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The Story So Far …
● Quality assurance is critical to software 

engineering. 
● Testing is the most common dynamic approach 

to QA.
●  But: race conditions, information flow, profiling …

● Code review and code inspection are the most 
common static approaches to QA. 

● What other static analyses are commonly used 
and how do they work?
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One-Slide Summary
● Static analysis is the systematic examination 

of an abstraction of program state space with 
respect to a property. Static analyses reason 
about all possible executions but they are 
conservative. 

● Dataflow analysis is a popular approach to 
static analysis. It tracks a few broad values 
(“secret information” vs. “public 
information”) rather than exact information. It 
can be computed in terms of a local transfer 
of information. 
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Fundamental Concepts

● Abstraction
● Capture semantically-relevant details
● Elide other details
● Handle “I don't know”: think about developers

● Programs As Data
● Programs are just trees, graphs or strings
● And we know how to analyze and manipulate those 

(e.g., visit every node in a graph)
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goto fail;
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“Unimportant” SSL Example

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, 
                                 SSLBuffer signedParams,
                                 uint8_t *signature, 
                                 UInt16 signatureLen) {

OSStatus err;
 …
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

…
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}
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Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head * sh, 
                int b_size) {
  struct buffer_head *bh;
  unsigned long flags;
  save_flags(flags);
  cli(); // disables interrupts
  if ((bh = sh->buffer_pool) == NULL)
    return NULL;
  sh->buffer_pool = bh -> b_next;
  bh->b_size = b_size;
  restore_flags(flags); // enables interrupts
  return bh;
}
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Could We Have Found Them?

● How often would those bugs trigger?
● Linux example:

● What happens if you return from a device driver 
with interrupts disabled?

● Consider: that's just one function

… in a 2,000 LOC file

… in a 60,000 LOC module

… in the Linux kernel 

● Some defects are very difficult to find via 
testing or manual inspection
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Many Interesting Defects

● … are on uncommon or difficult-to-exercise 
execution paths
● Thus it is hard to find them via testing

● Executing or dynamically analyzing all paths 
concretely to find such defects is not feasible

● We want to learn about “all possible runs” of 
the program for particular properties
● Without actually running the program!
● Bonus: we don't need test cases!
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Static Analyses Often Focus On

● Defects that result from inconsistently 
following simple, mechanical design rules
● Security: buffer overruns, input validation
● Memory safety: null pointers, initialized data
● Resource leaks: memory, OS resources
● API Protocols: device drivers, GUI frameworks
● Exceptions: arithmetic, library, user-defined
● Encapsulation: internal data, private functions
● Data races (again!): two threads, one variable
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How And Where Should We Focus?
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Static Analysis

● Static analysis is the systematic examination 
of an abstraction of program state space
● Static analyses do not execute the program!

● An abstraction is a selective representation of 
the program that is simpler to analyze
● Abstractions have fewer states to explore

● Analyses check if a particular property holds
● Liveness: “some good thing eventually happens”
● Safety: “some bad thing never happens” 
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Syntactic Analysis Example

● Find every instance of this pattern:

● What could go wrong? First attempt:
grep logger\.debug -r source_dir

public foo() {
  …
   logger.debug(“We have ” + conn + “connections.”);
}

public foo() {
  …
  if (logger.inDebug()) {
    logger.debug(“We have ” + conn + “connections.”);
  }
}
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Abstraction: Abstract Syntax Tree

● An AST is a tree 
representation of the 
syntactic structure of 
source code
● Parsers convert 

concrete syntax into 
abstract syntax

● Records only 
semantically-relevant 
information
● Abstracts away (, etc.

+

5 +

2 3

Example: 5 + (2 + 3)
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Programs As Data

● “grep” approach: treat program as string
● AST approach: treat program as tree
● The notion of treating a program as data is 

fundamental
● It relates to the notion of a Universal Turing 

Machine. A Turing Machine description (finite 
state controller, initial tape) can itself be 
represented as a string (and thus placed on a 
tape as input to another TM)
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Dataflow Analysis

● Dataflow analysis is a technique for gathering 
information about the possible set of values 
calculated at various points in a program

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., 

to help developers) down to a small set of 
values

● We finally give rules for computing those 
abstract values
● Dataflow analyses take programs as input
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Two Exemplar Analyses

● Definite Null Dereference
● “Whenever execution reaches *ptr at program 

location L, ptr will be NULL”

● Potential Secure Information Leak
● “We read in a secret string at location L, but there 

is a possible future public use of it”
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Discussion

● These analyses are not trivial to check

● “Whenever execution reaches”  “→ all paths”   →
includes paths around loops and through branches 
of conditionals

● We will use (global) dataflow analysis to learn 
about the program
● Global = an analysis of the entire method body, not 

just one { block }
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Analysis Example

Is ptr always null when it is dereferenced?

ptr = new AVL(); 

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);
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Correctness (Cont.)

To determine that a use of x is always null, we must 
know this correctness condition:

On every path to the use of x, the last 
assignment to x is x := 0    **
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Analysis Example Revisited

Is ptr always null when it is dereferenced?

ptr = new AVL(); 

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);
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Static Datalfow Analysis

Static dataflow analyses share several traits:
● The analysis depends on knowing a property P at a 

particular point in program execution
● Proving P at any point requires knowledge of the 

entire method body
● Property P is typically undecidable!
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Undecidability 
of Program Properties

• Rice’s Theorem: Most interesting dynamic properties of 
a program are undecidable:

● Does the program halt on all (some) inputs?
● This is called the halting problem

● Is the result of a function F always positive?
● Assume we can answer this question precisely
● Oops: We can now solve the halting problem.
● Take function H and find out if it halts by testing function         

F(x) = { H(x); return 1; } to see if it has a positive result 
● Contradiction!

● Syntactic properties are decidable!
● e.g., How many occurrences of “x” are there?

● Programs without looping are also decidable!
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Looping

● Almost every important program has a loop
● Often based on user input

● An algorithm always terminates
● So a dataflow analysis algorithm must 

terminate even if the input program loops
● This is one source of imprecision

● Suppose you dereference the null pointer on the 
500th iteration but we only analyze 499 iterations
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Conservative Program Analyses

● We cannot tell for sure that ptr is always null
● So how can we carry out any sort of analysis?

● It is OK to be conservative. 
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Conservative Program Analyses

● We cannot tell for sure that ptr is always null
● So how can we carry out any sort of analysis?

● It is OK to be conservative. If the analysis depends on 
whether or not P is true, then want to know either
– P is definitely true

– Don’t know if P is true

● Let's call this truthiness
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Conservative Program Analyses

● It is always correct to say “don’t know”
● We try to say don’t know as rarely as possible

● All program analyses are conservative 

● Must think about your software engineering process
● Bug finding analysis for developers? They hate “false 

positives”, so if we don't know, stay silent.
● Bug finding analysis for airplane autopilot? Safety is 

critical, so if we don't know, give a warning. 
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Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL(); 

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0; 

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);
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Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL(); 

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0; 

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);
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Definitely Null Analysis

Is ptr always null when it is dereferenced?

ptr = new AVL(); 

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0; 

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

No, not always. Yes, always.

On every path to the use of ptr, the 
last assignment to ptr is ptr := 0    **
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Definitely Null Information

● We can warn about definitely null pointers at any 
point where ** holds

● Consider the case of computing ** for a single 
variable ptr at all program points

● Valid points cannot hide!
● We will find you!

● (sometimes)
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Definitely Null Analysis (Cont.)
● To make the problem precise, we associate 

one of the following values with ptr at every 
program point
● Recall: abstraction and property

Don’t know if X is a 
constant

*

X = constant cc

This statement is 
not reachable

#

interpretationvalue
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Example

X = *
X = 

X = 

X = 
X = 

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 

X = 

X = 

Get out a piece of paper. Let's fill in these blanks now.

Recall: # = not reachable, c = constant, * = don't know.
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Example Answers

X = *
X = 3

X = 3

X = 3
X = 4

X = *

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = *
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Real-World Languages

● The official language of Sri Lanka and Singapore is 
spoken by over 66 million and boasts a rich 
literature stretching back over 2000 years. Unlike 
most Indian languages, it does not distinguish 
between aspirated and unaspirated consonants. It 
uses suffices to mark number, case and verb tense 
and uses a flexible S-O-V ordering. It uses 
postpositions rather than prepositions. 
● Example: வணகககமக
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Fictional Magicians

● In Greek Mythology, this 
sorceress transforms her 
enemies into animals. In 
Homer's Odyssey she tangles 
with Odysseus (who defeats 
her magic); she ultimately 
suggests that he travel 
between Scylla and Charybdis 
to reach Ithaca. 
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Psychology: Predictions

● You are asked to read about a conflict and are 
given two alternative ways of resolving it.

● You are then asked to do:
● Say which option you would pick 
● Guess which option other people will pick
● Describe the attributes of a person who would 

choose each of the two options

● (Actually, let's be more specific …)
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Psychology: Prediction

● Would you be willing to walk around campus 
for 30 minutes holding a sign that says “Eat at 
Joe's”? 
● (No information about Joe's restaurant is provided, 

you are free to refuse, but we claim you will learn 
“something useful” from the study.)

● Would you do it?
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Psychology: False Consensus Effect
● Of those who agreed to carry the sign, 62% 

thought others would also agree
● Of those who refused, 67% thought others 

would also refuse
● We think others will do the same as us, 

regardless of what we actually do
● We make extreme predictions about the 

personalities of those who chose differently
● But choosing “like me” does not imply anything: it's 

common!

● “Must be something wrong with you!”



41

Psychology: False Consensus Effect

● Replications with 200 college students, etc.
● [Kathleen Bauman, Glenn Geher. WE think you agree: the detrimental 

impact of the false consensus effect on behavior. J. Current 
Psychology, 2002, 21(4). ] 

● Implications for SE: Myriad, whenever you 
design something someone else will use. 
Example: Do you think this static analysis 
should report possible defects or certain 
defects? By the way, what do you think the 
majority of our customers want?
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Using Abstract Information

● Given analysis information (and a policy about 
false positives/negatives), it is easy to decide 
whether or not to issue a warning
● Simply inspect the x = ? associated with a statement 

using x
● If x is the constant 0 at that point, issue a warning!

● But how can an algorithm compute x = ?
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The Idea

The analysis of a complicated program can be 
expressed as a combination of simple rules 
relating the change in information between 

adjacent statements
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Explanation

● The idea is to “push” or “transfer” information 
from one statement to the next

● For each statement s, we compute information 
about the value of x immediately before and 
after s

Cin(x,s) = value of x before s

Cout(x,s) = value of x after s
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Transfer Functions

● Define a transfer function that transfers 
information from one statement to another
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Rule 1

 Cout(x, x := c) = c  if c is a constant

x := c

X = ?

X = c
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Rule 2

 Cout(x, s) = #  if Cin(x, s) = #

s

X = #

X = #

Recall: # = “unreachable code”
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Rule 3

 Cout(x, x := f(…)) = *

x := f(…)

X = ?

X = *

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!
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Rule 4

 Cout(x, y := …) = Cin(x, y := …)  if x  y

y := . . .

X = a

X = a



50

The Other Half

● Rules 1-4 relate the in of a statement to the out of 
the same statement

● they propagate information across statements

● Now we need rules relating the out of one statement 
to the in of the successor statement

● to propagate information forward along paths

● In the following rules, let statement s have 
immediate predecessor statements p1,…,pn
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Rule 5

if Cout(x, pi) = * for some i, then Cin(x, s) = *

        s

X = *

X = *

X = ?X = ?X = ?
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Rule 6

if Cout(x, pi) = c  and Cout(x, pj) = d  and  d  c  

then Cin (x, s) = *

        s

X = d

X = *

X = ?X = ?X = c
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Rule 7

if Cout(x, pi) = c  or #  for all i,

then Cin(x, s) = c

        s

X = c

X = c

X = #
X = # 

X = c
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Rule 8

if Cout(x, pi) = #  for all i,

then Cin(x, s) = #

        s

X = #

X = #

X = #X = # X = #
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Static Analysis Algorithm

• For every entry s to the program, set       
Cin(x, s) = *

• Set Cin(x, s) = Cout(x, s) = # everywhere else

• Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the 

appropriate rule
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The Value #

● To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3
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The Value #

● To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3

X = ???
X = ???

X = ???
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The Value # (Cont.)

● Because of cycles, all points must have values at 
all times during the analysis

● Intuitively, assigning some initial value allows the 
analysis to break cycles

● The initial value # means “we have not yet 
analyzed control reaching this point”
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Sometimes 
all paths 

lead to the 
same place.

Thus you 
need #. 
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Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

Let's do it on paper!
Analyze the value of X …
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Another Example: Answer

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3

3

4

4

*

*

Must continue 
until all rules
are satisfied !
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Orderings

● We can simplify the presentation of the 
analysis by ordering the values

#   <   c   <   *
Making a picture with “lower” values drawn 

lower, we get

#

*

-1 0 1… …
I am called
a lattice!
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Orderings (Cont.)

• * is the greatest value, # is the least
● All constants are in between and incomparable

● Let lub be the least-upper bound in this ordering
● cf. “least common ancestor” in Java/C++ 

● Rules 5-8 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }
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Termination

● Simply saying “repeat until nothing changes” 
doesn’t guarantee that eventually nothing 
changes

● The use of lub explains why the algorithm 
terminates
● Values start as # and only increase

 # can change to a constant, and a constant to *

– Thus, C_(x, s) can change at most twice
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Number Crunching

The algorithm is polynomial in program size:
Number of steps = 
Number of C_(….) values changed * 2 =
(Number of program statements)2 * 2
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“Potential Secure Information Leak” 
Analysis

Could sensitive information possibly reach an insecure use?

In this example, the password contents can 

potentially flow into a public display

(depending on the value of B)

str := get_password()

If B > 0

str := sanitize(str) Y := 0

display(str)
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Live and Dead

● The first value of x is 
dead (never used)

● The second value of x is 
live (may be used)

● Liveness is an important 
concept
● We can generalize it to 

reason about 
“potential secure 
information leaks”

X := 3

X := 4

  Y := X
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Sensitive Information

A variable x at stmt s is a possible sensitive (high-
security) information leak if

● There exists a statement s’ that uses x
● There is a path from s to s’
● That path has no intervening low-security assignment 

to x
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Computing Potential Leaks

● We can express the high- or low-security status of 
a variable in terms of information transferred 
between adjacent statements, just as in our 
“definitely null” analysis

● In this formulation of security status we only care 
about “high” (secret) or “low” (public), not the 
actual value 
● We have abstracted away the value

● This time we will start at the public display of 
information and work backwards
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Secure Information Flow Rule 1

 Hin(x, s) = true  if s displays x publicly

true means “if this ends up being a secret variable
then we have a bug!”

display(x)

X = true

X = ?
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Secure Information Flow Rule 2

 Hin(x, x := e) = false  

(any subsequent use is safe)

x := sanitize(x)

X = false

X = ?
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Secure Information Flow Rule 3

 Hin(x, s) = Hout(x, s) if s does not refer to x

s

X = a

X = a
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Secure Information Flow Rule 4

Hout(x, p) =   { Hin(x, s) | s a successor of p }

(if there is even one way to potentially have a leak, 
we potentially have a leak!)

p

X = true

X = true

X = ?X = ?X = ?
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Secure Information Flow Rule 5
(Bonus!)

 Hin(y, x := y) = Hout(x, x := y)

(To see why, imagine the next statement is
display(x). Do we care about y above?)

x := y

Y = a

X = a
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Algorithm

• Let all H_(…) = false initially

• Repeat process until all statements s satisfy 
rules 1-4 :

Pick s where one of 1-4 does not hold and update 
using the appropriate rule
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Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 
H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 
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Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 
H(X) = TRUE 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 

H(X) = false 
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Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 
H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 
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Secure Information Flow Example
X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 
H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

H(X) = TRUE 

POSSIBLE LEAK

From high-security

value starting here

No possible leak

Starting here
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Termination

● A value can change from false to true, but not 
the other way around

● Each value can change only once, so termination 
is guaranteed

● Once the analysis is computed, it is simple to 
issue a warning at a particular entry point for 
sensitive information
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Static Analysis Limitations

● Where might a static analysis go wrong?
● If I asked you to construct the shortest 

program you can that causes one of our static 
analyses to get the “wrong” answer, what 
would you do?
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Static Analysis

● Discuss with your neighbor; I will call on you
● You are asked to design a static analysis to 

detect bugs related to file handles
● A file starts out closed. A call to open() makes it open; 

open() may only be called on closed files. read() and 
write() may only be called on open files. A call to 
close() makes a file closed; close may only be called 
on open files. 

● Report if a file handle is potentially used incorrectly

● What abstract information do you track?
● What do your transfer functions look like?
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Abstract Information

● We will keep track of an abstract value for a 
given file handle variable 

● Values and Interpretations

* file handle state is unknown

# haven't reached here yet

closed file handle is closed

open file handle is open
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Rules

● Previously: “null ptr” ● Now: “file handles”

*ptr

ptr = 0

Report 
Error!

read(f)

f = closed

Report 
Error!
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Rules: open

open(f)

f = closed

open(f)

f = * or open

Report 
Error!

f = open
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Rules: close

close(f)

f = open

close(f)

f = * or closed

Report 
Error!

f = closed
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Rules: read/write

(write is identical)

read(f)

f = open

read(f)

f = * or closed

Report 
Error!

f = open
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Rules: Assignment

g := f

f = a

g := f

f = a

f = a g = a
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Rules: Multiple Possibilities

f = a

f = *

f = b

f = a

f = a

f = a
f = #

f = a
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A Tricky Program

start: 
switch (a)
  case 1: open(f); read(f); close(f); goto start
  default: open(f);
do {
  write(f) ;
  if (b): read(f);
  else: close(f); 
} while (b)
open(f);
close(f);
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

#

#

#

#

#

#

#

#

#

#

#

#
#

#

#

closed
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

#

#

#

#

#

#

#
#

#

#

closed
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

open

open

open

open

closed   
#

#

#

closed
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

open

open

open

open

closed   
*

*

#

closed
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

*

*

*

*

*   
*

*

*

closed
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start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

open

open

closed

closed

open

*

*

*

*

*   
*

*

*

closed
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Is There Really A Bug?

start: 
switch (a)
  case 1: open(f); read(f); close(f); goto start
  default: open(f);
do {
  write(f) ;
  if (b): read(f);
  else: close(f); 
} while (b)
open(f);
close(f);
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Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Definitely null (cf. constant propagation) is a 
forwards analysis: information is pushed from 
inputs to outputs

Secure information flow (cf. liveness) is a 
backwards analysis: information is pushed from 
outputs back towards inputs
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Questions?
● How's the homework going?
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