

1

A Survey of Software Fault Localization

Technical Report UTDCS-45-09

Department of Computer Science
The University of Texas at Dallas

November 2009

W. Eric Wong and Vidroha Debroy

{ewong,vxd024000}@utdallas.edu

2

ABSTRACT

Software fault localization is one of the (if not the) most expensive, tedious and
time consuming activities in program debugging. Therefore, there is a high demand
for automatic fault localization techniques that can guide programmers to the
locations of faults, with minimal human intervention. This demand has led to the
proposal and development of various methods, each of which seeks to make the
fault localization process more effective in its own unique and creative way. In this
article we provide an overview of several such methods and discuss some of the
key issues and concerns that are relevant to fault localization.

KEY WORDS: Software fault localization, program debugging, software testing,
execution trace, suspicious code

1. INTRODUCTION

No matter how much effort is spent on testing a program,1 it appears to be a fact of life that
software defects are introduced and removed continually during software development processes.
To improve the quality of a program, we have to remove as many defects in the program as
possible without introducing new bugs at the same time.

During program debugging, fault localization is the activity of identifying the exact locations of
program faults. It is a very expensive and time consuming process. Its effectiveness depends on
developers’ understanding of the program being debugged, their ability of logical judgment, past
experience in program debugging, and how suspicious code, in terms of its likelihood of
containing faults, is identified and prioritized for an examination of possible fault locations.

There is a rich collection of literature that is abundant with various methods that aim to facilitate
fault localization and make it more effective. While these methods share similar goals, they can
be quite different from one another and often stem from ideas that themselves originate from
several different disciplines. No article, regardless of breadth or depth can hope to cover all of
them. Therefore, while we aim to cover as much ground as possible, we primarily focus on the
state of the art techniques in the area of fault localization and try to discuss them in as much detail
as possible as we go along. The remainder of this article is organized in the following manner: we
begin by describing some fundamental and intuitive fault localization methods in Section 2, and
subsequently move on to more advanced and complex ones in Section 3. Then in Section 4 we
discuss some of the key issues and aspects pertinent to the area of fault localization, and finally
present the conclusions in Section 5.

1 We use “bugs,” “faults” and “software defects” interchangeably. We also use “program,” “application” and
“software” interchangeably. In addition, “locating a bug” and “localizing a fault” have the same meaning, and “a
statement is covered by a test case” and “a statement is executed by a test case” are used interchangeably.

3

2. TRADITIONAL FAULT LOCALIZATION METHODS

One intuitive way to locate bugs when a program execution shows some abnormal behavior is to
analyze the corresponding memory dump. Another way is to insert print statements around
suspicious code to print out the values of some variables. While the former is not often used now
because it might require an analysis of a tremendous amount of data, the latter is still used.
However, users need to have a good understanding of how a program is executed with respect to
a given test case that causes the trouble and then insert only the necessary (i.e., neither too many
nor too few) print statements at the appropriate locations. As a result, it is also not an ideal
debugging technique for identifying the locations of faults.

To overcome the problems discussed above, debugging tools such as DBX and Microsoft VC++
debugger have been developed. They allow users to set break points along a program execution
and examine values of variables as well as internal states at each break point, if so desired. One
can think of this approach as inserting print statements into the program except that it does not
require the physical insertion of any print statements. Break points can be pre-set before the
execution or dynamically set on the fly by the user in an interactive way during program
execution. Two types of execution are available: a continuous execution from one break point to
the next break point, or a stepwise execution starting from a break point. While using these tools,
users must first decide where the break points should be. When the execution reaches a break
point, they are allowed to examine the current program state and to determine whether the
execution is still correct. If not, the execution should be stopped, and some analysis as well as
backtracking may be necessary in order to locate the fault(s). Otherwise, the execution goes on
either in a continuous mode or in a stepwise mode. In summary, these tools provide a snapshot of
the program state at various break points along an execution path. One major disadvantage of this
approach is that it requires users to develop their own strategies to avoid examining too much
information for nothing. Another significant disadvantage is that it cannot reduce the search
domain by prioritizing code based on the likelihood of containing faults on a given execution
path.

3. ADVANCED FAULT LOCALIZATION METHODS

Fault localization can be divided into two major phases. The first part is to use a method to
identify suspicious code that may contain program bugs. The second part is for programmers to
actually examine the identified code to decide whether it indeed contains bugs. All the fault
localization methods referenced in the following focus on the first part such that suspicious code
is prioritized based on its likelihood of containing bugs. Code with a higher priority should be
examined before code with a lower priority, as the former is more suspicious than the latter, i.e.,
more likely to contain bugs. As for the second part, we assume perfect bug detection. A bug in a
piece of code (e.g., a statement) will be detected by a programmer if the code (namely, the
statement) is examined. If such perfect bug detection does not hold, then the code (the number of
statements in this case) that needs to be examined in order to find the bug may increase. Without
loss of generality, hereafter code may be referred to as statements with the understanding that
fault localization methods can also be applied to identify suspicious functions, decisions, def-
uses, etc.

3.1. Static, Dynamic and Execution Slice-Based methods

Program slicing is a commonly used technique for debugging (60,65). A static program slice (64)
for a given variable at a given statement contains all the executable statements that could possibly
affect the value of this variable at the statement. Reduction of the debugging search domain via

4

slicing is based on the idea that if a test case fails due to an incorrect variable value at a statement,
then the defect should be found in the static slice associated with that variable-statement pair. We
can therefore confine our search to the slice rather than looking at the entire program. Lyle and
Weiser extended the above approach by constructing a program dice (as the set difference of two
groups of static slices) to further reduce the search domain for possible locations of a fault (43). A
disadvantage of this method is that it might generate a dice with certain statements which should
not be included. This is because we cannot predict some run-time values via a static analysis. To
exclude such extra statements from a dice (as well as a slice), we need to use dynamic slicing
(3,34) instead of static slicing as the former can identify the statements that indeed do, rather than
just possibly could as by the latter, affect a particular value observed at a particular location.
Studies such as (1,18,33,42,58,81,82) which use the dynamic slicing concept in program
debugging have been reported.

An alternative is to use execution slicing and dicing based on dataflow tests to locate program
bugs (4) where an execution slice with respect to a given test case contains the set of statements
executed by this test. The reason for choosing execution slicing over static or dynamic slicing is
that a static slice focuses on finding statements that could possibly have an impact on the
variables of interest for any inputs instead of statements that indeed affect those variables for a
specific input. This implies that a static slice does not make any use of the input values that reveal
the fault. It clearly violates a very important concept in debugging which suggests programmers
analyze the program behavior under the test case that fails and not under a generic test case. The
disadvantage of using dynamic slices is that collecting them may consume excessive time and file
space even though different algorithms (9,24,36,79,80) have been proposed to address these
issues. On the other hand, the execution slice for a given test case can be constructed very easily
if we know the coverage of the test because the corresponding execution slice of the test can be
obtained simply by converting the coverage data collected during the testing into another format,
i.e., instead of reporting the coverage percentage, it reports which statements are covered.

A study examining the execution dice of one failed and one successful test for locating program
bugs was reported in (4). Wong et al. (71) extended that study by using multiple successful and
failed tests based on the following observations:

• The more that successful tests execute a piece of code, the less likely for it to contain any
fault.

• The more that failed tests with respect to a given fault execute a piece of code, the more
likely for it to contain this fault.

One problem of any slicing-based method is that the bug may not be in the dice. And even if a
bug is in the dice, there may still be too much code that needs to be examined. To overcome these
problems, Wong et al. proposed an inter-block data dependency-based augmentation and refining
method (68). The former includes additional code in the search domain for inspection based on its
inter-block data dependency with the code which is currently being examined, whereas the latter
excludes less suspicious code from the search domain using the execution slices of additional
successful tests. Different execution slice-based debugging tools have been developed and used in
practice such as χSuds at Telcordia (formerly Bellcore) (5,84) and eXVantage at Avaya (67).

3.2. Program Spectrum-based Methods

A program spectrum records the execution information of a program in certain aspects, such as
execution information for conditional branches or loop-free intra-procedural paths (26). It can be
used to track program behavior (56). When the execution fails, such information can be used to
identify suspicious code that is responsible for the failure. Early studies (2,33,35,59) only use

5

failed test cases for fault localization, though this approach has subsequently been deemed
ineffective (4,31,66). These later studies achieve better results using both the successful and
failed test cases and emphasizing the contrast between them.

The Executable Statement Hit Spectrum (ESHS) records which executable statements are
executed. Two ESHS-based fault localization methods, set union and set intersection, are
proposed in (55). The set union computes the set difference between the program spectra of a
failed test and the union spectra of a set of successful tests. It focuses on the source code that is
executed by the failed test but not by any of the successful tests. Such code is more suspicious
than others. The set intersection method excludes the code that is executed by all the successful
tests but not by the failed test.

Renieris and Reiss (55) also propose another program spectrum-based method, nearest neighbor,
which contrasts a failed test with another successful test which is most similar to the failed one in
terms of the “distance” between them. In their method, the execution of a test is represented as a
sequence of statements that are sorted by their execution counts. If a bug is in the difference set, it
is located. For a bug that is not contained in the difference set, the method can continue the bug
localization by first constructing a program dependence graph and then including and checking
adjacent un-checked nodes in the graph step by step until all the nodes in the graph are examined.

Another popular ESHS-based fault localization method is Tarantula (31) which uses the coverage
and execution results to compute the suspiciousness of each statement as X/(X+Y) where X =
(number of failed tests that execute the statement)/(total number of failed tests) and Y = (number
of successful tests that execute the statement)/(total number of successful tests). One problem
with Tarantula is that it does not distinguish the contribution of one failed test case from another
or one successful test case from another.

In (66), Wong et al. address two important issues: first, how can each additional failed test case
aid in locating program bugs; and second, how can each additional successful test case help in
locating program bugs. They propose that with respect to a piece of code, the contribution of the
first failed test case that executes it in computing its likelihood of containing a bug is larger than
or equal to that of the second failed test case that executes it, which in turn is larger than or equal
to that of the third failed test case that executes it, and so on. This principle is also applied to the
contribution provided by successful test cases that execute the piece of code.

A study on the Siemens suite (31) shows that Tarantula is more effective in locating a program
bug, by examining less code before the first faulty statement containing the bug is identified, than
other fault localization methods such as set union, set intersection, nearest neighbor (55) and
cause transition techniques (15). Empirical studies have also shown that the method proposed in
(66) is, in general, more effective than Tarantula.

Guo et al. (25) try to answer the question: during fault localization if a failed run (test case) is to
be compared to a successful run, then which successful run should it be compared to? They do so
by proposing a control flow-based difference metric that takes into account the sequence of
statement executions in two runs instead of just the set of statement executions. Given a failed run
and a pool of successful runs, they choose that successful run whose execution sequence is closest
to the failed run based on the difference metric. Then, a bug report is generated by returning the
difference between the sequences of the failed run and the successful run. Wong et al. (68)
propose a more flexible approach by identifying successful tests that are as similar as possible to
the failed test (in terms of their execution slices) in order to filter out as much code as possible. In
this way, we start the fault localization with a very small set of suspicious code, and then increase

6

the search domain, if necessary, using an inter-block data dependency-based augmentation
method.

A few additional examples of program spectrum-based fault localization methods are listed
below.

• Predicate Count Spectrum (PRCS)-based: PRCS records how predicates are executed. Such

information can be used to track program behaviors that are likely to be erroneous. These
methods are often referred to as statistical debugging because the PRCS information is
analyzed using statistical methods. Fault localization methods in this category include
Liblit05 (38), SOBER (39), etc. See “Statistics-based Methods” for more details.

• Program Invariants Hit Spectrum (PIHS)-based: This spectrum records the coverage of

program invariants (20), which are the program properties that should be preserved in
program executions. PIHS-based methods try to find violations of program properties in
failed program executions to locate bugs. A study on the fault localization using “potential
invariants” is reported by Pytlik, et al. (54). The major obstacle in applying such methods is
how to automatically find the necessary program properties required for the fault localization.
To address this problem, existing PIHS-based methods often take the invariant spectrum of
successful executions as the program properties.

• Method Calls Sequence Hit Spectrum (MCSHS)-based: Information is collected regarding

the sequences of method calls covered during program execution. For the purposes of fault
localization, this data is helpful when applied to object-oriented software. In some cases, such
a program may not fail even if the faulty code is executed; a particular sequence of method
calls on the objects may also be required to trigger the fault. In one study, Dallmeier, et al.
(17) collect execution data from Java programs and demonstrate fault localization through the
identification and analysis of method call sequences. Both incoming method calls (how an
object is used) and outgoing calls (how it is implemented) are considered. Liu et al. (41)
construct software behavior graphs based on collected program execution data, including the
calling and transition relationships between functions. They define a framework to mine
closed frequent graphs from these behavior graphs and use them as a training set for
classifiers that will identify suspicious functions.

Other program spectra such as those in Table 1 (26) can be used to help identify suspicious code
in the program.

Table 1. Sample program spectra for fault localization
 Name Description
BHS Branch Hit Spectrum conditional branches that are executed
CPS Complete Path Spectrum complete path that is executed
PHS Path Hit Spectrum intra-procedural, loop-free path that is executed
PCS Path Count Spectrum number of times each intra-procedural, loop-free path is executed
DHS Data-dependence Hit Spectrum definition-use pairs that are executed
DCS Data-dependence Count Spectrum number of times each definition-use pair is executed
OPS Output Spectrum output that is produced
ETS Execution Trace Spectrum execution trace that is produced

3.3. Statistics-based Methods

Liblit et al. propose a statistical debugging algorithm (referred to as Liblit05) that can isolate bugs
in the programs with instrumented predicates at particular points (38). Feedback reports are

7

generated by these instrumented predicates. For each predicate P, the algorithm first computes
Failure(P), the probability that P being true implies failure, and Context(P), the probability that
the execution of P implies failure. Predicates that have Failure(P) – Context(P) ≤ 0 are discarded.
Remaining predicates are prioritized based on their “importance” scores, which gives an
indication of the relationship between predicates and program bugs. Predicates with a higher
score should be examined first to help programmers find bugs. Once a bug is found and fixed, the
feedback reports related to that particular bug are removed. This process continues to find other
bugs until all the feedback reports are removed or all the predicates are examined.

Liu et al. propose the SOBER model to rank suspicious predicates (39). A predicate P can be
evaluated to be true more than once in a run. Compute π(P) which is the probability that P is
evaluated to be true in each run as ()()

() ()
n tP

n t n f
π =

+ where n(t) is the number of times P is evaluated
to be true in a specific run and n(f) is the number of times P is evaluated as false. If the
distribution of π(P) in failed runs is significantly different from that of π(P) in successful runs,
then P is related to a fault.

Wong et al. (72) present a crosstab (a.k.a. cross-classification table) analysis-based method
(referred to as Crosstab) to compute the suspiciousness of each executable statement in terms of
its likelihood of containing program bugs. A crosstab is constructed for each statement with two
column-wise categorical variables “covered” and “not covered,” and two row-wise categorical
variables “successful execution” and “failed execution.” A hypothesis test is used to provide a
reference of “dependency/independency” between the execution results and the coverage of each
statement. However, the exact suspiciousness of each statement depends on the degree of
association (instead of the result of the hypothesis testing) between its coverage (number of tests
that cover it) and the execution results (successful/failed executions).

The major difference between Crosstab, SOBER, and Liblit05 is that Crosstab ranks suspicious
statements, whereas the last two rank suspicious predicates for fault localization. For SOBER and
Liblit05, the corresponding statements of the top k predicates are taken as the initial set to be
examined for locating the bug. As suggested by Jones and Harrold in (31), Liblit05 provides no
way to quantify the ranking for all statements. An ordering of the predicates is defined, but the
approach does not expand on how to order statements related to any bug that lies outside a
predicate. For SOBER, if the bug is not in the initial set of statements, additional statements have
to be included by performing a breadth-first search on the corresponding program dependence
graph, which can be time consuming. However, this search is not required for Crosstab, as all the
statements of the program are ranked based on their suspiciousness. An extension of a recent
study (72) reports that Crosstab is almost always more effective in locating bugs in the Siemens
suite than SOBER and Liblit05.

3.4. Program State-based Methods

A program state consists of variables and their values at a particular point during the execution. It
can be a good indicator for locating program bugs. A general approach for using program states
in fault localization is to modify the values of some variables to determine which one is the cause
of erroneous program execution.

Zeller, et al. propose a program state-based debugging approach, delta debugging (75,76), to
reduce the causes of failures to a small set of variables by contrasting program states between
executions of a successful test and a failed test via their memory graphs (77). Variables are tested
for suspiciousness by replacing their values from a successful test with their corresponding values

8

from the same point in a failed test and repeating the program execution. Unless the identical
failure is observed, the variable is no longer considered suspicious.

Delta debugging is extended to the cause transition method by Cleve and Zeller (15) to identify
the locations and times where the cause of failure changes from one variable to another. An
algorithm named cts is proposed to quickly locate cause transitions in a program execution. A
potential problem of the cause transition method is that the cost is relatively high; there may exist
thousands of states in a program execution, and delta debugging at each matching point requires
additional test runs to narrow down the causes. Another problem is that the identified locations
may not be the place where the bugs reside. Gupta et al. (23) introduce the concept of failure-
inducing chop as an extension to the cause transition method to overcome this issue. First, delta
debugging is used to identify input and output variables that are causes of failure. Dynamic slices
are then computed for these variables, and the code at the intersection of the forward slicing of
the input variables and the backward slicing of the output variables is considered suspicious.

Predicate switching (78) proposed by Zhang, et al. is another program state-based fault
localization method where program states are changed to forcefully alter the executed branches in
a failed execution. A predicate whose switch can make the program execute successfully is
labeled as a critical predicate. The method starts by finding the first erroneous value in variables.
Different searching strategies, such as Last Executed First Switched (LEFS) Ordering and
Prioritization-based (PRIOR) Ordering, can be applied to determine the next candidates for
critical predicates.

Wang and Roychoudhury (61) present a method that automatically analyzes the execution path of
a failed test and alters the outcome of branches in that path to produce a successful execution. The
branch statements whose outcomes have been changed are recorded as the bugs.

3.5. Machine Learning-based Methods

Machine learning is the study of computer algorithms that improve automatically through
experience. Machine learning techniques are adaptive and robust and have the ability to produce
models based on data, with limited human interaction. This has led to their employment in many
disciplines such as natural language processing, cryptography, bioinformatics, computer vision,
etc. The problem at hand can be expressed as trying to learn or deduce the location of a fault
based on input data such as statement coverage, etc. It should therefore come as no surprise that
the application of machine learning-based techniques to software fault localization has been
proposed by several researchers.

Wong et al. (69) propose a fault localization method based on a back-propagation (BP) neural
network which is one of the most popular neural network models in practice (21). A BP neural
network has a simple structure, which makes it easy to implement using computer programs. At
the same time, BP neural networks have the ability to approximate complicated nonlinear
functions (27). The coverage data of each test case (e.g., the statement coverage in terms of which
statements are executed by which test case) and the corresponding execution result (success or
failure) are collected. Together, they are used to train a BP neural network so that the network can
learn the relationship between them. Then, the coverage of a set of virtual test cases that each
covers only one statement in the program are input to the trained BP network, and the outputs can
be regarded as the likelihood (i.e., suspiciousness) of each statement containing the bug.

As BP neural networks are known to suffer from issues such as paralysis and local minima, Wong
et al. (70) propose an approach based on RBF (radial basis function) networks, which are less

9

susceptible to these problems and have a faster learning rate (37,63). The RBF network is
similarly trained against the coverage data and execution results collected for each test case, and
the suspiciousness of each statement is again computed by inputting the coverage of the virtual
test cases.

Briand et al. (11) use the C4.5 decision tree algorithm to construct a set of rules that might
classify test cases into various partitions such that failed test cases in the same partition most
likely fail due to the same fault. The underlying premise is that distinct failure conditions for test
cases can be identified depending on the inputs and outputs of the test case (category
partitioning). Each path in the decision tree represents a rule modeling distinct failure conditions,
possibly originating from different faults, and leads to a distinct failure probability prediction.
The statement coverage of both the failed and successful test cases in each partition is then used
to rank the statements using a heuristic similar to Tarantula (31) to form a ranking based on each
partition. These individual rankings are then consolidated to form a final statement ranking which
can then be examined to locate the faults.

Brun and Ernst (12) build a learning model using machine learning (e.g., Support Vector
Machines) to distinguish faulty and non-faulty programs using static analysis. General program
properties (e.g., variables that are not initialized) are assumed to likely indicate the faults in
programs and therefore in the learning model, properties of correct and incorrect programs are
used to build the model. The classification step involves feeding as input the properties of a new
program, and then the properties are ranked according to the strength of their association with
faulty programs.

Ascari et al. (6) extend the BP-based method (69) by applying a similar methodology to Object-
Oriented programs as well. They also explore the use of Support Vector Machines (SVMs) for
fault localization.

3.6. Model-based Methods

For model-based methods, the model used in each method is an important topic of research
because the expressive capability of each model is crucial to the effectiveness of that method in
locating program bugs.

DeMillo et al. propose a model for analyzing software failures and faults for debugging purposes
(19). Failure modes and failure types are defined in the model to identify the existence of
program failures and to analyze the nature of program failures, respectively. Failure modes are
used to answer “How do we know the execution of a program fails?” and failure types are used to
answer “What is the failure?” When an abnormal behavior is observed during program execution,
the failure is classified by its corresponding failure mode. Referring to some pre-established
relationships between failure modes and failure types, certain failure types can be identified as
possible causes for the failure. Heuristics based on dynamic instrumentation (such as dynamic
program slice) and testing information are then used to reduce the search domain for localizing
the fault by predicting possible faulty statements. One significant problem of using this model is
that it is extremely difficult, if not impossible, to obtain an exhaustive list of failure modes
because different programs can have very different abnormal behavior and symptoms when they
fail. As a result, we do not have a complete relationship between all possible failure modes and
failure types. This implies we might not be able to identify possible failure types responsible for
the failure being analyzed.

10

Wotawa, et al. (74) propose to construct dependency models based on a source code analysis of
the target programs to represent program structures and behaviors in the first order logic. Test
cases with expected outputs are also transformed into observations in terms of first order logic. If
the execution of the target program on a test case fails, conflicts between the test case and the
models will be determined to find fault candidates. For each statement, a default assumption is
made to suggest whether the statement is correct or incorrect. These assumptions will be revised
during fault localization until the failure can be explained. The limitation is that their study only
focuses on loop-free programs. To solve this problem, Mayer, et al. (48) present an approximate
modeling method in which abstract interpretation (10,16) is applied to handle loops, recursive
procedures, and heap data structures. In addition, abstract interpretation is also used to improve
the accuracy of model-based diagnosis methods (49). Wotawa (73) also demonstrates that both
static and dynamic slices can be equivalent to conflicts in the model-based diagnosis methods for
fault localization.

Mateis, et al. (45) present their functional dependency model for Java programs that can handle a
subset of features for the Java language, such as classes, methods, assignments, conditionals, and
while-loops. In their model, the structure of a program is described with dependency-based
models while logic-based languages, such as first order logic, are applied to model the behaviors
of the target program. The dependency-based model is then extended to handle unstructured
control flows in Java programs (46,47), such as exceptions, recursive method calls, return and
jump statements. In additional to functional dependency models, value-based models (32,50) that
represent data-flow information in Java programs are also applied to localize components that are
responsible for the difference between program behaviors and expected behaviors. An
experimental project named JADE (the Java Diagnosis Experiments) (44,51) is used to
demonstrate the applicability of model-based diagnosis in software debugging. The project
integrates various models and the model-based diagnosis engine into an interactive debugging
environment with a graphical user interface.

3.7. Data Mining-based Methods

Similar to machine learning, data mining also seeks to produce a model or derive a rule using
relevant information extracted from data. Data mining can uncover hidden patterns in samples of
data (which have been mined) that may not, and often will not, be discovered by manual analysis
alone. Also sometimes the sheer volume of data that is available for analysis far exceeds that
which can be analyzed by humans alone. Efficient data mining techniques transcend such
problems and do so in reasonable amounts of time with high degrees of accuracy.

The software fault localization problem can be abstracted to a data mining problem. For example,
we wish want to identify the pattern of statement execution that leads to a program failure. In
addition, although the complete execution trace (including the actual order of execution of each
statement) of a program collected during the testing phase is a valuable resource for finding the
location of program faults, the huge volume of data makes it unwieldy to use in practice.
Therefore, some studies have successfully applied data mining techniques, which traditionally
deal with large amounts of data, to these collected execution traces.

Nessa et al. (52) generate statement subsequences of length N, referred to as N-grams, from the
trace data. The failed execution traces are then examined to find the N-grams with a rate of
occurrence higher than a certain threshold in the failed executions. A statistical analysis is
conducted to determine the conditional probability that an execution fails given that a certain N-
gram appears in its trace – this probability is known as the “confidence” for that N-gram. N-grams
are sorted by descending order of confidence and the corresponding statements in the program are

11

displayed based on their first appearance in the list. Case studies which apply this method to the
Siemens suite (29) as well as space and grep (57) have shown that it achieves fault localization
more effectively than Tarantula (31), by requiring the examination of less code before the first
faulty statement is discovered.

Cellier et al. (14) discuss a combination of association rules and Formal Concept Analysis (FCA)
to assist in fault localization. The proposed methodology tries to identify rules between statement
execution and corresponding test case failure and then measures the frequency of each rule. Then,
a threshold value is decided upon to indicate the minimum number of failed executions that
should be covered by a rule to be selected. A large number of rules so generated, can be partially
ordered by the use of a rule lattice and then explored bottom up to detect the fault.

4. IMPORTANT ISSUES AND RESEARCH AREAS

In this section we explore some critical aspects related to software fault localization that are
important research areas in and of themselves. Should this article manage to inspire the reader
enough to develop a fault localization strategy of their own, then these are important concerns
that need to be taken into account and addressed. Also as mentioned before in Section 3, while
this discussion is focused on statements, it is implicit that fault localization can also be
accomplished with respect to decisions, def-uses, etc.

4.1. Effectiveness of a Fault Location Method

The effectiveness of a fault localization method can be measured by a score EXAM in terms of the
percentage of statements that have to be examined until the first statement containing the bug is
reached (66,69,70,72). A similar score using the percentage of the program that need not be
examined to find a faulty statement is used in (15,31,55). These two scores provide the same
information, but the EXAM score is more direct and easier to understand. The effectiveness of
different fault localization methods can be compared based on EXAM. Although a bug may span
multiple statements which may not be contiguous or even multiple functions, the fault
localization stops when the first statement containing the bug is reached. This is because the focus
is to help programmers find a starting point to fix a bug rather than provide the complete set of
code that has to be modified/deleted/added with respect to each bug.

As discussed in the beginning of Section 3, we assume perfect bug detection, that is, a bug in a
statement will be detected by a programmer if the statement is examined. If it is not the case, then
the number of statements that need to be examined in order to find the bug may increase and the
effectiveness of the fault localization method will decrease.

Different statements may be assigned the same suspiciousness by a fault localization method. If
this happens, it gives two different types of effectiveness: the “best” and the “worst.” The “best”
effectiveness assumes that the faulty statement is the first to be examined among all the
statements of the same suspiciousness. For instance, supposing there are ten statements of the
same suspiciousness of which one is faulty, the “best” effectiveness is achieved if the faulty
statement is the first to be examined of these ten statements. Similarly, the “worst” effectiveness
occurs if the faulty statement is the last to be examined of these ten statements. An effective fault
localization method should ideally assign a unique suspiciousness value to each statement.

For a faulty program P, we consider the EXAM score of methods M1 and M2. If the score of M1
for locating all the bugs in P is smaller than that of M2, then fewer statements must be examined

12

by the programmer to locate these bugs using method M1 compared to M2. Thus, M1 is more
effective than M2 for locating bugs in P.

4.2. Clustering for Programs with Multiple Bugs

Many fault localization methods discussed in Section 3 are focused on a single bug, i.e., each
faulty program has exactly one bug. Hence, if a program execution fails, the cause of the failure is
clear.

For a program with multiple bugs, one approach is to follow the one-bug-at-a-time strategy. After
a bug is found and fixed, the modified program has to be tested again using the same failed tests.
If any of the executions fail, additional debugging is required to find and fix remaining bugs. This
process continues until no failure is observed when the modified program is tested against the
same failed tests.

Another approach is to use clustering. For example, identification of suspicious code can be
divided into two steps. The first step is to group failed test cases into fault-focusing clusters such
that those in the same cluster are related to the same fault (30). The second step is to combine
failed tests in each cluster with the successful tests for debugging a single fault. Different ranking
mechanisms (e.g., Tarantula (31), Crosstab (72), Coverage-based Heuristics (66), RBF neural
network (70), etc.) can then be used to compute the suspiciousness of each statement and identify
suspicious code that should be examined first for locating the bugs.

Podgurski et al. (53) analyze the execution profiles of failed test cases and correlate each of them
with program bugs. The result is a clustering of failed executions based on the underlying bug
responsible for the failure. Note that different failed tests even with respect to the same bug can
have very different execution profiles. Since their clustering is based on the similarity between
execution profiles, the result does not necessarily imply an accurate causation relationship
between certain faults and failed executions. This limitation may degrade its fault localization
capability.

Liu and Han (40) propose to cluster failed execution traces that suggest roughly the same fault
location(s). They define the corresponding clustering metric R-PROXIMITY to measure the
distance between failed traces. R-Proximity is computed by first using SOBER (39) to generate a
predicate ranking for each test case, and then calculating the agreement between the different
rankings using a weighted Kendall tau distance. Since failed traces are clustered based on the
fault locations that they suggest, the results can provide clues as to the locations of the faults
associated with each cluster.

Zheng et al. (83) use fault-predicting predicates to cluster failed executions. The similarity
between two predicates is measured based on the product-moment correlation coefficient. First,
truth probabilities for each predicate are inferred from observed data. Then, a bi-clustering
algorithm uses these probabilities to jointly cluster predicates and failed executions. This is
accomplished via an iterative voting process, during which each failed execution casts a vote for a
predicate. The final rank of a predicate is computed based on the number of votes it has
accumulated. This method is capable of clustering failed executions related to the same fault, as
well as identifying predicates that may be predictors for some fault.

13

4.3. Impact of Test Cases

All empirical studies independent of context are sensitive to the input data. Similarly, the
effectiveness of a fault localization method also depends on the set of failed and successful test
cases employed. Using all the test cases to locate faults may not be the most efficient approach.
Therefore, an alternative is to select only a subset of these tests. Consider the case of (8) where
Baudry et al. define a dynamic basic block as a set of statements that are all covered by the same
test cases. They then use an adaptation of genetic algorithms (a so-called bacteriologic approach)
to optimize a test suite and maximize the number of dynamic basic blocks. The Tarantula
algorithm (31) is applied to the coverage information to rank the suspiciousness of each
statement, and it is determined that the same fault localization results as Jones et al. can be
achieved using fewer test cases. A related concern is that, given a fault, the same method may
require more code to be examined by using one set of test cases as opposed to another.

If a program execution fails not because of the current test but because of another test which fails
to set up an appropriate execution environment for the current test, then we should bundle these
two test cases together as one single failed test. For example, consider two test cases tα and tβ
which are executed successively in this order. Assume also a bug in the program causes tα to
incorrectly modify values at certain memory locations but does not result in a failure of tα. These
incorrect values are to be referenced by tβ and are the only source of the failure for tβ. Under this
situation we should combine tα and tβ as a single failed test.

Budd and Angluin (13) introduce the concept of coincidental correctness; this refers to the
circumstances under which a test case produces one or more errors in the program state, but the
output of the program is still correct. Such a test case is referred to as a coincidentally successful
test. This phenomenon can occur for many reasons; for example, if a wrong assignment is made
to a variable, but the erroneous value is later overwritten, the output of the program may not have
been affected. Several studies have reported that coincidental correctness can negatively impact
the effectiveness of fault localization techniques. Ball et al. (7) claim that coincidental correctness
resulted in the failure of their method to locate a fault in 3 out of 15 cases. Wang et al. (62)
conduct a study of the Tarantula fault localization method, and they conclude that its
effectiveness decreases when the frequency of coincidental correctness is high and increases
when the frequency of coincidental correctness is low. Some preliminary studies such as (28)
have investigated the issue, but more research is necessary to fully address the problem.

4.4. Faults introduced by missing code

One claim that can be made against the fault localization methods discussed in Section 3 is that
they are incapable of locating a fault that is the result of missing code. Considering, for instance,
slicing-based debugging methods, since the “faulty” code is not actually found in the program, it
follows that this code will not appear in any of the slices. Based on this, one might conclude that
these methods are inappropriate for locating such a fault. While this argument seems to be
reasonable, it overlooks some important details. Admittedly, the missing code cannot be found in
any of the slices. However, the omission of the code may have triggered some adverse effect
elsewhere in the program, such as the traversal of an incorrect branch in a decision statement. An
abnormal program execution path (and, thus, the appearance of unexpected code in the
corresponding slice) with respect to a given test case should be a clue to the programmer that
some omitted statements may be leading to control flow anomalies. This implies that we still
should be able to identify suspicious code related to the omission error, such as the affected
decision branch, using slice-based heuristics. A similar argument can also be made for program

14

spectrum-based (Section 3.23.2), statistics-based (Section 3.3), and program state-based methods
(Section 3.4), as well as others. Although these fault localization methods cannot pinpoint the
location of the missing code, they can still provide a reasonable starting point for the search.

5. CONCLUSION

Locating program bugs is more of an art form than an easily-automated mechanical process.
Although techniques do exist that can narrow the search domain, a particular method is not
necessarily applicable for every program. Choosing an effective debugging strategy normally
requires expert knowledge regarding the program in question. In general, an experienced
programmer’s intuition about the location of the bug should be explored first. However, if this
fails, an appropriate fallback would be a systematic fault localization method (such as those
discussed in Section 3) based on solid reasoning and supported by case studies, rather than an
unsubstantiated ad hoc approach.

Some fault localization methods (e.g., (4,15,25,55,75), and others) are restricted to selecting only
a single failed test case and a single successful test case, based on certain criteria, to locate a bug.
Alternative methods (e.g., (31,38,39,66,68,69,70,71,72), and others) rely on the combined data
from sets of multiple failed and successful test cases. These latter methods take advantage of
more test cases than the former, so it is likely that the latter are more effective in locating a
program bug, in that they require the programmer to examine less code before the first faulty
location is discovered. For example, the Tarantula method (31) which uses multiple failed and
multiple successful tests, has been shown to be more effective than nearest neighbor (55), a
method that only uses a single failed and single successful test. However, it is important to note
that by considering only one successful and one failed test, it may be possible to align the two test
cases and arrive at a more detailed root-cause explanation of the failure (15,22) compared to the
methods that take into account multiple successful and failed test cases simultaneously. Neither
category is necessarily superior to the other, but a general rule is that an effective fault
localization method should assign higher suspiciousness to code that is likely to contain bugs and
lower suspiciousness to code in which the presence of bugs is less probable. This increases the
likelihood that the fault will appear near the top of the list when the code is prioritized for
examination based on suspiciousness. An effective fault localization method should also,
whenever possible, assign a unique suspiciousness value to each unit of code to reduce ambiguity
during prioritization.

In conclusion, even with the presence of so many different fault localization methods, fault
localization is far from perfect. While these methods are constantly advancing, software too is
becoming increasingly more complex which means the challenges posed by fault localization are
also growing. Thus, there is a significant amount of research still to be done, and a large number
of breakthroughs yet to be made.

ACKNOWLEDGMENT

The authors wish to thank Andy Restrepo of the Software Technology Advanced Research
(STAR) Lab at the University of Texas at Dallas for his valuable comments in helping us
preparing this paper.

15

REFERENCES

1. H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging with Dynamic Slicing and

Backtracking,” Software – Practice & Experience, 23(6):589-616, June, 1993
2. H. Agrawal, R.A. DeMillo, and E.H. Spafford, “An Execution Backtracking Approach to

Program Debugging,” IEEE Software, 8(5):21–26, May 1991
3. H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,” in Proceedings of the ACM

SIGPLAN'90 Conference on Programming Language Design and Implementation, pp. 246-
256, White Plains, New York, June 1990

4. H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault Localization using Execution
Slices and Dataflow Tests,” in Proceedings of the 6th IEEE International Symposium on
Software Reliability Engineering, pp. 143-151, Toulouse, France, October 1995

5. H. Agrawal, J. R. Horgan, W. E. Wong, etc., “Mining System Tests to Aid Software
Maintenance,” IEEE Computer, 31(7):64-73, July 1998

6. L. C. Ascari, L. Y. Araki, A. R. T. Pozo, and S. R. Vergilio, “Exploring Machine Learning
Techniques for Fault Localization”, in Proceedings of the 10th Latin American Test
Workshop, pp. 1-6, Buzios, Brazil, March 2009.

7. T. Ball, M. Naik, and S. K. Rajamani, “From Symptom to Cause: Localizing Errors in
Counterexample Traces,” in Proceedings the 30th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 97-105, New Orleans, Louisiana, January 2003

8. B. Baudry, F. Fleurey, and Y. Le Traon, “Improving Test Suites for Efficient Fault
Localization,” in Proceedings of the 28th International Conference on Software Engineering,
pp. 82-91, Shanghai, China, May 2006

9. A. Beszedes, T. Gergely, Z. Szabo, J. Csirik, and T. Gyimothy, “Dynamic Slicing Method for
Maintenance of Large C Programs,” in Proceedings of the 5th European Conference on
Software Maintenance and Reengineering, pp. 105-113, Lisbon, Portugal, March 2001

10. F. Bourdoncle, “Abstract debugging of higher-order imperative languages,” in Proceedings of
the1993 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 46-55, Albuquerque, New Mexico, USA, June 1993

11. L. C. Briand, Y. Labiche, and X. Liu, “Using Machine Learning to Support Debugging with
Tarantula”, in Proceedings of the 18th IEEE International Symposium on Software Reliability,
pp. 137-146, Trollhattan, Sweden, November 2007

12. Y. Brun and M. D. Ernst, “Finding Latent Code Errors via Machine Learning over Program
Executions”, in Proceedings of the 26th International Conference on Software Engineering,
pp. 480- 490, Edinburgh, UK, May 2004

13. T.A. Budd and D. Angluin, “Two Notions of Correctness and Their Relation to Testing,”
Acta Infomatica, 18(1):31-45, March 1982.

14. P. Cellier, S. Ducasse, S. Ferre, and O. Ridoux, “Formal Concept Analysis Enhances Fault
Localization in Software”, in Proceedings of the 4th International Conference on Formal
Concept Analysis, pp. 273-288, Montréal, Canada, February 2008

15. H. Cleve and A. Zeller, “Locating Causes of Program Failures,” in Proceedings of the 27th

International Conference on Software Engineering, pp. 342-351, St. Louis, Missouri, USA,
May, 2005

16. P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints,” in Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.238-252, Los
Angeles, California, USA, January 1977

17. V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight Defect Localization for Java,” in
Proceedings of the 19th European Conference on Object-Oriented Programming, pp. 528-
550, Glasgow, UK, July 2005

18. R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical Slicing for Software Fault Localization,”
in Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 121-134, San Diego, California, USA, January 1996

19. R. A. DeMillo, H. Pan, E. H. Spafford, “Failure and fault analysis for software debugging”;
in Proceedings of 21st International Computer Software and Applications Conference, pp.
515-521, Washington DC, USA, August 1997

16

20. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically Discovering Likely
Program Invariants to Support Program Evolution,” IEEE Transactions on Software
Engineering, 27(2):99-123, February 2001

21. L. Fausett, Fundamentals of neural networks: architectures, algorithms, and applications,
Prentice-Hall, 1994

22. A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error Explanation with Distance
Metrics,” International Journal on Software Tools for Technology Transfer, 8(3):229-247,
June 2006

23. N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code Using Failure-Inducing
Chops,” in Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 263-272, Long Beach, California, USA, November 2005

24. T. Gyimothy, A. Beszedes, and I. Forgacs, “An Efficient Relevant Slicing Method for
Debugging,” in Proceedings of 7th European Software Engineering Conference and 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 303-321,
Toulouse, France, September 1999

25. L. Guo, A. Roychoudhury, and T. Wang, “Accurately Choosing Execution Runs for Software
Fault Localization,” In Proceedings of the 15th International Conference on Compiler
Construction, pp. 80-95, Vienna, Austria, March 2006

26. M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An Empirical Investigation of the
Relationship between Spectra Differences and Regression Faults,” Journal of Software
Testing, Verification and Reliability, 10(3):171-194, September 2000

27. R. Hecht-Nielsen, “Theory of the back-propagation neural network,” in Proceedings of 1989
International Joint Conference on Neural Networks, pp. 593-605, Washington DC, USA,
June 1989

28. R. M. Hierons, “Avoiding Coincidental Correctness in Boundary Value Analysis,” ACM
Transactions on Software Engineering and Methodology, 15(3): 227-241, July 2006

29. http://www-static.cc.gatech.edu/aristotle/Tools/subjects
30. J. A. Jones, J. Bowring, and M. J. Harrold, “Debugging in Parallel,” in Proceedings of the

2007 International Symposium on Software Testing and Analysis, pp. 16-26, London, UK,
July, 2007.

31. J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula Automatic Fault-
Localization Technique,” in Proceedings of the 20th IEEE/ACM Conference on Automated
Software Engineering, pp. 273-282, Long Beach, California, USA, December, 2005

32. D. Kob and F. Wotawa, “Introducing alias information into model-based debugging,” in
Proceedings of the 16th Eureopean Conference on Artificial Intelligence, pp.833-837,
Valencia, Spain, August 2004

33. B. Korel, “PELAS – Program Error-Locating Assistant System,” IEEE Transactions on
Software Engineering, 14(9):1253-1260, September 1988

34. B. Korel and J. Laski, “Dynamic Program Slicing,” Information Processing Letters,
29(3):155-163, October 1988

35. B. Korel and J. Laski, “STAD: A System for Testing and Debugging: User Perspective,” in
Proceedings of the 2nd Workshop on Software Testing, Verification, and Analysis, pp.13–20,
Washington DC, USA, July 1988

36. B. Korel and S. Yalamanchili, “Forward Computation of Dynamic Program Slices,” in
Proceedings of the 1994 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 66-79, Seattle, Washington, August 1994

37. C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang, “Robust radial basis function neural
networks,” IEEE Transactions on Systems, Man, and Cybernetics: Part B Cybernetics,
29(6):674-685, December, 1999

38. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable Statistical Bug
Isolation,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 15-26, Chicago, Illinois, USA, June, 2005.

39. C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical Debugging: A Hypothesis
Testing-based Approach,” IEEE Transactions on Software Engineering, 32(10):831-848,
October, 2006

40. C. Liu and J. Han, “Failure Proximity: A Fault Localization-based Approach,” in
Proceedings of the 14th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 286-295, Portland, Oregon, USA, November 2006

17

41. C. Liu, X. Yan, H. Yu, J. Han and P. Yu, “Mining Behavior Graphs for “Backtrace” of
Noncrashing Bugs,” in Proceedings of 2005 SIAM International Conference on Data Mining,
pp.286-297, Newport Beach, California, April 2005

42. C. Liu, X. Zhang, J. Han, Y. Zhang, and B.K. Bhargava, “Indexing Noncrashing Failures: A
Dynamic Program Slicing-Based Approach” in Proceedings of the 23rd International
Conference on Software Maintenance, pp. 455-464, Paris, France, October 2007.

43. J. R. Lyle and M. Weiser, “Automatic Program Bug Location by Program Slicing,” in
Proceedings of the 2nd International Conference on Computer and Applications, pp. 877-883,
Beijing, China, June 1987

44. C. Mateis, M. Stumptner, D. Wieland, and F. Wotawa, “JADE - AI support for debugging
Java programs,” in Proceedings of the 12th IEEE International Conference on Tools with
Artificial Intelligence, pp.62-69, Vancouver, BC, Canada, November 2002

45. C. Mateis, M. Stumptner, and F. Wotawa, “Modeling Java programs for diagnosis,” in
Proceedings of the 14th European Conference on Artificial Intelligence, pp.171-175, Berlin,
Germany, August 2000

46. W. Mayer and M. Stumptner, “Modeling programs with unstructured control flow for
debugging,” in Proceedings of the 15th Australian Joint Conference on Artificial Intelligence,
pp.107-118, Canberra, Australia, December 2002

47. W. Mayer and M. Stumptner, “Debugging program exceptions,” in Proceedings of the 14th
International Workshop on Principles of Diagnosis, pp.119-124, Washington, D.C., USA,
June 2003

48. W. Mayer and M. Stumptner, “Approxiamte modeling for debugging of program loops,” in
Proceedings of the 15th International Workshop on Principles of Diagnosis, pp. 87-92,
Carcassonne, France, June 2004

49. W. Mayer and M. Stumptner, “Abstract interpretation of programs for model-based
debugging,” in Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pp.471-476, Hyderabad, India, January 2007

50. W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, “Can AI help to Improve Debugging
Substantially? Debugging Experiences with Value-based Models,” in Proceedings of the 15th
Eureopean Conference on Artificial Intelligence, pp. 417-421, Lyon, France, July 2002

51. W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, “Towards an Integrated Debugging
Environment,” in Proceedings of the 15th Eureopean Conference on Artificial Intelligence,
pp.422-426, Lyon, France, July 2002

52. S. Nessa, M. Abedin, W. Eric Wong, L. Khan, and Y. Qi, “Fault Localization Using N-gram
Analysis,” in Proceedings of the 3rd International Conference on Wireless Algorithms,
Systems, and Applications, pp. 548-559, Richardson, Texas, USA, April 2009 (Lecture Notes
In Computer Science, Volume 5258)

53. A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang, “Automated
Support for Classifying Software Failure Reports,” in Proceedings of the 25th International
Conference on Software Engineering, pp. 465-475, Portland, Oregon, USA, May 2003

54. B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss, “Automated Fault Localization
Using Potential Invariants,” in Proceedings of the 5th International Workshop on Automated
and Algorithmic Debugging, pp. 273-276, Ghent, Belgium, September 2003

55. M. Renieris and S. P. Reiss, “Fault Localization with Nearest Neighbor Queries,” in
Proceedings of the 18th IEEE International Conference on Automated Software Engineering,
pp. 30-39, Montreal, Canada, October 2003

56. T. Reps, T. Ball, M. Das, and J. Larus, “The Use of Program Profiling for Software
Maintenance with Applications to the Year 2000 Problem,” in Proceedings of the 6th
European Software Engineering Conference, pp. 432-449, Zurich, Switzerland, September,
1997

57. Software-artifact Infrastructure Repository at http://sir.unl.edu/portal/index.html
58. C. D. Sterling and R. A. Olsson, “Automated Bug Isolation via Program Chipping,” in

Proceedings of the 6th International Symposium on Automated Analysis-Driven Debugging,
pp. 23-32, Monterey, California, USA, September 2005

59. A. B. Taha, S. M. Thebaut, and S. S. Liu, “An Approach to Software Fault Localization and
Revalidation based on Incremental Data Flow Analysis,” in Proceedings of the 13th Annual
International Computer Software and Applications Conference, Washington DC, USA, pp.
527-534, September 1989

18

60. F. Tip, “A survey of program slicing techniques,” Journal of Programming Languages,
3(3):121–189, 1995

61. T. Wang and A. Roychoudhury, “Automated Path Generation for Software Fault
Localization,” in Proceedings of 20th IEEE/ACM International Conference on Automated
Software Engineering, pp. 347-351, Long Beach, California, USA, November 2005

62. X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang, “Taming Coincidental Correctness:
Refine Code Coverage with Context Pattern to Improve Fault Localization,” in Proceedings
of the 31st International Conference on Software Engineering, pp. 45-55, Vancouver, Canada,
May 2009.

63. P. D. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Reinhold, 1993
64. M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, SE-10(4):352-

357, July 1984
65. M. Weiser, “Programmers use Slices when Debugging,” Communications of the ACM,

25(7):446-452, July 1982
66. W. E. Wong, V. Debroy and B. Choi, “A Family of Code Coverage-based Heuristics for

Effective Fault Localization,” Journal of Systems and Software, 83(2):188-208, February,
2010

67. W. E. Wong and J. J. Li, “An Integrated Solution for Testing and Analyzing Java
Applications in an Industrial Setting,” in Proceedings of the 12th IEEE Asia-Pacific Software
Engineering Conference, pp. 576-583, Taipei, Taiwan, December 2005

68. W. E. Wong and Y. Qi, “Effective Program Debugging based on Execution Slices and Inter-
Block Data Dependency,” Journal of Systems and Software , 79(7):891-903, July 2006

69. W. E. Wong and Y. Qi, “BP Neural Network-based Effective Fault Localization,”
International Journal of Software Engineering and Knowledge Engineering 19(4):573-597,
June 2009

70. W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an RBF Neural Network to Locate
Program Bugs,” in Proceedings of the 19th IEEE International Symposium on Software
Reliability Engineering, pp. 27-38, Seattle, Washington, USA, November 2008

71. W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart Debugging Software
Architectural Design in SDL,” Journal of Systems and Software, 76(1):15-28, April 2005

72. W. E. Wong, T. Wei, Y. Qi, and L. Zhao, “A Crosstab-based Statistical Method for Effective
Fault Localization,” in Proceedings of the 1st International Conference on Software Testing,
Verification and Validation, pp. 42-51, Lillehammer, Norway, April 2008

73. F. Wotawa, “On the relationship between model-based debugging and program slicing,”
Artificial Intelligence, 135(1-2):125-143, February 2002

74. F. Wotawa, M. Stumptner, and W. Mayer, “Model-based debugging or how to diagnose
programs automatically,” in Proceedings of the 15th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems: Developments in
Applied Artificial Intelligence, pp. 746-757, Cairns, Australia, June 2002.

75. A. Zeller, “Isolating Cause-Effect Chains from Computer Programs,” in Proceedings of the
10th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp. 1-10,
Charleston, South Carolina, USA, November 2002

76. A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE
Transactions on Software Engineering, 28(2):183-200, February 2002

77. T. Zimmermann and A. Zeller, “Visualizing Memory Graphs,” in Proceedings of the
International Seminar on Software Visualization, pp. 191-204, Dagstuhl Castle, Germany,
May 2001

78. X. Zhang, N. Gupta, and R. Gupta, “Locating Faults through Automated Predicate
Switching,” in Proceedings of the 28th International Conference on Software Engineering,
pp. 272-281, Shanghai, China, May 2006

79. X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic Slicing Algorithms,” in Proceedings of
the 25th IEEE International Conference on Software Engineering, pp. 319-329, Portland,
Oregon, USA, May 2003

80. X. Zhang, R. Gupta, and Y. Zhang, “Efficient Forward Computation of Dynamic Slices
Using Reduced Ordered Binary Decision Diagrams,” in Proceedings of the 26th International
Conference on Software Engineering, pp. 502-511, Edinburgh, Scotland, UK, May 2004

19

81. X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental Evaluation of Using Dynamic
Slices for Fault Location,” in Proceedings of the 6th International Symposium on Automated
Analysis-driven Debugging, pp. 33-42, Monterey, California, USA, September 2005

82. X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards Locating Execution Omission
Errors,” in Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 415-424, San Diego, California, USA, June 2007.

83. A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical Debugging:
Simultaneous Isolation of Multiple Bugs,” in Proceedings of the 23rd International
Conference on Machine Learning, pp. 26-29, Pittsburgh, Pennsylvania, June 2006.

84. χSuds User’s Manual, Telcordia Technologies (formerly Bellcore), New Jersey, USA, 1998

