
Test Suite
Quality Metrics

2

One-Slide Summary

● Test suite quality metrics help us decide which
suite to use. Line coverage, the fraction of lines
visited when running a suite, is simple but gives
limited confidence. Branch coverage, which
requires both true and false values for
conditionals, is richer (incorporating data values
indirectly). Mutation analysis measures the
fraction of seeded defects detected by a suite; it
is expensive but effective.

● Beta and A/B testing involve real users and their
experiences.

3

The Story So Far …
● Testing is the most common dynamic

technique for software quality assurance.
● Testing is very expensive (e.g., 35% of total IT

spending). [Capgemini World Quality Report. 2015]

● Not testing, or testing badly, is even more
expensive: [Minimizing code defects to improve software quality
and lower development costs. IBM 2008]

4

Story Time

● Abboty Labs (St. Jude Medical) makes
pacemakers

● In 2016, 465,000 of them were discovered to
have security vulnerabilities
“The wireless protocol used for communication
amongst St. Jude Medical cardiac devices has
serious security vulnerabilities that make it
possible to convert Merlin@home devices into
weapons capable of disabling therapeutic care
and delivering shocks to patients at distances of
10 feet, a range that could be extended using
off-the-shelf parts to modify Merlin@home
units.”

https://medsec.com/stj_expert_witness_report.pdf

5

Turtles All The Way Down

● “The “fix” is not a surgical replacement
pacemaker, but a firmware update that takes
about three minutes to complete and carries a
“very low risk of update malfunction;” a very
small percentage of people might experience a
“complete loss of device functionality” during
the firmware update. The patch covers St.
Jude Medical’s pacemakers: Accent, Anthem,
Accent MRI, Accent ST, Assurity and Allure.”

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

6

Guiding Narrative

● How should we think about testing?
● Lens of Logic
● Lens of Statistics
● Lens of Adversity

7

Lens of Logic

8

The Motivation

● If testing is our best way to gain confidence in
the quality of software, but testing is
expensive, how can we ensure that we are
testing in an effective manner?

● Informal Desideratum: The program passes the
tests if and only if it does all the right things
and none of the wrong things.
● Pass all tests program adheres to requirements→
● Each failing test program behaves incorrectly→

9

Intuition (Gedankenexperiment)

● Suppose you were writing a sqrt program and
one of the requirements was that it should
abort gracefully on negative inputs.

● Suppose further that your test suite does not
include any negative inputs.

● Can we conclude that passing all of the tests
implies adhering to all of the requirements?

10

Coverage

● We desire all of the requirements to be
covered (“checked”) by the test suite.

● For our purposes, X coverage is the degree to
which X is executed/exercised by the test
suite.

● Examples:
● Code coverage is the degree to which the source

code is executed by the test suite.
● Statement coverage is the fraction of source

statements that are executed by the test suite.

11

Do Tests Cover All Requirements?

● In ideal world we would have traceability
between requirements and test cases

● That is, each test case would have an
annotation like “a program that passes this
test satisfies requirement X” or “passing this
test gives confidence that a program adheres
to requirement Y”

● Outside of certain industries (e.g., Aerospace),
such formal traceability is rare
● e.g., https://en.wikipedia.org/wiki/DO-178C

https://en.wikipedia.org/wiki/DO-178C

12

An Approximation

● We will cover requirements and their
elicitation later in this course (mid-semester)

● But suppose for now you don't have formal
traceability to your requirements

● So testing that the program does all and only
the good things that it is required to do is not
possible (or not feasible)

● Analogy: “Lie of Omission”
● You see someone spike your friend's drink at a bar.

Are you obligated to warn your friend?

13

Aside: Ethics

● It is very tempting to say “yes, you are morally
obligated to warn your friend” (many would agree!)

● However, it can be surprisingly difficult to make a
consistent moral system that requires particular
positive actions, as opposed to just forbidding
negative actions

● cf. “Thou shalt not kill” (Old Testament) or “An it harm
none, do what ye will” (Wiccan Rede) or “Everything which
is not forbidden is allowed” (English law), etc.

● For more information, take a class on Ethics
(normative ethics) from the Philosophy department

14

Don't Do Bad Things

● We can at least test that the program does not
do certain bad things
● e.g., “don't segfault”, “don't send my password to

Microsoft”, “on this one particular input, don't get
the wrong answer”

● Note that “I never do bad things” is not the
same as “I always/eventually do good things”
● For more information, take a class on Modal Logic

or read about Liveness vs. Safety properties

15

Testing to Find Bugs
● So now we want to test to gain confidence

that the program does not do “bad things”
● That is, that the program does not have bugs

● Key Logical Observation: If we never test line
X then testing cannot rule out the presence
of a bug on line X

● (You could read line X, but we're talking about
testing. Later this semester: code review.)

16

If this seems “too obvious” so far,
just wait …

17

P Q→
“No test covers X may have bug in X”→

● Note that you could test line X and still have a
bug on line X
● foo(a,b) { return a/b; }
● test: foo(6,2)

● But testing X gives us some small but non-zero
confidence in the correctness of X

18

“All Other Things Being Equal”

● If test A visits lines 1 and 2
● And test B visits lines 1, 2, 3 and 4
● Then, all other things being equal, we prefer

test B
● Test A gives some confidence about 1 and 2 and no

confidence (no information) about 3 and 4
● Test B gives some confidence about 1, 2, 3 and 4

● If the confidence/info gained per tested line is
c>0, test A gives us 2c+0 and test B gives us 4c.
● Because c>0, we have 4c > 2c. So B > A.

19

Simplifying Assumptions

● Assumption 1. We gain the same amount of
confidence (or information) for each visited
line.

● Assumption 2. The amount of confidence (or
information) we gain per visited line is
positive.

● Assumption 3. …

20

Line Coverage:
A Test Suite Quality Metric

● A test suite quality metric or test suite
adequacy criterion assesses the quality of a
test suite (with respect to an external notion
of utility) and allows test suites to be
compared.

● Line (or statement) coverage is a test suite
quality metric: it is the number of unique lines
(statements) visited (exercised) by the
program when running the test suite.
● (Informally: visiting more lines is better because

you have no information about un-visited lines.)

21

Using Line Coverage

● Given two test suites that both run within your
resource budget (“AOTBE”, etc.), if we can
only run one, we prefer the test suite with
higher line coverage

● Thus coverage is a metric that allows us to
compare two test suites and pick the “better”
one

● We use this information to guide decision-
making in a software process (“how should we
do testing?”)

22

Collecting Line Coverage

● At its simplest, this is just print-statement
debugging

● Put a print statement before every line of the
program
● Run all the tests, collect all the printed

information, remove duplicates, count

● Practical concern: the observer effect (from
physics) is the fact that simply observing a
situation or phenomenon necessarily changes
that phenomenon.

23

Coverage Instrumentation

● Coverage instrumentation modifies a program
to record coverage information in a way that
minimizes the observer effect.
● This can be done at the source or binary level.

● Don't actually print to stdout/stderr
● Don't slow things down too much

● Pre-check before printing a duplicate?

● Don't introduce infinite loops
● Instrument “print” with a call to “print”?

24

Good News: “Solved” Problem

● This is a well-studied problem and many push-
button solutions exist for various forms of
coverage
● Either built in to your IDE or as external tools

● You will use three in the Homework
● Python's coverage, gcc's gcov, Java's cobertura

● For more information on how to write one yourself,
take a (graduate?) PL or Compilers class.

25

Problems with Line Coverage

● What could go wrong with line coverage?

● Can you think of situations with 100% line
coverage where the program might still have
bugs?

26

Example Where
Statement Coverage is Inadequate

● Cross-site scripting attacks: [2016 Vulnerability Statistics
Report, edgescan]

27

Example Where
Statement Coverage is Inadequate

● Cross-site scripting attacks: [2016 Vulnerability Statistics
Report, edgescan]

28

Data Values and
Implicit Control Flow

return a/b

print ptr->fld

if (b != 0)

 return a/b;

else

 ABORT

if (ptr != NULL)

 print ptr->fld

else

 ABORT

29

Intuition

● Many interesting data values cause implicit or
explicit changes of control
● That is, they cause different branches of

conditionals to execute

● Informally, the problem of ensuring that we
cover interesting data values may reduce to
the problem of ensuring that we cover all
branches of conditionals

30

Branch Coverage

● Branch coverage is a test suite quality metric
that counts the total number of conditional
branches exercised by that test suite (i.e.,
if true and if false are counted separately)→ →

● Note that branch coverage can subsume line
coverage:

foo(a):

 if a > 5:

 print “x”

 print “y”

Test Suite {foo(7)} has 100%
line coverage but 50% branch
coverage.

Test Suite {foo(7), foo(0)}
has 100% line and 100%
branch coverage.

31

Branch vs. Line

● Branch coverage typically gives us more
confidence than line coverage

● Typically, 100% branch coverage implies 100%
line coverage

● However, branch coverage is “more expensive”
in the sense that it is harder for a test suite to
have high branch coverage than to have high
line coverage
● Note: quality isn't really “more expensive”, you

were just fooling yourself before by thinking line
coverage was OK. Being correct is expensive.

32

Other Flavors

● Function Coverage: what fraction of functions
have been called?

● Condition Coverage: what fraction of boolean
subexpressions have been evaluated?
● Comparing this to branch coverage is a not-

uncommon test question …

● Modified Condition / Decision Coverage:
function coverage + branch coverage (this is a
simplification)

● Used in mission critical (e.g., avionics) software

33

Trivia: Statistics
● This English social reformer and statistician

(among other activities, ~1850) was a pioneer
in the use of infographics: the effective
graphical presentation of statistical data.

34

Psychology: Recall

● 120 students (age 18 to 24) were asked to
study prose passages (e.g., 300 words on “Sea
Otters”) and also do math problems

● Group 1: Read for 7m, math for 2m, re-read
for 7m, math for 5m

● Group 2: Read for 7m, math for 2m, test for
10m, math for 5m

● Both groups: later test for 10 minutes→
● Which group did better? By how much?

35

Psychology: Recall

36

Psychology: Testing Effect

● The testing effect: long-term memory is
increased when some of the learning period is
devoted to retrieving the to-be-remembered
information through testing with feedback.

● “They found that re-studying or re-reading
memorized information had no effect, but
trying to recall the information had an
effect.”

● Implication for SE: Code comprehension.
[Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory
Tests Improves Long-Term Retention". Psychological Science. 17 (3): 249–255.]

37

Lens of
Statistics

38

Alternate View

● The bugs experienced by users are the ones
that matter.

● Dually, bugs never experienced by users do not
matter.

39

Positive User View

● Suppose you are writing a point-of-sale cashier
application that makes change for a dollar.
Given any price between 1 and 100 cents, you
must indicate the coins to give out as change.
● e.g., 23 return 3 quarters and 2 pennies→

● In this scenario, you can exhaustively test all
100 inputs that will occur to real users in the
real world
● In some sense, it does not matter if that is 100%

statement or code coverage (e.g., dead code)

40

Negative User View

● Suppose users will only ever cause lines 1, 2
and 3 of your program to be executed

● Then you do not need to test line 4
● Even if it has a bug, users will never encounter

that bug

● Note “will” this either requires a prediction →
of the future or a finite input domain

41

Testing as Sampling

● If user-experienced bugs are the ones that
matter, testing should be devoted to sampling
those inputs that users will provide

● Two views:
● Sample what users do most commonly
● Sample what causes the most harm if users do it

● Compare:
● Risk = (Prob. of Event) * (Damage if Event Occurs)

42

Sampling Error

● In statistics, sampling error is incurred when
the statistical characteristics of a population
are estimated from a subset, or sample, of
that population.
● “Our test suite is a sample of inputs that could

occur in the real world. Our program behaves well
on our test suite.” later “Our program → →
behaves badly on some other untested real input.
Sampling error!”

● Testing gives confidence the same way
sampling (or polling) gives confidence.

43

Sampling Bias

● In statistics, sampling bias is a bias in which a
sample is collected in such a way that some
members of the intended population are less
likely to be included than others.
● Suppose you are conducting a poll to see who will

win the next election, but you only poll
republicans.

● Suppose you are creating tests to see if your
program will crash, but you only poll nice, small,
inputs.

44

Solution?

● There are a number of well-established
sampling techniques in the field of statistics to
help address such biases
● They often require knowing something about the

distribution of the full population from which you
want to sample a subpopulation

● The basic problem in SE is that the underlying
distribution of real user inputs is not known

45

Beta Testing

● Alpha testing is testing done by developers.
● Beta testing is testing done by external users

(often using a special beta version of the
program).

● Beta testing can be viewed as directly
sampling the space of user inputs

46

A/B Testing

● A/B testing involves two variants of your
software, A and B, which differ only in one
feature. Different users are shown different
variants and responses are recorded. It is an
instance of two-sample statistical hypothesis
testing.

47

Likely or Damaging?

● Recall two guiding approaches:
● Sample what users will do most commonly
● Sample what will cause the most harm

● The former is sometimes called workload
generation
● Common for databases, webservers, etc.

● The latter often relates to computer security
● Exploit generation, penetration testing, etc.
● cf. AFL in Homework 2

48

Non-Security Damage

● For Amazon (etc.), “damaging” is “customer
does not complete the purchase”

[Dobolyi et al. Modeling Consumer-Perceived
Web Application Fault Severities for Testing.
ISSTA 2010.]

49

Lens of Adversity

50

Finding Bugs

● Suppose you wanted to evaluate the quality of
two truffle-sniffing pigs or bomb-sniffing dogs

● You might hide some truffles and see how
many each pig finds (etc.)
● The pig that finds more of the hidden truffles in

your backyard is assumed to find more real truffles
in the wild

● Suppose you wanted to evaluate the quality of
two bug-finding test suites …

51

Mutation Testing
● Mutation testing (or mutation analysis) is a

test suite adequacy metric in which the
quality of a test suite is related to the number
of intentionally-added defects it finds.

● Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

52

Verisimilitude

● In the truffle-pig example, if every truffle I
hide in my back yard is next to a smelly red
flower, a pig that finds them all may not
actually do well in the real world
● The truffle placements I made up were not

indicative of real-world truffles

● Similarly, if I add a bunch of defects to my
software that are not at all the sort of defects
real humans would make, then mutation
testing is uninformative

53

Defect Seeding

● Defect seeding is the process of intentionally
introducing a defect into a program. The
defect introduced is typically intentionally
similar to defects introduced by real
developers. The seeding is typically done by
changing the source code.

● For mutation testing, defect seeding is
typically done automatically (given a model of
what human bugs look like)
● You will do this in Homework 3

54

Mutation Operators

● A mutation operator systematically changes a
program point. In mutation testing, the
mutation operators are modeled on historical
human defects. Example mutations:

if (a < b) → if (a <= b)

if (a == b) → if (a != b)

a = b + c → a = b – c

f(); g(); → g(); f();

x = y; → x = z;

55

Mutant
● A mutant (or variant) is a version of the

original program produced by applying one or
more mutation operators to one or more
program locations. The order of a mutant is
the number of mutation operators applied.

// original // 2nd-order mutant

if (a < b): if (a <= b):

 x = a + b → x = a – b

 print(x) print(x)

56

Competent Programmers

● The competent programmer hypothesis holds
that program faults are syntactically small and
can be corrected with a few keystrokes.

● Programmers write programs that are largely
correct. Thus the mutants simulate the likely
effect of real faults. Therefore, if the test
suite is good at catching the artificial mutants,
it will also be good at catching the unknown
but real faults in the program.

57

Do Humans Really
Make Simple Mistakes?

58

Competent?

● Is the competent programmer hypothesis true?

59

Competent?

● Is the competent programmer hypothesis true?

● Yes and no.
● It is certainly true that humans often make

simple typos (e.g., + to -).
● But it is also true that some bugs are more

complex than that.

60

Coupling Effect

● The coupling effect hypothesis holds that
complex faults are “coupled” to simple faults
in such a way that a test suite that detects all
simple faults in a program will detect a high
percentage of the complex faults.

● Is it true?
● Tests that detect simple mutants were also able to

detect over 99% of second- and third-order
mutants historically [A. J. Offutt. Investigations of the
software testing coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5–20, Jan. 1992.]

61

Mutation Testing

● A test suite is said to kill (or detect, or reveal)
a mutant if the mutant fails a test that the
original passes.

● Mutation testing (or mutation analysis) of a
test suite proceeds by making a number of
mutants and measuring the fraction of them
killed by that test suite. This fraction is called
the mutation adequacy score (or mutation
score).
● A test suite with a higher score is better.

62

The wording can be tricky, I know …

63

Mutation Analysis: Pros and Cons

● Has the potential to subsume other test suite
adequacy criteria (it can be very good)

● Which mutation operators do you use?
● Where do you apply them? How often do you

apply them?
● Typically done at random, but how?

● It is very expensive. If you make 1,000
mutants, you must now run your test suite
1,000 times!
● We started by saying testing (1x) was expensive!

64

Equivalent Mutant Problem

● Suppose you have “x = a + b; y = c + d;” and
you swap those two statements.

● The resulting program is a mutant, but it is
semantically equivalent to the original.
● So it will pass and fail all of the tests that the

original passes and fails.

● So it will dilute the mutation score
● Detecting equivalent mutants is a big deal.

How hard is it?

65

Equivalent Mutant Problem

● Detecting equivalent mutants is a big deal.
How hard is it?

● It is undecidable!
● By direct reduction to the halting problem, or by

Rice's Theorem

def foo(): # foo halts if and only if

 if p1() == p2(): # p1 is equivalent to p2

 return 0

 foo()

66

Questions?
● Lens of Logic: “no visit X no find bug in X”→

● Leads to statement and branch coverage.

● Lens of Statistics: “sample the inputs the users
will make”
● Leads to beta testing, A/B testing.

● Lens of Adversity: “poke realistic holes in the
program and see if you find them”
● Leads to mutation testing.

● Don't neglect HW 1 components!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

