Algorithm Candidate

/* Precondition: Interesting({c
1
 … c

n
}) = Yes */

DD({c
1
, …, c

n
}) =

 if n = 1 then return {c
1
}

 let P1 = {c
1
, … c

n/2
}

 let P2 = {c
n/2+1

, …, c
n
}

 if Interesting(P1) = Yes

 then return DD(P1)

 else return DD(P2)

So far, this is
just binary search!
It won't work if
you need a big
subset to be
Interesting.

20

Useful Assumptions

● Any subset of changes may be Interesting
● Not just singleton subsets of size 1 (cf. bsearch)

● Interesting is Monotonic
● Interesting(X) Interesting(X {c})→

● Interesting is Unambiguous
● Interesting(X) & Interesting(Y) Interesting(X Y)→

● Interesting is Consistent
● Interesting(X) = Yes or Interesting(X) = No
● (Some formulations: Interesting(X) = Unknown)

U

U

21

Delta Debugging Insights

● Basic Binary Search
● Divide C into P1 and P2
● If Interesting(P1) = Yes then recurse on P1
● If Interesting(P2) = Yes then recurse on P2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is

● (Interesting(P1) = No) and (Interesting(P2) = No)
● What happens in such a case?

22

Interference

● By Monotonicity
● If Interesting(P1) = No and Interesting(P2) = No
● Then no subset of P1 alone or subset of P2 alone is

Interesting

● So the Interesting subset must use a
combination of elements from P1 and P2

● In Delta Debugging, this is called interference
● Basic binary search does not have to contend with

this issue

23

Interference Insight
(hardest part of this lecture?)

● Consider P1
● Find a minimal subset D2 of P2
● Such that Interesting(P1 D2) = Yes

● Consider P2
● Find a minimal subset D1 of P1
● Such that Interesting(P2 D1) = Yes

● Then by Unambiguous
● Interesting((P1 D2) (P2 D1)) =

Interesting(D1 D2) is also minimal

U

U

U

UU

U

24

Trivia: Public Service
Announcements

● The United States Forest
Service's ursine mascot first
appeared in 1944. Give his
catch-phrase safety message.

25

Real-World Languages

● These languages, of which there are about
250, are often mutually intelligible and
constitute a major branch of the Niger-Congo
languages. They are spoken largely in central,
east and southern Africa. Popular examples
include Swahili, with 80 million speakers,
Shona, with 11 million, and Zulu, with 10
million. They commonly use words such as
muntu or mutu for “person”. Words such as
bongos, chimpanzee, gumbo, jumbo, mambo,
rumba and safari come from these languages.

26

Psychology: Deductive Reasoning

● You are shown a set of four cards placed on a table, each
of which has a number on one side and a colored patch
on the other side. The visible faces of the cards show 3,
8, red and brown. Which card(s) must you turn over to
test the truth of the proposition that if a card shows an
even number on one face, then its opposite face is red?

27

Psychology: Unrelated

● Who do you investigate in a bar to test the
truth of the proposition “if you have alcohol
you must be over 18”?

28

Psychology: Wason Selection Task

● Most participants have trouble solving the
problem in general but can solve it easily
when it involves policing a social rule
● In the original study, < 10% of subjects found the

correct solution (follow-on studies, < 25%)
● However, 75% get the drinking age problem correct
● Or a similar but unfamiliar “benefit accepted” vs.

“cost not paid” social context
● (e.g., “to eat cassava root you must have a tattoo”)

[Wason, P. C. (1968). "Reasoning about a rule".
Quarterly Journal of Experimental Psychology. 20 (3): 273–281.]

29

Psychology: Social Contract

● “We do not have a general-purpose ability to
detect violations of conditional rules. But
human reasoning is well-designed for detecting
violations of conditional rules when these can
be interpreted as cheating on a social
contract.”
● (e.g., must pay cost, may claim benefit)

● Implications for SE: Myriad for defect
detection, groupwork, etc.

[Cosmides, L.; Tooby, J. (1992). "Cognitive Adaptions for Social Exchange". 163-228.]

30

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

Example: Use DD to find the smallest
interesting subset of {1, …, 8}

31

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4

 5 6 7 8

First Step:
Partition C = {1, …, 8} into
P1 = {1, …, 4} and P2 = {5, …, 8}

32

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 ???

 5 6 7 8 ???

Second Step:
Test P1 and P2

33

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1
of P1 such that
Interesting(D1 + P2)

34

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

35

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 ???

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

36

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

37

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

38

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

D1 = {3}

39

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

D1 = {3}

Now find
D2!

40

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

1 2 3 4 5 No

1 2 3 4 6 Yes

D1 = {3}
D2 = {6}

41

Example: {3,6} Is Smallest
Interesting Subset of {1, …, 8}

1 2 3 4 5 6 7 8 Interesting?

1 2 3 4 No

 5 6 7 8 No

1 2 5 6 7 8 No

 3 4 5 6 7 8 Yes

 3 5 6 7 8 Yes

1 2 3 4 5 6 Yes

1 2 3 4 5 No

1 2 3 4 6 Yes

D1 = {3}
D2 = {6}

Final Answer:
{3, 6}

42

Delta Debugging Algorithm

DD(P, {c
1
, …, c

n
}) =

 if n = 1 then return {c
1
}

 let P1 = {c
1
, … c

n/2
}

 let P2 = {c
n/2+1

, …, c
n
}

 if Interesting(P P1) = Yes then return DD(P,P1)

 if Interesting(P P2) = Yes then return DD(P,P2)

 else return DD(P P2, P1) DD(P P1, P2)

U

U

U UU

43

Algorithmic Complexity

● If a single change induces the failure
● DD is logarithmic: 2 * log |C|
● Why?

● Otherwise, DD is linear
● Assuming constant time per Interesting() check
● Is this realistic? (cf. “AOTBE”)

● If Interesting can return Unknown
● DD is quadratic: |C|2 + 3|C|
● If all tests are Unknown except last one (unlikely)

44

Questioning Assumptions
(assumptions are restated here for convenience)

● All three key assumptions are questionable
● Interesting is Monotonic

● Interesting(X) Interesting(X {c})→
● Interesting is Unambiguous

● Interesting(X) & Interesting(Y) Interesting(X Y)→
● Interesting is Consistent

● Interesting(X) = Yes or Interesting(X) = No
● (Some formulations: Interesting(X) = Unknown)

U
U

45

Ambiguity
(a 481 student found this counterexample!)

● Unambiguous: the interesting failure is caused
by one subset (and not independently by two
disjoint subsets)

● What if the world is ambiguous?
● Then DD (as presented here) may not find an

Interesting subset
● Hint: trace DD on Interesting({2, 8}) = yes,

Interesting({3, 6}) = yes, but Interesting({2, 8}
intersect {3, 6}) = no.
● DD returns {2,6} :-(.

46

Not Monotonic

● Montonic: If X is Interesting, any superset of X
is interesting

● What if the world is not monotonic?
● For example, Interesting({1,2}) = Yes but

Interesting({1,2,3,4}) = No

● Then DD will find an Interesting subset
● Thought questions: Will it be minimal? How long

will it take?

47

Inconsistency

● Consistent: We can evaluate every subset to
see if it is Interesting or not
● What if the world is not consistent?

● Example: we are minimizing changes to a
program to find patches that makes it crash
● Some subsets may not build or run!
● Integration Failure: a change may depend on earlier changes

● Construction failure: some subsets may yield programs with
parse errors or type checking errors (cf. HW3!)

● Execution failure: program executes strangely or does not
terminate, test outcome is unresolved

48

Delta Debugging Thread Schedules

● DejaVu tool by IBM, CHESS by Microsoft, etc.
● The thread schedule becomes part of the input
● We can control when the scheduler preempts

one thread

49

Differences in Thread Scheduling

● Starting point
● Passing run
● Failing run

● Differences (for t1)
● T1 occurs in passing

run at time 254
● T1 occurs in failing

run at time 278

50

Differences in Thread Scheduling

● We can build new test cases by mixing the two
schedules to isolate the relevant differences

51

Does It Work?

● Test #205 of SPEC JVM98 Java Test Suite
● Multi-threaded raytracer program
● Simple race condition
● Generate random schedules to find a passing

schedule and a failing schedule (to get started)

● Differences between passing and failing
● 3,842,577,240 differences (!)
● Each difference moves a thread switch time by +1

or -1

52

DD Isolates One Difference
After 50 Probes (< 30 minutes)

53

Pin-Pointing The Failure

● The failure occurs iff thread switch #33 occurs
at yield point 59,772,127 (line 91) instead of
59,772,126 (line 82) race on → which variable?

should be
“Critical
Section”
but is not

54

Minimizing Input

● GCC version 2.95.2
on x86/Linux with
certain
optimizations
crashed on a
legitimate C
program
● Note: GCC crashes,

not the program!

55

Delta Debugging to the Rescue

● With 731 probes (< 60 seconds), minimized to:

● GCC has many options
● Run DD again to find which are relevant

56

Go Try It Out: Eclipse Integration

57

Questions?
● Work on HW4!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

