
Measurement

2

One-Slide Summary

● Software metrics are widely used in industry to
support decision-making. Metrics are often
inadequately supported and thus lack validity.
They should be used carefully.

● Measurement is a fundamental activity but is
influenced by human biases. It is easy to
misinterpret data or focus on what is easy to
measure. Metrics can incentivize perverse
behavior.

● Managers are more concerned with real-world s/w
use metrics than individual productivity.

3

Story So Far

● Using a software process correctly could
improve efficiency. We need information to do
so (e.g., the spiral development model
requires identifying risks) but may lack it
because of uncertainty.

● If only we could measure
things to gain information
about them …

4

Who Cares About Process Again?

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”

5

Consider Time Ranges: A vs. B+C

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”

“A” “B”
“C”

6

Who Cares About Process Again?

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”

“A” “B”
“C”

7

Outline

● Case Study – Maintainability Index
● LOC, Halstead Volume, Cyclomatic Complexity

● Measurement
● Difficulty, Validity
● Correlation, Confounds
● Streetlight Effect, McNamara Fallacy
● Incentives and Warnings
● Begel and Zimmermann Survey

8

Maintainability Index

● In Visual Studio since 2007
“Maintainability Index calculates an index value between 0 and 100 that
represents the relative ease of maintaining the code. A high value means better
maintainability. Color coded ratings can be used to quickly identify trouble spots in
your code. A green rating is between 20 and 100 and indicates that the code has
good maintainability. A yellow rating is between 10 and 19 and indicates that the
code is moderately maintainable. A red rating is a rating between 0 and 9 and
indicates low maintainability.”

9

Maintainability Index in a Nutshell

● Index between 0 and 100 representing the relative ease of
maintaining the code.

● Higher is better. Color coded by number:

● Green: between 20 and 100

● Yellow: between 10 and 19

● Red: between 0 and 9

10

Design Rationale

● "We noticed that as code tended toward 0 it
was clearly hard to maintain code and the
difference between code at 0 and some
negative value was not useful."

● "The desire was that if the index showed red
then we would be saying with a high degree of
confidence that there was an issue with the
code."
[https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/]

https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/

11

The Magic Formula

Maintainability Index =

 max(0, (171 –

5.2 * log(Halstead Volume) –

0.23 * (Cyclomatic Complexity) –

16.2 * log(Lines of Code)

)* 100 / 171)

12

The Magic Formula

Maintainability Index =

 max(0, (171 –

5.2 * log(Halstead Volume) –

0.23 * (Cyclomatic Complexity) –

16.2 * log(Lines of Code)

)* 100 / 171)

13

Lines of Code

● Superficially easy to measure
● wc -l file1 file2

LOC projects

450 Expression Evaluator

2.000 Sudoku, Functional Graph Library

40,000 OpenVPN

80-100,000 Berkeley DB, SQLlight

150-300,000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML

500-800,000 gimp, glibc, mplayer, php, SVN

1,600,000 gcc

6,000,000 Linux, FreeBSD

45,000,000 Windows XP

14

Lines of Code: Normalized

● Common Practices:
● Ignore comments and empty lines
● Ignore lines with fewer than 2 characters
● Pretty Print source code first

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

15

Languages: Normalized

● “Programmers working with high-level
languages achieve better productivity and
quality than those working with lower-level
languages. Languages such as C++, Java,
Smalltalk, and Visual Basic have been credited
with improving productivity, reliability, and
comprehensibility by factors of 5 to 15 over
low-level languages such as assembly and C
(Brooks 1987, Jones 1998, Boehm 2000).”
[Steve McConnel. Code Complete: A Practical Handbook of Software
Construction, Second Edition. Microsoft.]

16

Languages: Normalized

● “… typical ratios of source statements in several high-level
languages to the equivalent code in C. A higher ratio means
that each line of code in the language listed accomplishes
more than does each line of code in C.”

● C 1.0

● Fortran 2.0

● C++ 2.5

● Java 2.5

● Visual Basic 4.5

● Perl 6.0

● Python 6.0

● Smalltalk 6.0

17

Halstead Volume
● Introduced by Maurice Halstead in 1977

● “Halstead made the observation that metrics of
the software should reflect the implementation or
expression of algorithms in different languages,
but be independent of their execution on a
specific platform.”

● Halstead Volume =

number of operators / operands *

log2(number of distinct operators / operands)

● Approximates the size of elements and
vocabulary

18

Halstead Example

main() {

 int a, b, c, avg;

 scanf("%d %d %d", &a, &b, &c);

 avg = (a + b + c) / 3;

 printf("avg = %d", avg); }

● The 12 unique operators (of 27) are: main, (),
{}, int, scanf, &, =, +, /, printf,',', ;

● The 7 unique operands (of 17) are: a, b, c,
avg, "%d %d %d", 3, "avg = %d"

19

Cylcomatic Complexity

● Proposed by McCabe in 1976
● Based on control flow graphs,

it measures linearly
independent paths through a
program

~ “number of decisions”

~ “tests to cover all branches”

(For more info: take a
Compilers or PL class.)

if (c1) {
 f1();

 } else {
 f2();

 }
if (c2) {
 f3();

 } else {
 f4();

 }

20

Maintainability Index: Origins

● Developers rated a number of HP systems
● Statistical regression analysis to find key

factors among 40 candidate metrics

[Oman and Hagemeister. Metrics for Assessing a Software System's
Maintainability. ICSM 1992.]

21

Maintainability Index: Origins

● Developers rated a number of HP systems
● Statistical regression analysis to find key

factors among 40 candidate metrics

[Oman and Hagemeister. Metrics for Assessing a Software System's
Maintainability. ICSM 1992.]

22

Case Study Thoughts

● Metrics seem attractive, can be easy to
compute, and seem to match our intuition

● Parameters can be arbitrary: calibrated from
small study, few devs, unclear significance
● Ex: original 1992 C/Pascal programs may be quite

different from modern Java/JS/C# code

● Many of these metrics strongly correlate with
size: just measure lines of code?
[cf. https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/]

https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

23

Measurement for
Decision Making in Software

● Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them. [Craner, Bond, “Software Engineering Metrics:
What Do They Measure and How Do We Know?”]

● A quantitatively expressed reduction of
uncertainty based on one or more
observations. [Hubbard, “How to Measure Anything …”]

24

Software Quality Metric

● IEEE 1061 says:

“A software quality metric is a
function whose inputs are software
data and whose output is a single
numerical value that can be
interpreted as the degree to which
[the] software possesses a given
attribute that affects its quality.”

25

Measurement for Decision Making

● Fund project?
● More testing?
● Fast enough? Secure enough?

● (“Should Equifax apply this webserver patch?”)

● Code quality sufficient?
● Which feature to focus on?
● Developer bonus?
● Time and cost estimation? Predictions reliable?

26

Software Qualities

● Scalability
● Security
● Extensibility
● Documentation
● Performance
● Consistency
● Portability

● Installability
● Maintainability
● Functionality (e.g.,

data integrity)
● Availability
● Ease of use
● Privacy
● Energy Efficiency

27

Process Qualities

● On-time release

● Development speed

● Meeting efficiency

● Conformance to
processes

● Time spent on rework

● Reliability of predictions

● Fairness in decision
making

● Measure time, costs,
actions, resources,
and quality of work
packages; compare
with predictions

● Use information from
issue trackers,
communication
networks, team
structures, etc.

● …

28

Positive Example:
Benchmark-Based Metrics

29

Measurement is Difficult

30

Trivia: Computer Science

● This American Turing-award winner is
known both for Byzantine fault
tolerance (distributed computing)
and also object-oriented type
systems (programming languages).
The eponymous substitution principle
states that an object of a subclass
can be used whenever an object of a
superclass is expected.

31

Psychology: “Perception”

● You are participating in a perception
study with other students. One by
one you each say aloud which line in
the second card has the same length
as the line in the first card:

32

Psychology: “Perception”

● When you are alone, your accuracy is 100%
● When 7 of the 8 people ahead of you give the

wrong answer, your accuracy drops to 63.2%
● Overall, 75% of participants gave an [obviously!]

incorrect answer at least one time out of twelve

● Most “yielders”: “I suspected about the middle
– but tried to put it out of my mind”

● 12/50 had “distortion of perception”:
expressed belief that the given answer was
correct; were unaware that all were wrong

33

Psychology: Social Influence

● This study is Asch's Conformity Experiment
● Individual differences were large,

independence was frequent (e.g., 95% of
subjects defied the majority at least once)
● Still, 75% yielded to a falsehood at least once

● Implications for SE: What if you and your boss
disagree on a measurement “before your
eyes”? Also: dangers of groupthink.
[Asch, S.E. (1951). Effects of group pressure on the
modification and distortion of judgments. In H. Guetzkow
(Ed.), Groups, leadership and men (pp. 177–190).]

34

Validity

● Construct Validity: Are we measuring what we
intended to measure?

● Predictive Validity: The extent to which the
measurement can be used to explain some
other characteristic of the entity being
measured

● External Validity: Concerns the generalization
of the findings to contexts and environments,
other than the one studied

35

Everything is Measurable

● If X is something we care about, then X, by definition, must be
detectable

● How could we care about things like “quality,” “risk,”
“security,” or “public image” if these things were totally
undetectable, directly or indirectly?

● If we have reason to care about some unknown quantity, it is
because we think it corresponds to desirable or undesirable
results in some way.

● If X is detectable, then it must be detectable in some amount

● If you can observe a thing at all, you can observe more of it or
less of it

● If we can observe it in some amount, then it must be
measurable.

36

37

Streetlight Effect

● The streetlight effect is a type of
observational bias that occurs when people are
searching for something and look only where it
is easiest

● Despite this, don't lose faith in measurement:
just work to avoid the bias

38

Dangers When Using Metrics

● Bad statistics: A basic misunderstanding of
measurement theory and what is being
measured.

● Bad decisions: The incorrect use of
measurement data, leading to unintended side
effects.

● Bad incentives: Disregard for the human
factors, or how the cultural change of taking
measurements will affect people.

39

Lies, damned lies, and …

● A case study for your consideration:
● In 1995, the UK Committee on Safety of

Medicines issued the following warning: "third-
generation oral contraceptive pills increased
the risk of potentially life-threatening blood
clots in the legs or lungs twofold -- that is, by
100 percent”

40

… statistics

● “…of every 7,000 women who took the earlier,
second-generation oral contraceptive pills,
about one had a thrombosis; this number
increased to two among women who took
third-generation pills…”

● “…The absolute risk increase was only one in
7,000, whereas the relative increase (among
women who developed blood clots) was indeed
100 percent.”

41

False Positive Paradox

● The false positive paradox is a statistical
result where false positive tests are more
probable than true positive tests, occurring
when the overall population has a low
incidence of a condition and the incidence
rate is lower than the false positive rate.

● The probability of actually
being infected after one is
told that one is infected is
only 29% (20/20 + 49) for a
test that otherwise appears
to be "95% accurate":

42

Understanding Data

43

Measurement Scales

● Scale: the type of data being measured
● The scale dictates which analyses are

legitimate or meaningful
● Common options:

● Nominal: categories
● Ordinal: order, but no magnitude
● Interval: order, magnitude, but no zero
● Ratio: Order, magnitude, and zero
● Absolute: special case of ratio

44

To Argue Causation
● Provide a theory (from domain knowledge,

independent of data)

● Show correlation

● Demonstrate ability to predict new cases
(replicate/validate)

45

46

47

48

Confounding Variables

● If we examine coffee consumption cancer→

Coffee consumption Cancer

Associations

49

Confounding Variables

● If we examine coffee consumption cancer, →
we end up with misleading results

● Smoking is a confounding variable

Coffee consumption

Smoking

Cancer

Associations

Causal relationship

50

Confounds in Software Analysis

● Earlier we considered that some metrics (e.g.,
Halstead, Cyclomatic) might be just “size”
cleverly disguised

● In a study of twenty-four commonly-used
object-oriented metrics, only four were
actually useful in predicting the quality of a
software module when the effect of the
module size was accounted for
[El Emam et al. The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics. IEEE Transactions on
Software Engineering 2001.]

51

McNamara Fallacy

● The McNamara fallacy (or quantitative
fallacy), involves making a decision based
solely on quantitative observations (or
metrics) and ignoring all others.
● The reason given is often that these other

observations cannot be proven.
● “There seems to be a general misunderstanding to the effect that a

mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. … to omit such
variables is equivalent to saying that they have zero effect...
Probably the only value known to be wrong …” - J. W. Forrester

52

McNamara on Vietnam
● The McNamara fallacy originates from the

Vietnam War, in which enemy body counts
were taken to be a precise and objective
measure of success. War was reduced to a
mathematical model: by increasing enemy
deaths and minimizing one's own, victory was
assured. … The fallacy refers to McNamara's
belief as to what led the United States to
defeat in the Vietnam War—specifically, his
quantification of success in the war (e.g. in
terms of enemy body count), ignoring other
variables.

53

Thought Experiment:
Defect Metrics

● Defect Density = known bugs / line of code
● System Spoilage = time to fix post-release

defects / total system development time
● Considerations:

● Post-release vs. pre-release
● What counts as a defect? Severity? Relevance?
● What size metric is used?

● Little reference data is available (typically 2-
10 defects / 1,000 lines of code)

54

Measurement Strategies

● Automated measures on code repositories
● Use or collect process data
● Instrument the program (e.g., in-field crash

reports)
● Ask humans: surveys, interviews, controlled

expeirments, expert judgments
● Statistical analysis of sample

55

Metrics and Incentives

56

Incentivizing Productivity

● What happens when developer bonuses are
based on …
● Lines of code per day
● Amount of documentation written
● Low number of reported bugs in your code
● Low number of open bugs in your code
● High number of bugs fixed
● Accuracy of time estimates

57

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity
Can crowd out good behavior

Can encourage cheating, shortcuts,
and unethical behavior
Can become addictive

Can foster short-term thinking

Autonomy
Mastery
Purpose

58

An Example Metric Incentive

● At a “large top-five public research
university”, the engineering deans used
“research dollars expended per square foot”
as a ranking and incentive metric for
departments.
● A department with more “RDE/ft^2” was doing

better and would get more perks from the dean

● How would you arrive at this metric?
● What could go wrong?

59

Software Metric Warning

● Most software metrics are controversial
● Usually based on plausibility arguments (not

rigorous validation)
● Cyclomatic Complexity was repeatedly refuted and

is still used
● “Similar to the attempt of measuring the

intelligence of a person in terms of the weight or
circumference of the brain.”

60

Software Metric Advice

● Use software metrics carefully
● Avoid claims about human factors (e.g.,

readability) and quality, unless validated
● Calibrate metrics using your project history

and the histories of other projects

● Metrics can be gamed: you get what you
measure

61

Successful Measurement Programs

● Set solid measurement objectives and plans.
● Make measurement part of the process.
● Gain a thorough understanding of

measurement.
● Focus on cultural issues.
● Create a safe environment to collect and

report true data.
● Cultivate a predisposition to change.
● Develop a complementary suite of measures.

62

Questions when Choosing A Metric

● What is the purpose of this
measure?

● What is the scope of this measure?

● What attribute are you trying to
measure?

● What is the attribute’s natural
scale?

● What is the attribute’s natural
variability?

● What instrument are you using to
measure the attribute, and what
reading do you take from the
instrument?

● What is the instrument’s
natural scale?

● What is the reading’s natural
variability (normally called
measurement error)?

● What is the attribute’s
relationship to the instrument?

● What are the natural and
foreseeable side effects of
using this instrument?

[Cem Kaner and Walter P. Bond.
“Software Engineering Metrics: What
Do They Measure and How Do We
Know?” 2004]

63

Begel and Zimmermann
Microsoft Survey

● “Suppose you could work with a team of
data scientists and data analysts who
specialize in studying how software is
developed. Please list up to five questions
you would like them to answer. Why do
you want to know? What would you do
with the answers?”

64

Top Questions (1/2)

● How do users typically use my application?

● What parts of a software product are most used and/or
loved by customers?

● How effective are the quality gates we run at checkin?

● How can we improve collaboration and sharing between
teams?

● What are best key performance indicators (KPIs) for
monitoring services?

● What is the impact of a code change or requirements
change to the project and tests?

65

Top Questions (2/2)

● What is the impact of tools on productivity?

● How do I avoid reinventing the wheel by sharing
and/or searching for code?

● What are the common patterns of execution in my
application?

● How well does test coverage correspond to actual
code usage by our customers?

● What kinds of mistakes do developers make in their
software? Which ones are the most common?

● What are effective metrics for ship quality?

66

Bottom Questions
● Which individual measures correlate with employee

productivity (e.g., employee age, tenure, engineering skills,
education, promotion velocity, IQ)?

● Which coding measures correlate with employee productivity
(e.g., lines of code, time it take to build the software, a
particular tool set, pair programming, number of hours of
coding per day, language)?

● What metrics can be used to compare employees?

● How can we measure the productivity of a Microsoft
employee?

● Is the number of bugs a good measure of developer
effectiveness?

● Can I generate 100% test coverage?

67

Questions?

● Next exciting episode:
● Quality Assurance and Testing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

