Cooperative Bug Isolation

Ben Liblit et al.
N IKIPEDIA WIKIPEDIA

The Free Encyclopedia The Free Encyclopedia
article | | discussion edil this page histary o O e — SCR W page hésiory
He-Man Editing He-Man

From Wikipedia, the free encyclopedia that amyone can edit

From Wikipedia, the free encyclopedia that anyone can edj -
LIEAT L T N -

He-Man is the most powerful man in the He-Man is actually a tremendous jackass and noj
really thal powerful. He hangs out with a bunch

universe. Imbued with incredible magical| | . jerks like: Peets and Dorko, He has @ cat who
power by the Sorceress of Castle Graysky | is also dumb and

he defends Eternia against evildoers with i
his friends Man-At-Arms, Teela, and the
lovable Orko.

e Saprran

Saw e T p——— Chagur 4 Fsbrelpt

Categories: Eternians | Legendary Warri

What’s This?

e Today, we'll talk about the work that won
the 2005 ACM Doctoral Dissertation Award.

Sic Transit Gloria Raymondi

Eric S. Raymond: “Given enough eyeballs, all bugs are shallow.”

« Bugs experienced by users matter.

e We can use information from user runs of
programs to find bugs.

« Random sampling keeps the overhead of
doing this low.

e Large public deployments exist.

#3

Today’s Goal: Measure Reality

« We measure bridges, airplanes, cars...
- Where is flight data recorder for software?

e Users are a vast, untapped resource
- 60 million XP licenses in first year; 2/second
- 1.9M Kazaa downloads per week in 2004; 3/s
- Users know what matters most
e Nay, users define what matters most!
e Opportunity for reality-directed debugging
- Implicit bug triage for an imperfect world

#4

Bug Isolation Architecture

No annotation required;
just pick what to
instrument.
- =
—> Sampler

_Z
= —
Compiler|

N |

Top bugs with _’/4— IPlroﬁle
likely causes Stat1st1<;al — & ©/®
Debugging

~_

#5

Why Will This Work?

e Good News: Users can help!

e Important bugs happen often, to many users
- User communities are big and growing fast
- User runs vastly exceed testing runs
- Users are networked

 We can do better, with help from users!
- cf. crash reporting (Microsoft, Netscape)
- Today: research efforts

#6

“There are no significant
bugs in our released software
that any significant number

of users want fixed.”
-- Bill Gates in 1995

#7

Crash Reports

e In use since the mid 1990s
e Stack trace, memory

2Dr. Watson for Windows 20000

Log Fie Paihc [CVWINNT
Crath Dusngy |

im

address, details about host e [

configuration, ...
o Advantage: fast and easy

e Limitations:

- Crashes don't always occur
“near” the defect

- Hard to tell which crashes
correspond to the same bug

Hurber of Enoas To Save |'||.

Ophors

[Dusp Spembol Tabile

+ Do A0 Thinad Cortests
™ Bppend To Emsting Log Fie
¥ Wisyal Motifc ation

I 5 ound Hotification

¥ Cresle Ciash Dumg File

dypplication Eprors

D Cancel | Hep |

#8

Let’s Use Randomness

e Problem: recording everything is too “
expensive! S

e Idea: each user records 0.1% of everything

e Generic sparse sampling framework
- Adaptation of Arnold & Ryder

e Suite of instrumentations / analyses
- Sharing the cost of assertions
- Isolating deterministic bugs
- Isolating non-deterministic bugs

#9

Sampling Blocks

e Consider this code:

check(p != NULL);
P = Pp -> next;
check(i < max);
total += sizes|[i];

« We want to sample 1/100 of these checks

#10

Global Counter

 Solution?
- Maintain a global counter modulo 100

for (i=0; i<n; i++) {
check(p != NULL);
P = p -> next;
check(i < max);
total += sizes|[i];

3

#11

Global Counter

 Solution?
- Maintain a global counter modulo 100

RECOIUSHTENIIST
for (1:0, i<n;]'.|..|.) { CHECKEISIRIMIESS
check(p != NULL); NEVETNELOTIE

° ’

P = p -> next;
check(i < max);
total += sizes[i];

3

#12

Random Number Generator

 Solution? Use random number generator.

if (rand(100)==0) check(p != NULL);
P = p -> next;

if (rand(100)==0) check(i < max);
total += sizes|[i];

#13

Random Number Generator

 Solution? Use random number generator.

if (rand(100)==0) check(p != NULL);
P = p -> next;

if (rand(100)==0) check(i < max);
total += sizes|[i];

Cezllirie reiricl()
ISHNOIEIEXPENISIVE!
DEINHENGIIEGHS

#14

Sampling the Bernoulli Way

 Identify the points of interest

e Decide to examine or ignore each site...
- Randomly
- Independently
- Dynamically
X Cannot use clock interrupt: no context
X Cannot be periodic: unfair

X Cannot toss coin at each site: too slow

#15

Anticipating the Next Sample

« Randomized global countdown

e Selected from geometric distribution
- Inter-arrival time for biased coin toss

- Stores: How many tails before next head?

e i.e., how many sampling points to skip before we
write down the next piece of data?

 Mean of distribution = expected sample rate

#16

Amortized Coin Tossing

e Each acyclic region:
- Finite number of paths

- Finite max number of
instrumentation sites

- Shaded nodes represent
instrumentation sites @

#17

Amortized Coin Tossing

e Each acyclic region:
- Finite number of paths

- Finite max number of
instrumentation sites

e Clone each region
- “Fast” variant
- “Slow” sampling variant

e Choose at run time

#18

Two Code Paths

e Fast Code Path e Slow Code Path
if (counter > 2) { if (counter-- == 0)
D = p -> next; check(p != NULL);
total += sizes[i]; D = p -> next;
counter -= 2; if (counter-- == 0)
} check(i < max);

total += sizes|[i];

#19

Optimizations

e Cache global countdown in local variable
- Global = local at func entry & after each call
- Local = global at func exit & before each call

 Identify and ighore “weightless” functions

e Avoid cloning
- Instrumentation-free prefix or suffix
- Weightless or singleton regions

 Static branch prediction at region heads
e Partition sites among several binaries
e Many additional possibilities ...

#20

Q. Computer Science

o Along with Shamir and Adleman, this
American Turing-award winner is credited
with revolutionizing public key cryptography.
He is also responsible for the RC5 symmetric
key encryption algorithm (“RC” stands for
“his Cypher”) and the MD5 cryptographic hash
function. He is also a co-author of
Introduction to Algorithms (aka CLRS).

Q. Philosophy and History

e This Greek (Macedonian) philosopher and scientist is
known for writings on many subjects (physics,
biology, logic, ethics, rhetoric, etc.). His works form
the first comprehensive Western philosophy.
Encyclopaedia Britannica claims he, “was the first
genuine scientist in history ... [and] every scientist is
in his debt.” He is credited with the earliest study of
formal logic. Kant said that his theory of logic
completely accounted for the core of deductive
inference. His Rhetoric has been called “the most
important single work on persuasion ever written.”

Sharing the Cost of Assertions

 Now we know how to sample things.

e Does this work in practice?
- Let’s do a series of experiments.

e First: microbenchmark for sampling costs!
o What to sample: assert () statements

o Identify (for debugging) assertions that
- Sometimes fail on bad runs

- But always succeed on good runs
#23

Case Study: CCured Safety Checks

e Assertion-dense C code

« Worst-case scenario for us
- Each assertion extremely fast

e No bugs here; purely performance study
- Unconditional: 55% average overhead
- 1/, S@ampling: 17% average overhead

- /000 S@aMpling: 10% average; half below 5%

#24

Isolating a Deterministic Bug

e Guess predicates on scalar function returns
(£() < 0) (£() == 0) (£() > 0)
e Count how often each predicate holds
- Client-side reduction into counter triples

o Identify differences in good versus bad runs
- Predicates observed true on some bad runs
- Predicates never observed true on any good run

Function return
triples aren’t the
only things we can
sample.

#25

Case Study: ccrypt Crashing Bug

e 570 call sites

e 3 x570=1710 counters

e Simulate large user community
- 2990 randomized runs; 88 crashes

« Sampling density '/,
- Less than 4% performance overhead

e Recall goal: sampled predicates should make
it easier to debug the code ...

#26

Winnowing Down to the Culprits

1710 counters

1569 are always zero
- 141 remain

139 are nonzero on
some successful run

Not much left!
file exists() > 0
xreadline ()

How do these pin
down the bug? You'’ll
see in a second.

140

120 =

Number of "good" features left

100 |-

80

60 -

40~

..

..

...

..

| | |
1000 1500 2000
Number of successful trials used

i
500

#27

Isolating a Non-Deterministic Bug

e Guess: at each direct scalar assignment

X = ..
o For each same-typed in-scope variable y
e Guess predicateson xand y

(x < y) (x ==y) (x > vy)
 Compare: DIG, Daikon (invariant detection)

e Count how often each predicate holds
- Client-side reduction into counter triples

#28

Case Study: be Crashing Bug

e Hunt for intermittent crash in be-1.06
- Stack traces suggest heap corruption

e 2729 runs with 9MB random inputs

e 30,150 predicates on 8910 lines of code

e Sampling key to performance
- 13% overhead without sampling
- 0.5% overhead with /.., sampling

Statistical Debugging via Regularized
Logistic Regression

faillure=1 —

success=0 —

count

S-shaped cousin to linear regression
Predict success/failure as function of counters

Penalty factor forces most coefficients to zero
- Large coefficient = highly predictive of failure

#30

Top-Ranked Predictors

void more arrays () #1: indx > scale
#2: indx > use math

{

/* Copy the old arrays. */
for (indx = 1; indx < old count; indx++)
arrays[indx] = old ary[indx];

/* Initialize the new elements. */
for (; indx < v_count; indx++)
arrays|[indx] = NULL;

#31

Top-Ranked Predictors

void more_arrays () #1: indx > scale
{ #2: indx > use math
#3: indx > opterr
/* Copy the old arrays. */ #4:- indx > next func
for (indx = 1; indx < old count; : . , —
arrays[indx] = old ary[indx]; |#9:1ndxX > 1 base

/* Initialize the new elements. */
for (; indx < v_count; indx++)
arrays|[indx] = NULL;

#32

Bug Found: Buffer Overrun

void more arrays ()

{

/* Copy the old arrays. */
for (indx = 1; indx < old count; indx++)
arrays[indx] = old ary[indx];

/* Initialize the new elements. */
for (; indx < v_count; indx++)
arrays|[indx] = NULL;

#33

Moving To The Real World

e Pick instrumentation scheme

o Automatic tool instruments program
e Sampling yields low overhead

e Many users run program
e Many reports = find bug
e 50 let’s do it!

Multithreaded Programs

e Global next-sample countdown
- High contention, small footprint
- Want to use registers for performance
—Thread-local: one countdown per thread

e Global predicate counters
- Low contention, large footprint
—Optimistic atomic increment

#35

Multi-Module Programs

o Forget about global static analysis
- Plug-ins, shared libraries
- Instrumented & uninstrumented code

e Self-management at compile time
- Locally derive identifying object signature
- Embed static site information within object file

e Self-management at run time
- Report feedback state on normal object unload
- Signal handlers walk global object registry

#36

Native Compiler Integration

e Instrumentor must mimic native compiler
- You don’t have time to port & annotate by hand

e This approach: source-to-source, then native
e Hooks for GCC.:

- Stage wrapping via scripts
- Flag management via specfiles

Guesses

e 2

-/ - \.

#37

Keeping the User In Control

| Bug Isolation Preferences X

Automatic Reporting

["]isend application feedback:

Participating Applications ‘
Application - |Enabled =
Evolution v
Gaim 7 Automatic Reporting

& pPreferences

45 About

X Close

About Bug Isolation Monitor

Bug Isolation Monitor 0.7.4

View and set bug isolation preferences
Copyright @ 2003-2004 The Regents of the University of California

The Cooperative Bug Isolation Project

Some applications on this computer can monitor their own
behavior while they run. Each time you use a participating
application, you can help to make it better for everyone.

Feedback from users like you can help us find and fix the bugs
that matter most. Do you wish to provide automatic feedback
when you use participating applications on this computer?

) Yes, count me in
If you choose "Yes," then participating applications will send

feedback to the bug isolation center after each run. Failed runs
will also include crash reports to help us see what went wrong.

If you choose "No," then participating applications will not
maonitortheirown behavior. No automatic feedback will ever be
sent, though you can still report problems manually.

Not sure what to do? Click here to learn more.

‘ Credits ‘

#38

Reports Received

Public Deployment 2004

1400
1200
1000
300
600

O Good
B Error

B Crash

N
—
—

[\
—
—

#39

Public Deployment 2004

100%
80%

60% [1 Good

® Error

40% B Crash
20%

. X3 S 4,
&QQ C;&& C}@Q ®Q§\ &§Q @Q
Qfe\ GQQ écb N

#40

Sneak Peak: Data Exploration

] C:\Documents and Settings\Ben Liblit\Desktop\Rhythmbox results\MR_Ib. html - Microsoft Internet Explorer (=<
Eile Edit \jew Favorites Tools Help .1."
Scheme: [branch] [return] [scalar] [all]
Sorted by: [lower bound of confidence interval] [increase score] [fai score] [true in # F runs]
Go to: [report summarv] [CBI webpage]
predicate function filecline
I monkev media plaver get uri= () info_available cb rb-shell-plaver.c:1774
I monkev media plaver get uri= () info_available cb rb-shell-plaver.c:17635
— th_entrv view get entrv contained=0 rb shell jump to entrv with source rb-shellc:2118
E— o sowrce remove > () cddb_disclosure destrov disclosure-widget.c.77
— thvthmdb tree entrv insert =10 thvthmdb tree parser end element thvthmdb-tree c:460
I— g hash table lookup =0 thvthmdb tree_entrv_insert thvthmdb-tree c:838
E— thvthmdb querv model entrv to iter = 0 rb_entrv view get entrv contained rb-entrv-view.c:1902
E— g hash table lookup =0 thvthmdb querv model entrv to_iter thvthmdb-querv-model c:870
E— remove child =0 remove_entrv from album thvthmdb-tree.c:1030
— eel gconf handle error =10 eel gconf get boolean eel-gconf-extensions.c:107
@ :J My Computer

#41

Summary: Putting it All Together

e Flexible, fair, low overhead sampling

» Predicates probe program behavior

- Client-side reduction to counters

- Most guesses are uninteresting or meaningless
e Seek behaviors that co-vary with outcome

- Deterministic failures: process of elimination
- Non-deterministic failures: statistical modeling

#42

Conclusions

Bug triage that directly reflects reality

- Learn the most, most quickly, about the bugs that
happen most often

Variability is a benefit rather than a problem
- Results grow stronger over time

Find bugs while you sleep!

Public deployment is challenging
- Real world code pushes tools to their limits
- Large user communities take time to build

But the results are worth it:

“Thanks to Ben Liblit and the Cooperative
Bug Isolation Project, this version of
Rhythmbox should be the most stable yet.”

#43

e Projects!

IF I HAD A COMPYTER,
IWM SURE 1D GET

BETTER GRATES ONM
M{ BoOK REFORTS.

Homework

YOU'D STILL HAVE TO READ THE
BOOK AND TEIL '

THE COMPUTER
WHAT MU WANT

MAN, WHAT'S AL THE
FUSS ABOT COMPUTERS 77

	Cooperative Bug Isolation Ben Liblit et al.
	What’s This?
	Sic Transit Gloria Raymondi
	Today’s Goal: Measure Reality
	Bug Isolation Architecture
	Why Will This Work?
	Slide 7
	Slide 8
	Let’s Use Randomness
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Sampling the Bernoulli Way
	Anticipating the Next Sample
	Amortized Coin Tossing
	Slide 18
	Slide 19
	Optimizations
	Slide 21
	Slide 22
	Sharing the Cost of Assertions
	Case Study: CCured Safety Checks
	Isolating a Deterministic Bug
	Case Study: ccrypt Crashing Bug
	Winnowing Down to the Culprits
	Isolating a Non-Deterministic Bug
	Case Study: bc Crashing Bug
	Statistical Debugging via Regularized Logistic Regression
	Slide 31
	Slide 32
	Bug Found: Buffer Overrun
	Moving To The Real World
	Multithreaded Programs
	Multi-Module Programs
	Native Compiler Integration
	Keeping the User In Control
	Public Deployment 2004
	Slide 40
	Sneak Peak: Data Exploration
	Summary: Putting it All Together
	Conclusions
	Homework

