
#1

Cooperative Bug IsolationCooperative Bug Isolation

Ben Liblit Ben Liblit et al.et al.

#2

What’s This?

• Today, we'll talk about the work that won
the 2005 ACM Doctoral Dissertation Award.

#3

Sic Transit Gloria Raymondi

• Bugs experienced by users matter.

• We can use information from user runs of
programs to find bugs.

• Random sampling keeps the overhead of
doing this low.

• Large public deployments exist.

Eric S. Raymond: “Given enough eyeballs, all bugs are shallow.”

#4

Today’s Goal: Measure Reality

• We measure bridges, airplanes, cars…
– Where is ight data recorder for software?

• Users are a vast, untapped resource
– 60 million XP licenses in first year; 2/second
– 1.9M Kazaa downloads per week in 2004; 3/s
– Users know what matters most

• Nay, users define what matters most!

• Opportunity for reality-directed debugging
– Implicit bug triage for an imperfect world

#6

Why Will This Work?

• Good News: Users can help!
• Important bugs happen often, to many users

– User communities are big and growing fast
– User runs vastly exceed testing runs
– Users are networked

• We can do better, with help from users!
– cf. crash reporting (Microsoft, Netscape)
– Today: research efforts

#7

“There are no significant
bugs in our released software
that any significant number

of users want fixed.”
-- Bill Gates in 1995

#8

Crash Reports

• In use since the mid 1990s
• Stack trace, memory

address, details about host
configuration, ...

• Advantage: fast and easy
• Limitations:

– Crashes don't always occur
“near” the defect

– Hard to tell which crashes
correspond to the same bug

#9

Let’s Use Randomness

• Problem: recording everything is too
expensive!

• Idea: each user records 0.1% of everything
• Generic sparse sampling framework

– Adaptation of Arnold & Ryder

• Suite of instrumentations / analyses
– Sharing the cost of assertions
– Isolating deterministic bugs
– Isolating non-deterministic bugs

How do
profilers

work?

#10

Sampling Blocks

• Consider this code:

check(p != NULL);
p = p -> next;
check(i < max);
total += sizes[i];

• We want to sample 1/100 of these checks

#11

Global Counter

• Solution?
– Maintain a global counter modulo 100

for (i=0; i<n; i++) {
 check(p != NULL);
 p = p -> next;
 check(i < max);
 total += sizes[i];
}

#12

Global Counter

• Solution?
– Maintain a global counter modulo 100

for (i=0; i<n; i++) {
 check(p != NULL);
 p = p -> next;
 check(i < max);
 total += sizes[i];
}

Records the firstRecords the first
check 1/50 times.check 1/50 times.

Never recordsNever records
the other.the other.

#13

Random Number Generator

• Solution? Use random number generator.

if (rand(100)==0) check(p != NULL);
p = p -> next;
if (rand(100)==0) check(i < max);
total += sizes[i];

#14

Random Number Generator

• Solution? Use random number generator.

if (rand(100)==0) check(p != NULL);
p = p -> next;
if (rand(100)==0) check(i < max);
total += sizes[i]; Calling rand()Calling rand()

is more expensiveis more expensive
than the check!than the check!

#15

Sampling the Bernoulli Way

• Identify the points of interest
• Decide to examine or ignore each site…

– Randomly
– Independently
– Dynamically

Cannot use clock interrupt: no context
Cannot be periodic: unfair
Cannot toss coin at each site: too slow

#16

Anticipating the Next Sample

• Randomized global countdown

• Selected from geometric distribution
– Inter-arrival time for biased coin toss
– Stores: How many tails before next head?

• i.e., how many sampling points to skip before we
write down the next piece of data?

• Mean of distribution = expected sample rate

#17

Amortized Coin Tossing

• Each acyclic region:
– Finite number of paths
– Finite max number of

instrumentation sites
– Shaded nodes represent

instrumentation sites

1

2 1

1

1

2

3

4

X

#18

Amortized Coin Tossing

• Each acyclic region:
– Finite number of paths
– Finite max number of

instrumentation sites

• Clone each region
– “Fast” variant
– “Slow” sampling variant

• Choose at run time

>4?

#19

Two Code Paths

• Fast Code Path

if (counter > 2) {
 p = p -> next;
 total += sizes[i];
 counter -= 2;
}

• Slow Code Path

if (counter-- == 0)
 check(p != NULL);
p = p -> next;
if (counter-- == 0)
 check(i < max);
total += sizes[i];

#20

Optimizations

• Cache global countdown in local variable
– Global local at func entry & after each call
– Local global at func exit & before each call

• Identify and ignore “weightless” functions
• Avoid cloning

– Instrumentation-free prefix or suffix
– Weightless or singleton regions

• Static branch prediction at region heads
• Partition sites among several binaries
• Many additional possibilities …

Q. Computer Science

• Along with Shamir and Adleman, this
American Turing-award winner is credited
with revolutionizing public key cryptography.
He is also responsible for the RC5 symmetric
key encryption algorithm (“RC” stands for
“his Cypher”) and the MD5 cryptographic hash
function. He is also a co-author of
Introduction to Algorithms (aka CLRS).

Q. Philosophy and History

• This Greek (Macedonian) philosopher and scientist is
known for writings on many subjects (physics,
biology, logic, ethics, rhetoric, etc.). His works form
the first comprehensive Western philosophy.
Encyclopaedia Britannica claims he, “was the first
genuine scientist in history ... [and] every scientist is
in his debt.” He is credited with the earliest study of
formal logic. Kant said that his theory of logic
completely accounted for the core of deductive
inference. His Rhetoric has been called “the most
important single work on persuasion ever written.”

#23

Sharing the Cost of Assertions

• Now we know how to sample things.
• Does this work in practice?

– Let’s do a series of experiments.

• First: microbenchmark for sampling costs!

• What to sample: assert() statements

• Identify (for debugging) assertions that
– Sometimes fail on bad runs
– But always succeed on good runs

#24

Case Study: CCured Safety Checks

• Assertion-dense C code
• Worst-case scenario for us

– Each assertion extremely fast

• No bugs here; purely performance study
– Unconditional: 55% average overhead

– 1/100 sampling: 17% average overhead

– 1/1000 sampling: 10% average; half below 5%

#25

Isolating a Deterministic Bug

• Guess predicates on scalar function returns
(f() < 0) (f() == 0) (f() > 0)

• Count how often each predicate holds
– Client-side reduction into counter triples

• Identify differences in good versus bad runs
– Predicates observed true on some bad runs
– Predicates never observed true on any good run

Function return
triples aren’t the

only things we can
sample.

#26

Case Study: ccrypt Crashing Bug

• 570 call sites
• 3 × 570 = 1710 counters
• Simulate large user community

– 2990 randomized runs; 88 crashes

• Sampling density 1/1000

– Less than 4% performance overhead

• Recall goal: sampled predicates should make
it easier to debug the code …

#27

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

Number of successful trials used

N
um

be
r o

f "
go

od
" f

ea
tu

re
s

le
ft

Winnowing Down to the Culprits

• 1710 counters
• 1569 are always zero

– 141 remain

• 139 are nonzero on
some successful run

• Not much left!
file_exists() > 0
xreadline() == 0

How do these pin
down the bug? You’ll

see in a second.

#28

Isolating a Non-Deterministic Bug

• Guess: at each direct scalar assignment
x = …

• For each same-typed in-scope variable y

• Guess predicates on x and y
(x < y) (x == y) (x > y)

• Compare: DIG, Daikon (invariant detection)
• Count how often each predicate holds

– Client-side reduction into counter triples

#29

Case Study: bc Crashing Bug

• Hunt for intermittent crash in bc-1.06
– Stack traces suggest heap corruption

• 2729 runs with 9MB random inputs
• 30,150 predicates on 8910 lines of code
• Sampling key to performance

– 13% overhead without sampling

– 0.5% overhead with 1/1000 sampling

#34

Moving To The Real World

• Pick instrumentation scheme
• Automatic tool instruments program
• Sampling yields low overhead
• Many users run program
• Many reports) find bug

• So let’s do it!

#35

Multithreaded Programs

• Global next-sample countdown
– High contention, small footprint
– Want to use registers for performance
Thread-local: one countdown per thread

• Global predicate counters
– Low contention, large footprint
Optimistic atomic increment

#36

Multi-Module Programs

• Forget about global static analysis
– Plug-ins, shared libraries
– Instrumented & uninstrumented code

• Self-management at compile time
– Locally derive identifying object signature
– Embed static site information within object le

• Self-management at run time
– Report feedback state on normal object unload
– Signal handlers walk global object registry

#39

Public Deployment 2004

0

200

400

600

800

1000

1200

1400

Evo
lutio

n
Gaim

GIM
P

Gnumer
ic

Nau
til

us

Rhyth
mbox

R
ep

or
ts

 R
ec

ei
ve

d

Good
Error
Crash

#40

Public Deployment 2004

0%

20%

40%

60%

80%

100%

Evo
lutio

n
Gaim

GIM
P

Gnumer
ic

Nau
til

us

Rhyth
mbox

Good
Error
Crash

#41

Sneak Peak: Data Exploration

#42

Summary: Putting it All Together

• Flexible, fair, low overhead sampling
• Predicates probe program behavior

– Client-side reduction to counters
– Most guesses are uninteresting or meaningless

• Seek behaviors that co-vary with outcome
– Deterministic failures: process of elimination
– Non-deterministic failures: statistical modeling

#43

Conclusions
• Bug triage that directly reflects reality

– Learn the most, most quickly, about the bugs that
happen most often

• Variability is a benefit rather than a problem
– Results grow stronger over time

• Find bugs while you sleep!
• Public deployment is challenging

– Real world code pushes tools to their limits
– Large user communities take time to build

• But the results are worth it:
“Thanks to Ben Liblit and the Cooperative

Bug Isolation Project, this version of
Rhythmbox should be the most stable yet.”

#44

Homework

• Projects!

	Cooperative Bug Isolation Ben Liblit et al.
	What’s This?
	Sic Transit Gloria Raymondi
	Today’s Goal: Measure Reality
	Bug Isolation Architecture
	Why Will This Work?
	Slide 7
	Slide 8
	Let’s Use Randomness
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Sampling the Bernoulli Way
	Anticipating the Next Sample
	Amortized Coin Tossing
	Slide 18
	Slide 19
	Optimizations
	Slide 21
	Slide 22
	Sharing the Cost of Assertions
	Case Study: CCured Safety Checks
	Isolating a Deterministic Bug
	Case Study: ccrypt Crashing Bug
	Winnowing Down to the Culprits
	Isolating a Non-Deterministic Bug
	Case Study: bc Crashing Bug
	Statistical Debugging via Regularized Logistic Regression
	Slide 31
	Slide 32
	Bug Found: Buffer Overrun
	Moving To The Real World
	Multithreaded Programs
	Multi-Module Programs
	Native Compiler Integration
	Keeping the User In Control
	Public Deployment 2004
	Slide 40
	Sneak Peak: Data Exploration
	Summary: Putting it All Together
	Conclusions
	Homework

