
EECS 481 — Software Engineering — Exam #1

• Write your name and UM uniqname on the exam.

• There are ten (10) pages in this exam (including this one) and seven (7) questions,
each with multiple parts. Some questions span multiple pages. If you get stuck on a
question, move on and come back to it later.

• You have 1 hour and 20 minutes to work on the exam.

• The exam is closed book, but you may refer to your two page-sides of notes.

• Even vaguely looking at a cellphone or similar device (e.g., tablet computer) during
this exam is cheating.

• Please write your answers in the space provided on the exam. Clearly mark your
solutions. You may use the backs of the exam pages as scratch paper. Do not use any
additional scratch paper.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. We may deduct points if your solution is far more
complicated than necessary.

– Good Writing Example: Testing is an expensive activity associated with software
maintenance.

– Bad Writing Example: Im in ur class, @cing ur t3stz!1!

• If you leave a non-extra-credit portion of the exam blank, you will receive one-third
of the points for that small portion (rounded down) for not wasting time.

UM uniqname: ANSWER KEY

NAME (print): ANSWER KEY

1

UM uniqname: (yes, again!) ANSWER KEY

Problem Max points Points

1 — Software Process Narrative 13

2 — Test Inputs and Coverage 18

3 — Short Answer 15

4 — Mutation Testing 15

5 — Dataflow Analysis 20

6 — Quality Assurance Analyses 19

Extra Credit 0

TOTAL 100

How do you think you did?

Page 2

1 Software Process Narrative (13 points)

(1 pt. each) Read the following narrative. If a text segment corresponds to, or demonstrates,
a concept below, fill in its blank with the letter of the most appropriate or specific concept.
Or, if a text segment is false or very unlikely in the real world (cf. the readings), fill in its
blank with an X. Otherwise, leave it untouched. An option may be used more than once.

A. a/b testing B. beta testing C. effort estimation D. integration testing
E. priority F. regression testing G. resolution H. severity
I. streetlight effect J. threat to validity K. worksforme X. false

Unrealistic Software is maintaining a hot new click-fest mobile game, Clash of the
Philosophers.

J For part of a tie-in campaign with another company, Unrealistic Software wants to
determine how much their players like various philosophers, so they measure how often
their players purchase them.

A By slightly varying the icon border color, they find that in-app purchases of the Simone
de Beauvoir character increase by 10%; they decide to implement that color change.

X Developers and program managers are most interested in learning how to generate
100% test coverage for this new color-change code.

While development is focused on code coverage, new defects are reported by end users.

X The majority of the defect reports include stack traces.

The stack traces seem to implicate the in-app purchase code.

C Management asks the developers how long it will take to fix this defect.

E It is decided that this defect must be fixed right now.

However, developers need help pinning down the defect.

I Since they already have GPS location information about their players, they decide to
look for a geographic correlation, but do not find one.

X They then hypothesize that the problem could be a database issue, so they decide to
use Microsoft’s CHESS tool to gain more information.

D Eventually, they test the new color-changing code in conjunction with the old in-app
purchase code.

G Developers check in a change that they believe fixes the bug, but later the bug resurfaces
and the defect report is reopened.

Page 3

2 Test Inputs and Coverage (18 points)

(4 pts. each) Consider the following program with blanks. We are concerned with statement
coverage, but only for the statements labeled S 1 through S 5.

1 void liskov(int a, int b, int c) {

2 S_1;

3 if (a == __1__)

4 S_2;

5 if (b < __a__) // if (b < _2_)

6 S_3;

7 else if (b == a)

8 S_4;

9 if (a == b __+__ c)

10 S_5;

11 }

Now consider the following three test inputs, T 1 through T 3:

T 1 = liskov(1,2,3) T 2 = liskov(8,8,1) T 3 = liskov(3,1,2)

Using all three test inputs results in 100% coverage of the labeled statements. Using
either T 1 or T 2 alone results in 40%. Using T 1 with T 3 results in 80%. Using T 2 with
T 3 also results in 80%. Fill in each blank in the program with a single letter, integer or
symbol so that it matches this coverage.

(6 pts.) Consider the following program:

1 void lovelace(int a, int b, int c) {

2 int local = 0;

3 if (a < b) local += 1; else local += 0;

4 if (c == 5) local += 2; else local += 0;

5 if (local == 3 && c < 4) local = 6; else local = 7;

6 }

Give a smallest set of test inputs (in terms of the number of test inputs) resulting in maximal
branch coverage for this program:

(1,2,5) visits true, true, false
(2,2,2) visits false, false, false
It is not possible to make the last branch true. You need at least two inputs to result in

maximal branch coverage.

Page 4

3 Short Answer (15 points)

(a) (3 pts.) Write a method accepting one input parameter for which test input generation
via constraint solving will work better than test input generation at random.

1 def foo(x):

2 if (x == 123456789):

3 print("a")

4 else:

5 print("b")

(b) (2 pts.) In at most three sentences, support or refute the claim that Microsoft’s Driver
Verifier is an instance of Mocking.

“Support”. Mocking, from Lecture 4, is “a way to dynamically (at runtime) substitute
objects, functions with fake versions.” The Driver Verifier, from Lecture 8, “replaces the
default operating system subroutines with ones that are specifically developed to catch
device driver bugs.”

(c) (3 pts.) In at most three sentences, support or refute the claim that the Cyclomatic
Complexity metric helps to identify difficult-to-understand code.

Typically “Refute”. Cyclomatic Complexity, from Lecture 3, measures “linearly independent
paths through a program” but does not consider comments, variable names, etc. It was
“repeatedly refuted”, and we are to “avoid claims about human factors (e.g., readability)
and quality, unless validated”.

Possibly “Support”. You could argue, carefully, that CC is just code size, but larger methods
are inherently more difficult to understand. This is difficult to make full credit but easier
to make partial credit.

(d) (3 pts.) You believe slow code is more likely to be buggy, so you design a dynamic
analysis similar to Tarantula (coverage-based fault localization) that multiplies the de-
fault suspiciousness rating of each statement by the time spent in its enclosing method.
In at most three sentences, describe the instrumentation for your analysis.

The instrumentation would be a combination of statement coverage and profiling (Lecture
11). Instrumenting for statement coverage involves recording when each statement is
visited (possibly to some sort of internal set to avoid slowdowns from printing inside loops).
Instrumenting for profiling here involves a “float profile” that “computes the average call
times for functions but does not break times down based on context”. This could be done
via statistical profiling: having the OS send a signal every X time units and recording the
current method.

Page 5

(e) (2 pts.) In at most three sentences, support or refute the claim that watchpoints help
to debug race conditions.

Possibly “Support”. A watchpoint “stops execution after any instruction changes the value
at location L” (Lecture 11). If you have already identified the variable on which you have
a race condition, you could use watchpoints to determine when the rogue edit occurs. The
potential probably is that many other benign edits may change that location. This answer
is harder to make full credit.

Likely “Refute”. A watchpoint (as above) requires that you already know the location
(variable) of interest. If you do not, and see quite a bit of memory corruption, watchpoints
will not help you. By contrast, something like Delta Debugging (minimizes failure-inducing
thread schedules) or Eraser (finds the variable accesses accessed without proper locking)
would likely be more useful. Finally, it is not clear whether a debugger stops one thread or
all threads at a breakpoint.

(f) (2 pts.) Describe a defect for which Delta Debugging would struggle to find a minimal
failure-inducing input.

Break one of Delta Debugging’s assumptions. Possibilities:

i. The bug (and thus the Interesting function) is non-deterministic. DD may miss the
defect entirely and return the entire, unminimized set.

ii. The bug is non-monotonic: input {1,2} is interesting but input {1,2,3,4} is not. DD
will return a non-minimal set.

iii. The bug is inconsistent: some changes may yield programs that do not run. DD takes
quadratic time (Slide 42).

Picking ambiguity is not a good choice because DD will find one subset and you can rerun
it again to find another.

Page 6

4 Mutation Testing (15 points)

Consider this method to convert a number of days (since January 1, 1980) into a year. Note
that 1980 is a leap year. The original program is shown on the left; three first-order mutants
are each indicated by a comment on the right.

1 def zune(days):

2 year = 1980

3 while (days > 365):

4 if isLeapYear(year):

5 if (days >= 366): # Mutant 1 has if (days > 366):

6 days -= 366

7 year += 1 # Mutant 2 has year += 0

8 else:

9 days -= 365 # Mutant 3 has days = 0

10 year += 1

11 return year

(10 pts.) Complete the table below by indicating whether or not each test kills Mutant 2
and/or Mutant 3. (Mutant 1 is only killed by Test 2.)

Input (days) Oracle Mutant 1 Mutant 2 Mutant 3

Test 1 365 1980 — — —

Test 2 366 1981 killed killed —

Test 3 366 + 1 1981 — killed —

Test 4 366 + 365 + 1 1982 — killed —

Test 5 366 + 365 + 365 + 1 1983 — killed killed

(1 pt.) What is the mutation score for Tests 1–5 using Mutants 1–3? 3/3 = 100%
(1 pt.) What is the mutation score for Tests 1–5 using Mutants 1–2? 2/2 = 100%
(1 pt.) What is the mutation score for Tests 1–3 using Mutants 1–3? 2/3 = 66%
(2 pts.) In at most three sentences, support or refute the claim that mutation analysis

agrees with your intuitive notion of test suite adequacy in this example.
Either way. “Refute” would involve noting that as you increase the quality of the test suite in

this example, such as by going from {1} to {1,3} to {1,3,4} (which have three different outputs),
the mutation score does not smoothly increase (0, 50, 50).

“Support” would involve arguing that very weak test suites (such as {1} alone, or {3,4})
have low mutation scores while more complete test suites (such as all of them, or all but one of
them) have higher scores (66% or 100%).

Page 7

5 Dataflow Analysis (20 points)

Consider the constant propagation dataflow analysis used in class to determine if a pointer
variable is definitely null when used. We associate with each variable a dataflow analysis
fact: either * (“the variable holds a value, but our analysis cannot be certain which value”),
(“this point in the program has not yet been reached by our analysis”) or a number c (“at
this point in the program, we are certain the value of this variable is exactly c”).

For this problem, we also extend our notion of dataflow analysis to include simple
arithmetic (called constant folding). For example, if we know that x = 7 before the statement
x = x+2, we immediately conclude that x = 9 after it.

start:

x := 2

x := x+1

safe(x)

x := 3

x := 8

x := x-5

unsafe(x)

*

*

2

3

3

*

3

3

8

8

3 _*_

*

 3

3

x := foo()

3

*

(10 pts.) Use each of the statements from the box below exactly once to fill in each of
the five large bolded nodes so that the dataflow analysis correctly indicates that x is not null
when used at safe but conservatively indicates that x may be null when used at unsafe.

x := x + 1 x := 2 x := 3 x := x - 5 x := foo()

(10 pts.) Fill in each blank () with the final dataflow analysis fact associated with that
edge.

Page 8

6 Quality Assurance Analyses (19 points)

Consider the Eraser dynamic lockset analysis, which tracks and intersects the set of locks
held by threads as they access variables.

1 def thread1(a): def thread2(b):

2 global lock1 global lock1

3 global shared global shared

4 if (a == 5): if (b == 7):

5 acquire(lock1) acquire(lock1)

6 shared = shared + 1 shared = shared + 1

7 if (a == 5): if (b == 7):

8 release(lock1) release(lock1)

(3 pts.) Either give an input (a, b) that would cause Eraser to mistakenly conclude that
there is no race condition or indicate that it is impossible to do so.

a=5, b=7. Shared is always accessed with lock1 held.
(3 pts.) Either give an input (a, b) that would cause Eraser to correctly conclude that

there is a race condition or indicate that it is impossible to do so.
Anything with a!=5 or b!=7, such as (0,7) or (5,0) or (0,0). The lockset for shared is the

empty set.
(5 pts.) Briefly summarize the sub-activities that make up modern (“passaround”) code

review. Describe multiple outcomes.
Following Lecture 7, “In a code review, another developer examines your proposed change and

explanation, offers feedback, and decides whether to accept it. Modern code reviews have signifi-
cant tool support.” You could also mention GitHub pull requests, Google’s language requirement,
Mondrian, Phabricator, the inclusion of unit test results, etc.

The two main outcomes are that the patch is validated and becomes part of the main branch
or that the patch is rejected (usually because of the human review, but possibly because of testing
failures or tool reports). See Slide 24.

Page 9

(8 pts.) Pick two of manual code inspection, automatic static analysis, testing, and
automatic dynamic analysis. For each chosen approach, describe a defect or quality concern
and explain, in one sentence, why that defect would be better handled with that approach
than with the other three approaches.

Manual inspection. If the quality concern is “code improvement”, code review commonly
achieves it (“Expectations, Outcomes” reading, Figure 4). The other approaches do not directly
suggest code changes.

Testing. If the quality concern is “regression” (on previously-identified failure-inducing inputs),
testing is well-suited. Manual inspection may not be as good (especially if you want regression
testing as part of code review: no reviewing recursively), dynamic analyses may be too expensive,
and static analyses may have false positives.

Static analysis. If the defect involves complicated control flow paths (e.g., “is there a way for
sensitive data to sneak through this sanitization code?”), static analysis is typically much better
at considering all of them than humans (who cannot reason about many at once) and dynamic
analysis (which requires an input to reach that tricky path).

Dynamic analysis. If the defect involves available data or input, dynamic analysis can often
be best. For example, if the quality concern is “reproducibility”, a Delta Debugging dynamic
analysis to minimize the failure-inducing input is likely to be much better than a manual one
(takes too long); testing and static analyses do not really minimize inputs.

These are just examples. Many arguments could be made.

Page 10

7 Extra Credit (1 point each)

What is one thing you would change about this class for next year?
What is one thing you would retain about this class for next year?

The “Producing Wrong Data Without Doing Anything Obviously Wrong!” paper argues
that which kind of bias is significant and commonplace?

“This phenomenon is called measurement bias in the natural and social sciences.”
Name one benefit and one cost of a test suite augmented with MC/DC coverage (com-

pared to standard functional testing) described in “An Empirical Evaluation of the MC/DC
Coverage Criterion on the HETE-2 Satellite Software”.

“We found in our study that the test cases generated to satisfy the MC/DC coverage re-
quirement detected important errors not detectable by func- tional testing. We also found that
although MC/DC coverage testing took a considerable amount of resources (about 40% of the
total testing time), it was not significantly more dif fi- cult than satisfying condition/decision
coverage and it found errors that could not have been found with that lower level of structural
coverage.”

List one approach to oracle automation from “The Oracle Problem in Software Testing:
A Survey”.

“The literature on test oracles has introduced techniques for oracle automation, including
modelling, specifications, contract-driven development and metamorphic testing. When none of
these is completely adequate, the final source of test oracle information remains the human, . . . ”

What was the “surprising” result in “Gender differences and bias in open source: pull
request acceptance of women versus men”?

“Surprisingly, our results show that women’s contributions tend to be accepted more often
than men’s. However, for contributors who are outsiders to a project and their gender is identi-
fiable, men’s acceptance rates are higher. Our results suggest that although women on GitHub
may be more competent overall, bias against them exists nonetheless.”

List one issue discussed in “A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World”.

“Law: You can’t check code you can’t parse.” “What’s ‘make’? We use ClearCase.” “Com-
pounding it (and others) the person responsible for running the tool is often not the one punished
if the checked code breaks.” “The award for most widely used extension should, perhaps, go to
Microsoft support for precompiled headers.” “If developers don’t feel pain, they often don’t care.
Indifference can arise from lack of accountability; if QA cannot reproduce a bug, then there is no
blame.” “Users really want the same result from run to run. ” “False positives do matter.”

What personality difference was found between managers and testers in “Beliefs, Prac-
tices, and Personalities of Software Engineers: A Survey in a Large Software Company”?

“We observed no personality differences between developers and testers; managers were con-
scientious and more extraverted.”

Page 11

