
Fixing Bugs in Your Sleep: How Genetic Improvement Became
an Overnight Success

Saemundur O. Haraldsson∗

University of Stirling
Stirling, United Kingdom FK9 4LA

soh@cs.stir.ac.uk

John R. Woodward
University of Stirling

Stirling, United Kingdom FK9 4LA
jrw@cs.stir.ac.uk

Alexander E.I. Brownlee
University of Stirling

Stirling, United Kingdom FK9 4LA
sbr@cs.stir.ac.uk

Kristin Siggeirsdottir
Janus Rehabilitation Centre

Reykjavik, Iceland
kristin@janus.is

ABSTRACT
We present a bespoke live system in commercial use with self-
improving capability. During daytime business hours it provides
an overview and control for many specialists to simultaneously
schedule and observe the rehabilitation process for multiple clients.
However in the evening, after the last user logs out, it starts a
self-analysis based on the day’s recorded interactions. It generates
test data from the recorded interactions for Genetic Improvement
to �x any recorded bugs that have raised exceptions. The system
has already been under test for over 6 months and has in that time
identi�ed, located, and �xed 22 bugs. No other bugs have been
identi�ed by other methods during that time. It demonstrates the
e�ectiveness of simple test data generation and the ability of GI for
improving live code.

CCS CONCEPTS
•Software and its engineering → Error handling and recov-
ery; Automatic programming;Maintaining software; Search-
based software engineering; Empirical software validation;

KEYWORDS
Genetic Improvement, Adaptive System, Bug �xing, Test data gen-
eration

ACM Reference format:
Saemundur O. Haraldsson, John R. Woodward, Alexander E.I. Brownlee,
and Kristin Siggeirsdottir. 2017. Fixing Bugs in Your Sleep: How Genetic
Improvement Became an Overnight Success. In Proceedings of GECCO ’17
Companion, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3067695.3082517

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082517

1 INTRODUCTION
Genetic Improvement (GI) [38] is a growing area within Search
Based Software Engineering (SBSE) [23, 24] which uses computa-
tional search methods to improve existing software. Despite its
growth within academic research the practical usage of GI has not
yet followed. Like with many SBSE applications, the software in-
dustry needs an incubation period for new ideas where they come
to trust in outcomes and see those ideas as cost e�ective solutions.
GI is in the ideal position to shorten that period for the latter as
it presents a considerable cost decrease for the software life cy-
cle’s often most expensive part: maintenance [18, 34]. There are
examples of software improved by GI being used and publicly avail-
able [31] which is impressive considering how young GI is as a
�eld. In time it can be anticipated that we will see tools emerging
that utilise current advances in GI for various improvements during
di�erent stages of development; from early coding where program-
mers might want to statically monitor the performance of their
work to maintenance on bug �xing [2], automatically adding new
functionality [36], and adding new hardware compatibility [28].

Traditionally, GI applications have been used o�ine where the
program is copied, improved in a lab, and then the researchers have
to convince developers to include the improvements in later re-
leases, if the researchers have the patience. However GI’s ultimate
goal must be self-improving and self-adaptive systems [8, 10, 20]
with minimal manual e�ort by the developers to truly optimise
software maintenance costs. Current research into self-improving
systems consists of early concepts [7, 46], identifying applicable
ideas [22], and highly speci�ed but truly dynamic approach [51].
The research and methods are slowly approaching dynamic adap-
tive systems but a big obstacle is getting the results to market. To
achieve that we need to take it in steps, �rst we provide developers
with tools before we provide autonomous software.

In this paper we describe a live system, Janus Manager (JM),
that takes that �rst step. It monitors itself during daytime use and
collects data whenever user input raises exceptions. Overnight it
uses the collected data to test itself and searches for adaptions that
do not raise exceptions when similar data is submitted later. At
the end of the nightly self-improvement process it presents the
developers with options to �x the perceived fault.

Our approach signi�cantly decreases the cost of maintenance
after the initial release but allows developers to ultimately have the
control and provide a sanity check before patches are issued to the

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany S. Haraldsson et al.

(a) From March 2016 (b) From April 2016

(c) From July 2016 (d) From September 2016. Self-improving capabilities are released.

Figure 1: JM’s featuremap as it developed during the software’s �rst 8months in use. It shows how rapidly features were added
after employees of JR started using the software in March 2016. This caused buggy and less well-tested code to be released,
hence inspiring the integration of GI.

live software. JM is a bespoke program for a vocational rehabili-
tation centre, developed and maintained by Janus Rehabilitation
(JR) in Reykjavik, Iceland [43, 44] and has been brie�y described in
previously published work [18, 19].

The remainder of the paper is structured as follows. Section 2
lists some related work and inspirations. Section 3 details what the
system does during business hours and how it keeps records for
later improvements. Section 4 explains how the daily data is used
to improve the software system including generating test cases
and the GI stage. Section 5 summarises the current data gathered
since the launch of JM. Section 6 gives an overview of what future
directions we are currently contemplating.

2 RELATEDWORK
GI has most commonly been used o�ine to improve various soft-
ware properties [15, 38]. More than a third of GI work has show-
cased non-functional improvements [47] such as Langdon et al.’s
work on execution time with Bowtie2 [27], CUDA code [28, 29, 33],
and Wu et al.’s deep parameter optimisation for memory con-
sumption [50]. Other examples of execution time optimisations

include other bioinformatics programs [17], software like satis�-
ability solvers [39, 40], various Unix programs [48, 50], and sort
functions [9]. Progress in mobile technology and the need to pre-
serve resources has also motivated work on energy usage opti-
misation [5, 6, 16, 49]. Although non-functional properties have
been a prominent target for GI to tackle, bug �xing is by far the
largest single problem in the GI literature [47] to be addressed. The
work on bug �xing has led to the development of the well known
tool, GenProg [35] and the discrete �tness function of passed test
cases has motivated more fundamental work on GI search land-
scapes [19, 32]. Functionality improvements also include growing
and grafting [21, 29, 36], repairing and optimising the distribution
of hashcode implementations [25] and prediction model improve-
ments [14].

As GI is a fairly young �eld the work on self-improving software
with GI is not extensive, although SBSE literature has been consider-
ing self-adaptive systems for some time [8, 10, 20]. A few examples
of adaptive or dynamic GI include a framework (Gen-O-Fix [46])
to continuously improve software on Java Virtual Machines in par-
allel with usage, Burles at al.’s list of suggestions for embedded

Fixing Bugs in Your Sleep: How GI Became an Overnight Success GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

improvement methods [7], and an approach (ECSELR [51]) that
injects dynamic adaptability in an already running target software.
However, JM’s approach is inspired by Harman et al.’s suggestion
for Dreaming Devices [22], exploiting the fact that the majority of
software is not in continuous use. Even if that were the case, the
usage load will usually be periodic and during lower load times the
device should be able to a�ord some capacity for improvements.

The common theme is that GI can and should be used to make
dynamic adaptive software but the di�erences are the implemen-
tations and applications. JM marries the concept of the Dreaming
Device with Arcuri’s co-evolutionary bug �xing [2, 3] and further
adds usage evolution.

In addition to GI we have implemented a Search Based Software
Test (SBST [37]) method of test data generation, a simple random
sampling of test data. Ideally, test data generation is about max-
imum code coverage and minimum redundancy. It is simply not
worth adding test cases to test suites if they do not add to the cover-
age. The SBST literature has many solid examples of test data gen-
eration like uniform sampling with Boltzmann samplers [11], gen-
erating strings [4] for the maximisation of code coverage, or more
specialised searches for data with speci�c properties [12, 41]. The
search methods include alternatives such as hill-climbing [45], an
Evolutionary Algorithm [26] or other optimisation algorithms [13].

Generated test data in JM is an emulation of actual inputs from a
graphical user interface (GUI) [19]. There are however examples of
work that generate test data for GUI testing by representing input
�elds with symbolic alternatives [42]. That, however, demands that
the developer knows in better detail about how the software will
be used, which in our case is near impossible since every client’s
route through the rehabilitation is probably unique.

3 JANUS MANAGER DAILY ACTIVITY
JM’s creation was initially motivated by JR’s need for specialised
data management and statistical analysis for a rehabilitation service.
Its functionality was simple to begin with (Figure 1a) but the lack
of specialised software for complete management of rehabilitation
services further drove the development (Figures 1b – 1c) to pro-
duce today’s version as seen in Figure 1d. It is a software system
that supports the vocational rehabilitation process and internal
communications.

Moreover, JM is a tool for the directors to be able to continuously
improve the rehabilitation process with statistical analysis of client
data and performance of methods and approaches. It has to manage
multiple connections between users, specialists and clients.

3.1 Usage of Janus Manager
The left side of Figure 2 displays the daytime normal usage of JM.
The users are all employees of JR, over 40 in total, including both
specialists and administrators. They interact with JM by either
requesting or providing data which is then processed and saved.
Example request are: Internal communications between the inter-
disciplinary team of specialists about clients, a journal record from
a meeting, or an update to some information regarding the client.
The system can also produce reports and bills in PDF format or rich
text �les (see Figure 1).

Figure 2: JM functionality divided into daytime processes
and night-time processes.

The clients have access to specialised and standardised ques-
tionnaires that measure various aspects of the clients welfare and
progress. The specialists then use the results from those question-
naires to plan a treatment or therapy. Additionally it uses the com-
plete database of information to identify risk factors, and predict
treatment outcome and length [14].

Every time an input data causes an unintentional exception to
be thrown, JM logs the trace, input data and the type of exception
in a daily log �le shown in the middle of Figure 2.

3.2 Structure of Janus Manager
JR provides individualised vocational rehabilitation and as such
users of JM regularly encounter unique use cases. Therefore JM is
in active development while being in use. Features are continually
added, based on user experience, feedback and convenience. The
average growth of the system, in the �rst months following its
initial release, was approximately 20 lines of code (LOC) per week.
Six months later, in the weeks preceding the integration of the GI,
the growth had decreased to 15 LOC per week and has been rela-
tively stable since. Currently the system is over 25K lines of Python
2.7 (300 classes and 600 functions). Functions are on average 26
LOC and classes 36, ranging from 2 to 251 and 918 respectively.
Each function and class has their own test suite, with a few excep-
tions1. The test suites are also of various sizes, depending on the
functionality of the entity under testing.

JM runs as a web service on an Apache server running on a
64 bit Ubuntu with 48GiB RAM and two 6 core Intel processors.
The GUI is an HTML web page that JM serves up from pre-de�ned
templates.

JM’s structure made the integration of its nightly activity as
simple as wrapping the whole system in a single try and except
statement that catches all exceptions that are not accounted for.
1Some base classes are never used directly so they do not have any tests

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany S. Haraldsson et al.

The modularity gave the GI easy access to test and improve each
component in isolation.

4 JANUS MANAGER NIGHTLY ACTIVITY
After the last user logs o� in the evening the nightly routine initi-
ates (Figure 2, right side). The process runs until all reported bugs
are �xed or until the next morning. During the night JM analyses
the logs, generates new test data and uses GI to �x bugs that have
been encountered during the day. The identi�ed bugs are not neces-
sarily faults in the program itself, rather a result of the developer’s
inability to account for all possible use cases of the system. On all
occasions when the nightly activity was invoked and had bugs to
�x it was because JR’s employees had used JM in a way that had
not been foreseen.

4.1 Log analysis
Going through the daily logs involves �ltering the exceptions to
obtain a set of unique errors in terms of exception type and location
in the source code. The input is de�ned as the argument list at
every function call on the trace route from the users’ request to
the location of the exception. The type of the exception can be any
subclass of Exception in Python, both built in and locally de�ned.

The exceptions are sorted in decreasing order of importance,
giving higher signi�cance to errors that occurred more often, ar-
bitrarily choosing between draws. This measure of importance
assumes that these are use case scenarios that happen often and are
experienced by multiple users and not a single user who repeatedly
submits the same request.

4.2 Generating test data
The test data generation is done with a simple random search of
the neighbourhood of the users’ input data retrieved from the log
entry. The input is represented by a Python dictionary object, where
elements are (key, value) pairs and the values can be of any type
or class. However, most types are strings, dates, times, integers or
�oating point numbers. The objective of the search is to �nd as
many versions of the input data as possible that trigger the same
exception. Procedure 1 details the search for new test data.

Starting with the original input θ we make 100 instances of
θmutated where a single value has been randomly changed. For
each instance the value to be mutated is randomly selected while
all other values are kept �xed. Every θmutated that causes the
same exception as the original is kept in Θ, others are discarded.
Di�erent exceptions are not considered since the setup looks for the
speci�c exception from the log rather than any general exception.
This is then repeated by randomly sampling from the latest batch
of θmutated , Θlatest (see line 10) until either no new instances
are kept or the maximum of 1000 instances have been evaluated
(line 5).

The mutation mechanism in line 11 �rst chooses randomly be-
tween key, value pairs in θr only considering pairs where values
are of type string, date, time, integer or �oat. Then depending on
the type, the possible mutations are the following:

String mutations randomly add strings from a prede�ned
dictionary with white space and special characters, keeping
the original as a sub-string

Procedure 1 Test data search
1: Θ← [θ] {Start with the original input}
2: n ← 0
3: Θnew ← [θ]
4: Θlatest ← []
5: while (n < 1000) AND (|Θnew |! = 0) do
6: extend Θ with Θlatest

7: Θlatest ← Θnew

8: Θnew ← []
9: for i = 1 until i == 100 do

10: θr ← random choice Θlatest

11: θmutated ← mutate θr
12: if θmutated → causes exception then
13: append θmutated to Θnew

14: end if
15: n+ = 1
16: end for
17: end while

Date mutations can change the format (e.g. 2017-01-27 be-
comes 27-01-17), the separator, or randomly pick a date
within a year from the original

Time mutations can change the format (e.g. 7:00 PM becomes
19:00), the separator or randomly pick a time within 24
hours from the original

Integer mutations add or subtract 1, 2 or 3 from the origi-
nal. Maximum of ±3 variation was arbitrarily chosen as
a starting point for integer mutations because we assume
integer inputs will not deviate much more from what is
being observed from the user.

Float mutations change the original with a random sample
from the standard normal distribution N (0, 1)

All of the instances in Θ along with the original θ are then the
inputs of the new unit tests. The assertion for each instance will
check that the response is of the speci�c exception type and the
tests will fail if the input triggers that exception. The new unit tests
are then added to the existing test suite, automatically expanding
the library of test cases.

There are mainly two problems with this approach; a) it does
not check whether new test cases are complementary or not, i.e.
if the two or more test cases are validating the same part of the
code, and b) it assumes that if the exception is not raised then the
output, if any is expected, is correct. The �rst problem is trivial
when computing power is not an issue or if testing is not impeding
development. The second problem is more serious because we
cannot guarantee that the assumption holds and it might give false
con�dence to developers and wrong �tness evaluation to the GI.
However the implementation of the whole system should at least
catch any mistake the GI could introduce with these tests by passing
the responsibility for sanity checks to the developers.

4.3 Genetic Improvement
The GI part of the overnight process relies on the new test cases in
conjunction with a previously available test suite. The assumption
is that, given the test suites, the program is functioning correctly if

Fixing Bugs in Your Sleep: How GI Became an Overnight Success GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 1: Sets of single operators available to the GI. One
member of a given set can be changed to another member
of the same set.

Description Operations
Numerical constants Can increment by ±1
Arithmetic operators +,−, ∗, /, //,%, ∗∗
Arithmetic assignments + =,− =, ∗ =, / =,

Relational operators <, >, <=, >=,==, ! =,
is, is not ,not

Logical operators and, or
Logical constants True, False

it passes all test cases and so is awarded highest �tness. Otherwise
�tness is proportional to the number of test cases the program
passes of the whole suite.

The mutation process is inspired by Langdon et al.’s work [30]
by evolving edit lists that operate on the source code (Figure 3).
Each edit consists of: the operation of Replace; the source code
snippet before and after the edit; and the location of where to
apply this edit (line and character number). The edit lists de�ne
the operations replace, delete, and copy for code snippets, lines,
and statements. The GI process operates on the source code with
no need to convert the program to a di�erent representation like
abstract syntax trees (AST)[1]. Therefore it is directly transferable
between programming languages with minimal con�guration. The
source code is read as a text �le and stored in a data structure (x)
of program lines.

Each line’s data structure holds the following information:
• The raw text as it appears in the source �le.
• Line type e.g. function de�nition or if clause.
• Indentation as the number of space characters2.
• If the following lines should be indented or not.
• Whether the line can be altered or not. This can be varied

by including or excluding certain line types in a list of
untouchable line types. Empty lines, function and class
de�nitions, imports, multiple line comments, and a few
others are included by default.

• A list of variables, and operators from table 1 that the line
contains, along with their location on the line. Regular
expression patterns are used to identify and locate the
operators. The patterns are kept simple to minimise con-
strictions to the search so the identi�cation is vulnerable
to false positives and might make changes available to the
GI that do not always make sense. For an example the GI
might �nd the operator < in a string constant and change
it to <= which possibly has no e�ect on the �tness.

The evolution is population based with 50 edit lists (solutions)
in each generation. Each generation is evaluated in parallel to
minimise GI’s execution time and to utilise the full power of the
server. Weighted random selection is used to select parents for the
next generation, i.e. each lists’ weight determines how likely it is to
be selected. The weight is determined by the edit list’s proportional
�tness with respect to the generation’s total �tness. Only half of the

2Code blocks are de�ned by indentation in Python and not by {} as in Java/C

Figure 3: An example of an edit list and how it can evolve
with Grow, Prune or Single edit change.

population gets selected and they undergo mutation to start the next
generation. Crossover is not used in the current implementation
as well as elitism. The other half of the subsequent generation are
randomly generated new edit lists. This selection method should
deter homogeneity in the population and early convergence to a
local optimum. However, it might also prevent the GI in �nding
solutions that require more than a few edits where any subset has
poorer �tness than the original.

A single mutation of an edit list can be made with any of the
examples in Figure 3. The options for mutations are:

Grow is where a randomly generated edit is appended to the
edit list. The edit is generated by a stochastic selection from
all possible locations in the source with a equal probability.
The location can be a line and a column or just a line. If the
case is the former, then another uniform random selection
is made from possible replacements for the content of the
location (see Table 1). For the latter case, either one or
two more selections are made. First a selection of what
operation will be applied to the selected line; delete, replace,
copy or swap. The random edit build stops here if delete
is selected. For replace and swap another line of same
type is randomly selected with equal probability to be
the replacement or the line that swaps places. For copy
a random line number in the source is selected to be the
location above which the selected line is copied to.

Prune is when an edit in the individual selected with uniform
random distribution and every subsequent edit in the list
is removed.

Single edit change is perhaps the least disruptive mutation.
A single edit is selected and one of its features is randomly
changed, such as the replacement code is re-selected or the
copy location is altered.

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany S. Haraldsson et al.

Table 2: A list of the bugs that were automatically detected in JM and �xed by the GI. They are categorised by the type of
exception that they caused and given an identi�cation number in the second column.

Exception type Id Invocations New test cases Input type
that caused exception

Suggested �x size
(Accepted �x size)

Mean edit
list size

Number of edit
lists considered

IndexError

E1 6 1 Date tuple 2 (2) 2.53 412
E2 3 1 Integer 3 (3) 2.48 356
E3 3 2 Integer 2 (2) 2.38 367
E4 1 1 Integer 4 (4) 2.62 437

TypeError

E5 36 1 Integer 3 (3) 2.23 426
E6 6 3 String 4 (3) 2.41 465
E7 1 1 Integer 2 (2) 2.67 457
E8 2 1 (String, Integer) 1 (1) 2.50 442
E9 2 1 String 5 (3) 2.50 413
E10 1 1 String 2 (2) 2.47 412

UnicodeDecode
Error

E11 4 1 String 2 (2) 2.48 424
E12 3 2 String 3 (3) 2.48 404
E13 2 2 String 2 (2) 2.48 465

ValueError

E14 4 2 Date and time 1 (1) 2.54 435
E15 4 1 Date and time 1 (1) 2.57 388
E16 3 1 String 3 (3) 2.44 428
E17 3 1 Integer 5 (4) 2.49 353
E18 2 1 Date and time 3 (3) 2.49 467
E19 2 2 Date and time 3 (3) 2.40 405
E20 1 1 Time 4 (3) 2.39 477
E21 1 1 String 2 (2) 2.47 371
E22 1 1 String 1 (1) 2.56 478

The GI only stops if it has found a program variant that passes
all tests or just before the users are expected to arrive to work. It
then produces an HTML report detailing the night’s process for the
developers. The report lists all exceptions encountered, new test
cases and a list of possible �xes, recommending the �ttest. If more
than a single �x is found, then the report recommends the shortest
in terms of number of edits. However it is always the developers
choice to implement the changes as they are suggested, build on
them or discard them.

5 SUMMARY
Development on JM started as a small in-house data management
project by JR in March 2016. However, as JR’s employees started
using the software they identi�ed multiple ways to enhance JM to
improve productivity and e�ciency in the rehabilitation process.
JM’s development has since been user-driven and quite rapid, with a
new feature being added weekly in spring and summer 2016. While
JM’s size has increased the rate of new features has not decreased
but they have become subjectively smaller, i.e. small from the user’s
perspective but not necessarily for the developer. As JR’s main op-
eration is vocational rehabilitation and not developing software, its
core development team is minimal. This, combined with JM’s rate
of expansion caused poorly tested code to be repeatedly released
and subsequently occupying the development team with bug �xing
instead of further enhancing JM in a meaningful way. Therefore
JM has been running its self-healing processes every night with
exceptional results since September 2016. The integration of GI
has roughly halved JR’s maintenance cost for the system. Before

the developers had to manually �nd and �x each bug but now they
only have to validate the suggestions that are handed to them by
the GI.

In the six months succeeding the launch of GI within JM, 22 bugs
have been identi�ed and �xed. During that time there have been no
other bugs found or �xed by other methods after any version update,
excluding bugs that were discovered by developers before updates
where released. Table 2 lists the bugs that have been encountered,
categorised by the exception type and order in descending order of
how often each bug was invoked by users (Column 3). The table
also lists how many new test cases, without duplicates, were added
to the test suite (Column 4). In total 29 unique test cases have
been added to JM’s test suites but initial number of automatically
generated test cases was 408. The developers could easily and
swiftly discard duplicate test cases by hand.

The �fth column describes the input types that caused the ex-
ceptions. In most cases the types listed there are a single variable
from an array of inputs but only the variables that were directly
involved in throwing the exception are mentioned. Column six lists
how many edits each suggested and accepted �x contained. In ma-
jority of cases the suggested �x was accepted as it was but on three
occasions a single neutral edit was removed before accepting the
�x (E6, E17, E20) and two edits from E9. All removed neutral edits
were either duplicating a line or a variable, without it having e�ect
on output. In four instances, either a single edit was slightly altered
or a small manual edit to the source code was applied post-hoc (E1,
E15, E16, E22). The last two columns contain the average size of

Fixing Bugs in Your Sleep: How GI Became an Overnight Success GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

all edit lists that were evaluated for each bug and how many were
evaluated, respectively.

If we look at the seventh column, we see that the average edit
list size is nearly the same for all �xes ([2.23, 2.67]), which is to be
expected since same search parameters were used in every case. On
closer inspection, one way ANOVA reveals that the mean size of all
evolutionary runs is most likely equal (p > 0.9). Furthermore, we
see that the evolution never exceeds 10 generations (500 evaluated
edit lists) and consequently the maximum limit of edit list size was
10 edits. Given that the average size of each function being �xed
is 26 LOC the search space is relatively small so if a �x exists we
expect to �nd it rather quickly.

A typical �x replaced a single line with a similar line from else-
where in JM, like E15 replaced:3

dum.occurance = \
datetime.datetime.combine(dum.expected_occurance,\
datetime.datetime.strptime(form['occurance'],\
'%H:%M').time())

with:
dum.occurance = \

datetime.datetime.combine(dum.expected_occurance,
datetime.datetime.strptime(form['occurance'],\
'%H:%M:%S').time())

The only di�erence is that the latter expects seconds to be in-
cluded in the time format. The human programmer recognises it as
a single edit of adding :%S but the GI replaced the whole line.

Another example is E20, in a function that checks for reoccur-
ringly available meeting spaces on given weekdays. The bug was
that the user sometimes omitted the time of day to be checked. The
accepted �x wrapped the line obtaining the time argument in a try
clause so this:
the_time = datetime.datetime.strptime(\
request.args.get('the_time','08:00'),\
'%H:%M').time()

became this:
try:
the_time = datetime.datetime.strptime(\
request.args.get('the_time','08:00'),\
'%H:%M').time()
except ValueError:
the_time = datetime.time(8,0)

Three edits of “copy line x above line y” were needed to ac-
complish this �x, the edit that was removed, duplicated the last
line.

6 FUTUREWORK
JM, as introduced in this paper is fully implemented and live, al-
though it has been so for a few months, it still needs to be tested
further. Finding and �xing 22 bugs is impressive but we would like
to do more. Our current task list includes but is not limited to:

• Integrate the GI in another software system. The GI is a
standalone feature that is easily integrated in most software
systems so a natural next step would be to identify services
and systems where it could be of use.

• Improve the developer’s interface with the GI. Current
implementation reports only �xes that pass all tests but

3The character \ denotes line continuation and is only used here for aesthetic purposes

we might want to consider lesser variations. By presenting
the developer with some good but not perfect solutions
might provide additional information that they can use to
�x the bug more e�ectively

• Improve the search ability. Truncated selection might in-
hibit larger edit lists to be evolved and possible multi-edit
solutions are therefore lost. Parameter tuning is our initial
step forward in this task.

• Improve the test data generation mechanism. Ideally we
want to predict expected inputs to the system and possi-
bly generate test data that imitates unseen future inputs.
Also, we would like to improve the search process for new
test data by implementing something other than random
search. That includes, changing the �tness function (cur-
rently binary), adding more objectives and improving the
sampling methods.

However a continuous task will be to monitor the JM system while
it is being developed further and gather data on the bugs that are
caught and �xed.

ACKNOWLEDGMENT
The work presented in this paper is part of the DAASE project
which is funded by the EPSRC Grant EP/J017515/1. The authors
would like to thank JR for the collaboration and providing the
platform which made the development possible.

REFERENCES
[1] T. Ackling, B. Alexander, and I. Grunert. Evolving Patches for Software Repair.

In GECCO’11, 13th annual conference on Genetic and evolutionary computation,
pages 1427–1434, Dublin, Ireland, jul 2011. ACM.

[2] A. Arcuri. On the Automation of Fixing Software Bugs. In ICSE Companion ’08
Companion of the 30th international conference on Software engineering, pages
1003–1006, Leipzig, Germany, 2008. ACM.

[3] A. Arcuri, D. R. White, J. Clark, and X. Yao. Multi-Objective Improvement
of Software using Co-evolution and Smart Seeding. In Proceedings of the 7th
International Conference on Simulated Evolution and Learning (SEAL’08), pages
1–10, 2008.

[4] M. Beyene and J. H. Andrews. Generating String Test Data for Code Coverage.
In 2012 IEEE Fifth International Conference on Software Testing, Veri�cation and
Validation, pages 270–279. IEEE, 2012.

[5] B. R. Bruce. Energy Optimisation via Genetic Improvement A SBSE technique for
a new era in Software Development. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO
Companion ’15, pages 819–820, Madrid, Spain, jul 2015. ACM.

[6] B. R. Bruce, J. Petke, and M. Harman. Reducing Energy Consumption Using
Genetic Improvement. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 1327–1334, Madrid, Spain, jul
2015. ACM.

[7] N. Burles, J. Swan, A. E. Brownlee, E. Bowles, Z. A. Kocsis, and N. Veerapen.
Embedded Dynamic Improvement. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO
Companion -15, pages 831–832, Madrid, Spain, jul 2015. ACM.

[8] B. H. C. Cheng, et al. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In Software Engineering for SelfAdaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 1–26. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[9] B. Cody-kenny, E. Galván-lópez, and S. Barrett. locoGP : Improving Performance
by Genetic Programming Java Source Code. In Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, pages 811–818, Madrid, Spain, jul 2015. ACM.

[10] R. de Lemos, et al. Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. In Software Engineering for Self-Adaptive Systems II: Interna-
tional Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers, volume 7475 of Lecture Notes in Computer Science, pages 1–32.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany S. Haraldsson et al.

[11] P. Duchon and G. Louchard. Boltzmann Samplers For The Random Generation
Of Combinatorial Structures. Combinatorics Probability and Computing, 13(4-
5):577–625, 2004.

[12] R. Feldt and S. Poulding. Finding Test Data with Speci�c Properties via Meta-
heuristic Search. In 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), pages 350–359. IEEE, 2013.

[13] R. Feldt and S. Poulding. Broadening the Search in Search-Based Software
Testing: It Need Not Be Evolutionary. Proceedings - 8th International Workshop
on Search-Based Software Testing, SBST 2015, pages 1–7, 2015.

[14] S. O. Haraldsson, R. D. Brynjolfsdottir, J. R. Woodward, K. Siggeirsdottir, and
V. Gudnason. The Use of Predictive Models in a Dynamic Planning of Treatment.
In Proceedings - IEEE Symposium on Computers and Communications, Heraklion,
Greece, 2017. IEEE.

[15] S. O. Haraldsson and J. R. Woodward. Automated Design of Algorithms and
Genetic Improvement : Contrast and Commonalities. In Proceedings of the 2014
Conference Companion on Genetic and Evolutionary Computation Companion,
GECCO Comp ’14, pages 1373–1380, Vancouver, Canada, jul 2014. ACM.

[16] S. O. Haraldsson and J. R. Woodward. Genetic Improvement of Energy Usage is
only as Reliable as the Measurements are Accurate. In Proceedings of the 2015
Conference Companion on Genetic and Evolutionary Computation Companion,
pages 831–832, Madrid, 2015. ACM.

[17] S. O. Haraldsson, J. R. Woodward, A. E. Brownlee, A. V. Smith, and V. Gudnason.
Genetic Improvement of Runtime and its �tness landscape in a Bioinformatics
Application. In Proceedings of the 2017 Conference Companion on Genetic and
Evolutionary Computation Companion, Berlin, Germany, 2017. ACM.

[18] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and D. Cairns. Exploring
Fitness and Edit Distance of Mutated Python Programs. In Proceedings of the
17th European Conference on Genetic Programming, EuroGP, Amsterdam, The
Netherlands, 2017. Springer Berlin Heidelberg.

[19] S. O. Haraldsson, J. R. Woodward, and A. I. E. Brownlee. The Use of Auto-
matic Test Data Generation for Genetic Improvement in a Live System. In 8th
International Workshop on Search-Based Software Testing, Buones Aires, 2017.
ACM.

[20] M. Harman, E. Burke, J. A. Clark, and X. Yao. Dynamic adaptive search based soft-
ware engineering. In International Symposium on Empirical Software Engineering
and Measurement, pages 1–8, Lund, Sweden, 2012. ACM.

[21] M. Harman, Y. Jia, and W. B. Langdon. Babel Pidgin : SBSE Can Grow and Graft
Entirely New Functionality into a Real World System. In Search-Based Software
Engineering, volume 8636 of Lecture Notes in Computer Science, pages 247–252,
Fortaleza, Brazil, aug 2014. Springer International Publishing.

[22] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F. Wu.
Genetic Improvement for Adaptive Software Engineering. In G. Engels, editor,
SEAMS ’14, page Keynote, Hyderabad, India, 2014. ACM.

[23] M. Harman and B. F. Jones. Search-based software engineering. Information and
Software Technology, 43(14):833–839, dec 2001.

[24] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo. Search Based Software
Engineering: Techniques, Taxonomy, Tutorial. In Empirical Software Engineering
and Veri�cation, volume 7007 of Lecture Notes in Computer Science, pages 1–59.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[25] Z. A. Kocsis, G. Neumann, J. Swan, M. G. Epitropakis, A. E. I. Brownlee, S. O.
Haraldsson, and E. Bowles. Repairing and Optimizing Hadoop hashCode Imple-
mentations. In 6th International Symposium, SSBSE 2014, volume 8636 of Lecture
Notes in Computer Science, pages 259–264. Springer Berlin Heidelberg, Fortaleza,
Brazil, aug 2014.

[26] K. Lakhotia, M. Harman, and P. Mcminn. A Multi-objective Approach to Search-
based Test Data Generation. In Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’07, pages 1098–1105, London,
England, jul 2007. ACM.

[27] W. B. Langdon. Performance of genetic programming optimised Bowtie2 on
genome comparison and analytic testing (GCAT) benchmarks. BioData mining,
8(1):1–7, 2015.

[28] W. B. Langdon and M. Harman. Genetically Improved CUDA C++ Software. In
Proceedings of the 17th European Conference on Genetic Programming, EuroGP
2014, Lecture Notes in Computer Science, pages 1–12, Granada, Spain, 2014.
Springer Berlin Heidelberg.

[29] W. B. Langdon and M. Harman. Grow and Graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO
Companion ’15, pages 805–810, Madrid, Spain, jul 2015. ACM.

[30] W. B. Langdon and M. Harman. Optimising Existing Software with Genetic
Programming. IEEE Transactions on Evolutionary Computation, 19(1):118–135,
feb 2015.

[31] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman. Improving CUDA DNA
Analysis Software with Genetic Programming. In GECCO ’15: Proceedings of the
2015 on Genetic and Evolutionary Computation Conference, GECCO ’15, pages
1063–1070, Madrid, jul 2015. ACM.

[32] W. B. Langdon, N. Veerapen, and G. Ochoa. Visualising the Search Landscape of
the Triangle Program. In EuroGP 2017, pages 19–21, 2017.

[33] W. B. Langdon, A. Vilella, B. Y. H. Lam, J. Petke, and M. Harman. Benchmarking
Genetically Improved BarraCUDA on Epigenetic Methylation NGS datasets and
nVidia GPUs. In GECCO 2016 Companion - Proceedings of the 2016 Genetic and
Evolutionary Computation Conference, pages 1131–1132, Denver, Colorado, USA,
2016. ACM.

[34] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study
of automated program repair: Fixing 55 out of 105 bugs for $8 each. In 2012
34th International Conference on Software Engineering (ICSE), pages 3–13, Zurich,
Swiss, jun 2012. IEEE.

[35] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A Generic Method
for Automatic Software Repair. IEEE Transactions on Software Engineering,
38(1):54–72, 2012.

[36] A. Marginean, E. T. Barr, M. Harman, and Y. Jia. Automated Transplantation of
Call Graph and Layout Features into Kate. In Search-Based Software Engineering,
volume 9275 of Lecture Notes in Computer Science, pages 262–268, Bergamo, Italy,
aug 2015. Springer International Publishing.

[37] P. McMinn. Search-based software testing: Past, present and future. In 2011 IEEE
Fourth International Conference on Software Testing, Veri�cation and Validation
Workshops, pages 153–163. IEEE, 2011.

[38] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R.
Woodward. Genetic Improvement of Software: a Comprehensive Survey. IEEE
Transactions on Evolutionary Computation, To Appear, 2017.

[39] J. Petke, M. Harman, W. B. Langdon, and W. Weimer. Using Genetic Improvement
& Code Transplants to Specialise a C++ Program to a Problem Class. In 17th
European Conference on Genetic Programming, EuroGP 2014, volume 8599 of
Lecture Notes in Computer Science, pages 137–149, Granada, Spain, 2014. Springer
Berlin Heidelberg.

[40] J. Petke, W. B. Langdon, and M. Harman. Applying Genetic Improvement to
MiniSAT. In 5th International Symposium on Search-Based Software Engineering,
volume 8084 of Lecture Notes in Computer Science, pages 257–262, St. Petersburg,
Russia, aug 2013. Springer Berlin Heidelberg.

[41] S. Poulding and R. Feldt. Generating structured test data with speci�c properties
using Nested Monte-Carlo Search. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages 1279—-1286, Vancouver, 2014.
ACM.

[42] K. Salvesen, J. P. Galeotti, F. Gross, G. Fraser, and A. Zeller. Using Dynamic
Symbolic Execution to Generate Inputs in Search-Based GUI Testing. Proceedings
- 8th International Workshop on Search-Based Software Testing, SBST 2015, pages
32–35, 2015.

[43] K. Siggeirsdottir, U. Alfredsdottir, G. Einarsdottir, and B. Y. Jonsson. A new
approach in vocational rehabilitation in Iceland: preliminary report. Work,
22(1):3–8, jan 2004.

[44] K. Siggeirsdottir, R. D. Brynjolfsdottir, S. O. Haraldsson, S. Vidar, E. G. Gudmunds-
son, J. H. Brynjolfsson, H. Jonsson, O. Hjaltason, and V. Gudnason. Determinants
of outcome of vocational rehabilitation. Work, 55(3):577–583, nov 2016.

[45] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. Delamaro. Strong mutation-
based test data generation using hill climbing. In Proceedings of the 9th Interna-
tional Workshop on Search-Based Software Testing - SBST ’16, pages 45–54, Austin,
Texas, 2016. ACM Press.

[46] J. Swan, M. G. Epitropakis, and J. R. Woodward. Gen-O-Fix: An embeddable
framework for Dynamic Adaptive Genetic Improvement Programming. Technical
Report CSM-195, Department of Computing Science and Mathematics University
of Stirling, Stirling, UK, 2014.

[47] D. R. White. An Unsystematic Review of Genetic Improvement. In 45th CREST
Open Workshop on Genetic Improvement, London, 2016.

[48] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary Improvement of Programs.
IEEE Transactions on Evolutionary Computation, 15(4):515–538, aug 2011.

[49] D. R. White, J. Clark, J. Jacob, and S. M. Poulding. Searching for resource-e�cient
programs. Proceedings of the 10th annual conference on Genetic and evolutionary
computation - GECCO ’08, (1):1775, 2008.

[50] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke. Deep Parameter Optimisa-
tion. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 1375–1382, Madrid, Spain, jul 2015. ACM.

[51] K. Yeboah-Antwi and B. Baudry. Embedding Adaptivity in Software Systems
using the. In Proceedings of the Companion Publication of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, pages 839–844, Madrid, Spain,
2015. ACM.

	Abstract
	1 Introduction
	2 Related work
	3 Janus Manager Daily activity
	3.1 Usage of Janus Manager
	3.2 Structure of Janus Manager

	4 Janus Manager Nightly activity
	4.1 Log analysis
	4.2 Generating test data
	4.3 Genetic Improvement

	5 Summary
	6 Future work
	References

