
EECS 481 — Software Engineering — Exam #2 KEY

• Write your name and UM uniqname (i.e., email address) on the exam.

• There are ten (10) pages in this exam (including this one) and six (6) questions, each
with multiple parts. Some questions span multiple pages. If you get stuck on a question,
move on and come back to it later.

• You have 1 hour and 20 minutes to work on the exam.

• The exam is closed book, but you may refer to your two page-sides of notes.

• Even vaguely looking at a cellphone or similar device (e.g., tablet computer) during
this exam is cheating.

• Please write your answers in the space provided on the exam. Clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Do not use any
additional scratch paper.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We may deduct points if your solution is far more
complicated than necessary.

– Good Writing Example: Testing is an expensive activity associated with software
maintenance.

– Bad Writing Example: Im in ur class, @cing ur t3stz!1!

• If you leave a non-extra-credit portion of the exam blank, you will receive one-third
of the points for that small portion (rounded down) for not wasting time.

UM uniqname: KEY

NAME (print): KEY

1

UM uniqname: (yes, again!) KEY

Problem Max points Points

1 — Delta Debugging 15

2 — Requirements Elicitation 15

3 — Design Patterns 14

4 — Design for Maintainability 20

5 — Interviews 16

6 — Other Topics 20

Extra Credit 0

TOTAL 100

How do you think you did?

Page 2

1 Delta Debugging

Consider applying the Delta Debugging algorithm to the task of skill-based personnel as-
signment for a development project. A finite set of skills S = {s1, . . . , sm} is necessary to
complete the project. For each skill si, the project must be assigned at least one developer
who possesses that skill si. There is a finite set of developers D = {d1, . . . , dn} available,
and each developer has an individual set of skills given by skills : D → S. For example, it
could be that skills(d2) = {s1, s3} while skills(d5) = {s3, s6, s8}. Collectively, the full set of
developers has all of the necessary skills S. You are interested in finding a smaller subset of
developers that also has all of the necessary skills. Formally, a candidate set of developers
D′ is interesting if the union of all skills held by everyone in D′ is equal to S.

(2 pts.) In general, this problem formulation violates at least one of the fundamental
assumptions of the basic Delta Debugging algorithm. Identify the most important such
unmet assumption.

This problem formulation is ambiguous.

(10 pts.) Provide a simple example that shows that your chosen assumption is violated.
You must do so with n = 3 by giving definitions for S, D and skills.

S = {s1, s2}
skills(d1) = {s1}
skills(d2) = {s2}
skills(d3) = {s1}

We have interesting({d1, d2}) and interesting({d2, d3}), but not interesting({d1, d2}∩{d2, d3}).
(3 pts.) We believe the best possible running time to find a minimal subset of an arbitrary

set with an arbitrary deterministic interesting function is O(2N). Delta Debugging advertises
a better running time. Explain this apparent contradiction between Delta Debugging’s
running time and more general theoretical bounds. Use at most three sentences.

The Delta Debugging algorithm only finds a 1-minimal subset of an interesting set. A 1-
minimal subset is not as precise as a “fully” minimal subset. Delta Debugging takes advantage of
the special structure of unambiguous, monotic and consistent problem formulations and weaker
output requirement. Stronger input assumptions and weaker output requirements admit a more
efficient algorithm.

Page 3

2 Requirements Elicitation

(4 pts.) Given an example of a conflict that might arise during requirements elicitation.
Indicate a best practice to resolve that conflict.

In a strong conflict, statements are not satisfiable together (e.g., “the button must be
entirely and exclusively red” and “the button must be entirely and exclusively blue”).

In a weak conflict or divergence, statements are not satisfiable given a condition (e.g., “the
list shall be as large as needed” and “the list shall hold at most X items”).

These can be resolved by exploring tradeoffs.
In a terminology conflict, the same concept goes by different names (e.g., user vs. cus-

tomer).
In a designation conflict, the same name denotes different concepts (e.g., Rex the dog

vs. Rex the human).
In a structre conflict, the same conflict is structured differently (e.g., complete on Friday

vs. complete by close of business on Thursday).
These can be resolved with a glossary.

(6 pts.) Consider the following claim: “Validation is less expensive then verification, but
mistakes made during validation are more expensive than mistakes made during verification.”
In about three sentences, support or refute this claim.

Validation determines if requirements are correct; verification determines if
software is correct. Typically one would support this claim. Significant evidence
was presented during the course that post-coding maintenance activities like
reading and testing code are dominant lifecycle costs. However, we also saw
that the cost of fixing a bug increases the later it is caught. For example, the
graph on Slide 18 of Lecture 2 explicitly shows uncaught requirements defects
as the most expensive.

(5 pts.) At the end of his lecture, Jason Mars described a situation in which Clinc
made a significant mistake in stakeholder analysis. All but two of “decision making”, “differ-
ent needs”, “exploring alternatives”, “organizational position”, “personal objectives”, and
“traceability” were relevant in that anecdote. In at most five sentences, briefly summarize
the situation and indicate the four relevant aspects.

Mars described a situation in which multiple groups with different organizational positions in
a large client organization all made different demands on his company. For example, a technical
group might want one feature, while a business or marketing group might want another. By failing
to identify which stakeholders were decision makers, the company ran into trouble: although it
would decide to complete requests for one sub-group (they all had different needs), the other
sub-group would become unhappy that their demands were not met instead. Mars originally
thought that the groups were all against his company, but in fact they were all in favor of his

Page 4

company: they had personal objectives related to being seen to be aligned with the product’s
success. The concepts of exploring alternatives and traceability are not relevant here.

Page 5

3 Design Patterns

Consider the following incorrect code for implementing a Singleton design pattern, adapted
from James Perretta’s lecture.

1 class Singleton:

2 @staticmethod

3 def get ():

4 return Singleton._instance

5

6 _instance = None

7

8 def __init__(self):

9 if Singleton._instance is None:

10 Singleton._instance = Singleton ()

11 self._state = 42

12

13 def current_state(self):

14 return self._state

15

16 def main ():

17 print(Singleton.get (). current_state ())

(10 pts.) In at most four sentences, indicate the defect in this code and how you would fix
it. Be specific.

The defect is that lines 9–10 should be moved to appear after line 3. Without that change,
get() will not return a valid instance, and thus get().current state() will fail. (Also ac-
ceptable: init conceptually has an infinite loop.)

(4 pts.) In the Model-View-Controller design pattern, two pairs of components typically
communicate (i.e., depend on each other, call methods from each other, etc.) but one pair
does not. Identify the components that should not communicate. In at most three sentences,
indicate some ways in which subsequent maintenance would be complicated if that pair were,
mistakenly, to be tightly coupled.

The Model should not know about the View details. Indeed, multiple different views might
be supported by the same MVC setup.

While it is not always bad for the View to call Model data accessor functions, it is more
common, at a high level, for the View to interface with the Controller which interfaces with the
Model.

If the Model were dependent on View details, refactoring the View later, or adding additional
Views later, would be more complicated. In addition, changes to the View might also require
changes to the Model.

Page 6

4 Design for Maintainability

(4 pts.) Following Wikipedia, “Scalability is the capability of a system, network, or pro-
cess to handle a growing amount of work, or its potential to be enlarged to accommodate
that growth.” In at most three sentences, support or refute the claim that scalability is a
functional property. If possible, relate your answer to Adam Brady’s lecture on Google.

Either argument can be acceptable if adequately supported.
The traditional view is refute: scalability is a quality property. Scalability relates to the

manner or fashion in which the correct result is delivered. In that regard it is akin to performance,
which is also typically viewed as a quality property.

However, you could also support: in the limit, scalability can be a functional property. For
example, O(2N) algorithms are not practical for N > 100; if Google took ten thousand years to
respond to each search query it would be effectively unusable, and thus scalability would become
a functional concern. Google has set things up so that individual component failure is expected
but that scalability is critical.

(8 pts.) You are considering developing a multi-language project. Two requirements
include the performance of the system (i.e., how fast it runs) and also how the debugging
cost of the system (i.e., how fast defects can be repaired). For each requirement, list both an
advantage and a disadvantage of a multi-language design. Use at most four sentences (one
for each pairwise consideration).

Performance advantage: using a low-level language like C or assembly for a performance-
critical kernel can improve the performance of a system.

Performance disadvantage: crossing the language boundary is typically expensive (e.g., it may
involve copying or marshaling data), and, if done wrong, can result in code that is actually slower
than a single-slow-language design (see Slide 72).

Debugging cost advantage: typically there are very few debugging advantages to multi-
language systems. However, one might argue that within a single ecosystem (e.g., Java Bytecode
or Microsoft Common Language Runtime), a single debugger can help with debugging tasks
across multiple abstraction layers. Alternate creative arguments are possible. For example, it
might be more natural to express an critical algorithm in language A than in language B, so a
multi-language design might actually make that part more readable.

Debugging disadvantage: as detailed in class, most coverage tools, debuggers, static analyzers,
dynamic analyzers, and profilers are all language-specific and thus typically only apply to parts of
a multi-language system. This can give an incomplete picture.

(8 pts.) Explain the relationship between a verifiable quality requirements and measure-
ment. Highlight at least one risk associated with measurement uncertainty. Use at most
four sentences.

A verifiable quality requirement is a statement using some measure that can be objectively

Page 7

tested (e.g., “responds within 10 seconds” rather than simply “is fast”). Because verifiability
hinges of measurement, there is a risk that measurement error may influence whether the re-
quirement will be perceived as being met or not. For example, if the timer accuracy is ±2
seconds and the system actually responds within 9 seconds, the developer might measure that it
takes 7 seconds and meets the requirement, while the stakeholder might measure that it takes
11 seconds and fails the requirement.

Page 8

5 Interviews

You are responsible for giving a non-behavioral technical interview to job candidates; you
are the interviewer. Your company views technical interviews as an assessment of software
engineering skills. The programming problem you ask of candidates is:

Two strings are said to be anagrams of one another if you can turn the first
string into the second by rearranging its letters. For example, “table” and “bleat”
are anagrams, as are “tear” and “rate”. Your job is to write a function that takes
in two strings as input and determines whether they’re anagrams of one another.

The candidate’s complete response is below. The first two commented lines indicate
questions the candidate asked you.

1 /* Q: Do I need to worry about upper - and lower -case? A: No. */

2 /* Q: Will the strings always be the same length? A: No. */

3
4 private boolean areAnagrams (String first , String second) {

5 return areAnagramsRec ("", first , second);

6 }

7
8 /* helper function: this is slow but correct */

9 private boolean areAnagramsRec (String soFar , String remaining , String target) {

10 if (remaining.length () == 0) {

11 return soFar.equals (target);

12 }

13 for (int i = 0; i < remaining.length (); i++) {

14 String whatsLeft = remaining.substring (0, i) +

15 remaining.substring (i + 1);

16 if (areAnagramsRec (soFar + remaining.charAt (i), whatsLeft , target))

17 return true;

18 }

19 return false;

20 }

21
22 /* test 1: "able", "bale"

23 test 2: "astronomer", "moonstarer" */

(2 pts. each) Identify two things that the candidate did well.

The code is functionally correct. The identifier names are clear. The indenting style is
consistent.

(3 pts. each) Identify and justify four significant things that the candidate did poorly.

No internal comments or explanations of the algorithm are given. No “why” documentation
is given. No indication is made of the running time. The running time is actually very, very
slow: O(N !). The design is too complicated (see below). No attempt was made to elicit quality
requirements. The test cases are very poor: no “negative” or “corner case” tests are present, and
very few standard tests are present. No discussion is made of design, maintainability or similar
concerns.

Page 9

Ignoring any comment or elicitation concerns, consider this much simpler, and much faster,
O(N logN) solution:

1 private boolean areAnagrams (String first , String second) {

2 char[] one = Arrays.sort(first.toCharArray ());

3 char[] two = Arrays.sort(second.toCharArray ());

4 return Arrays.equals(one , two);

5 }

Page 10

6 Other Topics

(3 pts.) You design a neural representation (or “mind reading”) experiment to determine if
patterns of neural activation in the brain are similar for “talking about code” and “talking
about prose”. You use an fMRI or fNIRS device to measure the blood oxygen level dependent
(BOLD) signal. You randomly sample, from the Mozilla Firefox project, methods ranging in
size from 10–20 lines. While measured by the device, participants read the methods and are
summarize them in their own words. In at most three sentences, explain the most significant
reasons why it will be difficult to use this experimental setup to answer this research question,
and also why it may be difficult to use the BOLD signal to assess software engineering.

BOLD medical imaging studies require a contrast or controlled experiment: they com-
pare X to Y . This experimental setup will not answer the research question because it never
actually measures “talking about prose”.

In general, it is difficult to use the such medical imaging studies to assess software engineering
because of the constraints they place on the participant’s environment. For example, fMRI
requires the participant to hold very still, limits the display to a small screen, limits the input
to a few simple buttons, is very loud, is unfamiliar to most developers, and so on. As a result,
there is a threat to ecological validity: the measured activity may not resemble “real” software
engineering. You could also bring up that measurement error is non-trivial and that it is very
difficult to do the mathematical analysis of medical imaging data correctly.

(5 pts.) Consider a hypothetical pair test generation activity in which one developer
constructs test inputs while another developer constructs test oracles. Support or refute the
claim that this activity will reap similar benefits for testing as pair programming does for
programming. Use at most four sentences.

Typically refute. In pair programming, both members of the pair are focused on the con-
struction of a single artifact: the code. One may be writing while the other is observing, but they
are both focused on the same screen. In pair test generation, one is focused on the test input
while another is focused on the test oracle: those might be on different screens or in different
files. In addition, the participant working on one (e.g., the input) does not have the benefit of a
partner double-checking that work (since the partner is focused on the other aspect).

You could try to argue support, but it would be a much more difficult argument. For
example, having one partner think about the oracle might reveal early that a test input would
actually be “less useful” or “low coverage” or somesuch. Or having one partner say “we really
need something that eventually leads to output X” might help drive the other partner’s test
input generation. However, this should remind you of using AFL or similar random test input
generation approaches. Developers typically report that it is actually fairly difficult to come up
with the correct oracle for a test input that someone else (or sometool else) has produced. This
is known as the “oracle problem” in software engineering — we covered it on Slide 40 of the
Inputs and Oracles lecture.

Page 11

(3 pts.) Explain the relationship between anti-patterns, static analysis and semi-automated
refactoring. Use at most three sentences.

Refactoring can be viewed as transforming code that current exhibits an anti-pattern into code
that exhibits a desired pattern. Semi-automated refactoring tools use static analyses to locate
code regions that currently exhibit anti-patterns. For example, a static analysis might measure
the coupling, cohesion, or complexity of a class or method. One an “underperforming” area of
the code has been identified, it is transformed to be more aligned with a desired pattern and thus
score better on that metric.

Page 12

(4 pts.) Describe a specific situation (or sketch a small method) in which a static analysis
tool (such as Infer or CodeSonar) would issue a false alarm and indicate the alarm type.
Then describe a situation (or sketch a small method) in which such a tool would have a false
negative and indicate the defect type.

False positives are very common with such tools (see the readings, etc.); almost anything was
acceptable here.

False negatives may seem a bit harder, since these tools often report every instance of a given
defect class that they see (even if they rank it low). However, remember that there are large error
classes that they do not even report! For example, you could list any of the CVEs in lighttpd

that the tools did not uncover!

(5 pts.) A senior software engineer who leads your team at a large software company
suggests that the team start a paired activity. In this activity, pairs email each other code and
changes and agree to merge files together. Explain why this activity is pair programming,
pass-around code review, both, or neither. Support or refute the claim that this paired
activity would be effective at improving code readability. Use at most five sentences.

This activity is likely not pair programming, which requires synchronous coding and
observing. Indeed, if one partner is typing and the other is doing nothing, it is viewed as a failure
mode in pair programming.

This activity could be pass-around code review, which is distributed and asynchronous.
Your argument would depend on what it means to “agree to merge files together”. In pass-
around code review, the reviewers are explicitly evaluating the proposed change for correctness
and quality and offering feedback.

This activity probably would not help readability compared to standard development.
Standard pair programming produces shorter programs and shorter code segments correlate with
readability. However, this is not pair programming, and we have no evidence that it will produce
shorter segments. If it is akin to pass-around code review, it may result in higher readability (and
you could make an argument, for example using Google’s notion of readability badges and coding
styles and the like). However, as phrased it sounds a bit more like asking developers to manually
implement the patch-merging part of Git or SVN, which is unlikely to be helpful.

Page 13

7 Extra Credit

What is one thing you would tell future students who are considering taking this class?

In retrospect, what is one thing you enjoyed about this class?

In retrospect, what should be changed about this class for next year?

From Beck et al.’s Industrial Experience with Design Patterns, list one of the “lessons
learned”.

“Patterns serve as a good team communication medium. Patterns are extracted from
working designs. Patterns capture the essential parts of a design in a compact form. Patterns
can be used to record and encourage the reuse of best practices. Patterns are not necessarily
object-oriented. The use of pattern mentors in an organization can speed the acceptance of
patterns. Good patterns are difficult and time-consuming to write. PAttern practice is of
utmost importance.”

In Haraldsson et al.’s Fixing Bugs in Your Sleep: How Genetic Improvement Became an
Overnight Success, what did the system do?

“. . . in the evening, after the last user logs out, it starts a self-analysis based on the
day’s recorded interactions. It generates test data from the recorded interactions for Genetic
Improvement to fix any recorded bugs that have raised exceptions. The system has already
been under test for over 6 months and has in that time identified, located, and fixed 22
bugs.”

From Chi et al.’s Expertise in Problem Solving, list one way in which experts and novices
“chunk” problems differently.

Page 33 (PDF page 14): “. . . experts store physics equations in tightly connected “chunks,”
whereas novices store equations individually. . . . the storage of equations may indeed be dif-
ferent in the knowledge base of the experts and novices . . . ”

Page 14

