el

AY, BUT HEAR YOU | | HOLN SCHLAMOLY, 1SNT THERE
THIS, T1L So0N A COP SHoW ON WHERE THRY
KNOW THY BUSINESS | | TALW. LIKE REAL PROPLE P

| GET TMEE GONE,

WHITHER GOEST THCW DOST wWReNG ME ! FAATH,
THOU, YOUNG ROGUEP| T KMo NOT WHERE T WANDER. | | |G
CAN THERE YET | METHINKS THE MOST CAPRICIONS J
REMAIN SOME | ZEPMYR WATH MORE DESIGN !
THAN T. BUT LO: Do NOT
DETAIN ME, FOR T AM RESOWVD
TO QUIT THIS PLACE FORTHWITH,

LI L O O I O |

uuuuu

WAIT A MINUTE. ABE YOU TEYWG| | T-CUZ IF IT WERE A CEETAIW | | IF IT'S THE CERTAW SOME- | | ...THEN YOU'RE GOING TO BE
: SOVETHING, THAT MIGHT THING T THIVK IT IS... VEEY DISAPFOWTED.

CHANMGE A LOT Of THINGS.

Preliminary Definition

o A calculus is a method or system of
calculation

e The early Greeks used pebbles arranged in
patterns to learn arithmetic and geometry

e The Latin word for pebble is “calculus”
(diminutive of calx/calcis)
e Popular flavors:

- differential, integral, propositional, predicate,
lambda, pi, join, of communicating systems

#2

Cunning Plan

e Types of Concurrency
e Modeling Concurrency
e Pi Calculus

e Channels and Scopes
e Semantics

e Security

e Real Languages

Relevance - PLDI 2015

Mechanized Verification
of Fine-Grained Concurrent Programs

In this paper, we focus on program logics as a generic ap-
proach to specify a program and formally prove its correctness wif,
the given specification. In such logics, program specifications (or
specs) are represented by Hoare triples {7} ¢ {(}}, where ¢ is
a program being described, [is a precondition that constrains a
state in which the program is safe to run, and () is a postcondition,

llya Sergey Anindya Banerjee

Asynchronous Programming, Analysis
and Testing with State Machines

—4(v) M) = (m,q. E. ¥, S,send 4o evt(v); ss)
(£, h, S,if (v) ss¢ else ssg;ss) s (£,h, S, 554 55) My = M[i v (m,q, E £, S, ss)]
Pant Mg(dst) = (m',q',E', ¥, 8, ss")
| - £(v) (W M' = M[dst = (m'.q . E" : evtEf[u}}: "8 58" (SEND)
(£, h, S, while (v) ssy,; ss) (h, M) —¢ (h, M")

s (£, h, S, ss,; while (v) ssy; ss)
Mi) = (m,q.E. £,5.2) Tmlg, E) = (q',val, E")

_"g 3 AT — . ! Woop ..T. Trra ! .
| _ (v) : : (WHIL M' = M[ivw (m.q',E" £, ‘:_Fi q'(val))] (RECEIVE)
(£, h, S, while (v) ssp; s8) —4 (£,h, S, ss) (h, M) —¢ (h,M")
Figure 3. Operational semantics Figure 4. Transition rules

#4

Relevance - PLDI 2015

Efficient Synthesis of Network Updates

starting at src eventually reach dst. Temporal logics are an ex-
pressive and well-studied language for specifying such trace-based
properties. Hence, we use Linear Temporal Logic (LTL) to describe
traces in our network model. Let AP be atomic propositions that
test the value of a switch, port, or packet field: f; = n. We call
elements of the set 27 rraffic classes. Intuitively, each traffic class
T identifies a set of packets that agree on the values of particular

header fields. An LTL formula » in negation normal form (NNF)
is either true, false, atomic proposition p in AP, negated propo-
sition —p, disjunction @y W @e, conjunction s A o, next X,
until 9 Do, or release g Mo, where g and o are LTL for-
mulas in NWNF. The operators I and (7 can be defined using other

4.3 Formal Properties

The following two theorems show that our algorithm is sound for
careful updates, and complete if we limit our search to simple
update sequences (see Appendix B for proofs).

Theorem 1 (Soundness). Given initial network N;, final configu-
ration Ny, and LTL formula @, if ORDERUPDATE refurns a com-

cmds

r wf rf T
mand sequence cmds, then N, N st N = Ny, and cinads

is correct with respect to @ and N,

Theorem 2 (Completeness). Given initial network N, final con-

fiewration Ny, and specification o, if there exists a simple, careful
. I L ol ;

crnds

sequence cmds with N; = N' ... N' =~ Ny, then ORDERUP-
DATE refums one such sequence.

Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems

| Agent n ==
match msg with
| GrantMsg => (* lock acquired *) g Woos Pavel Panchekha
5 = true;; (* update state 2 .
output Grant + notify listeners *) Tichael D. Ernst Thomas Anderson
| _ => nop (% never happens) B TP —

[35] D. Sangiorgi and D, Walker. Pl-Calenlus: A Theorv of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001.
ISBN 0521781779,

Figure 3. A simple lock service application implemented in Verdi,
under the assumption of a reliable network. Verdi extracts these
definitions into OCaml and links the resulting code with a runtime
to send and receive messages over the network.

Take-Home Message

e The pi calculus is a formal system for
modeling concurrency in which
“communication channels” take center

stage.

e Key concerns include non-determinism and
security. The pi calculus models synchronous
communication. Can someone eavesdrop on
my channel?

#6

Possible Concurrency

No Concurrency
Threads and Shared Variables

- A language mechanism for specifying interleaving
computations; often run on a single processor

Parallel (SIMD)

- A single program with simultaneous operations on
multiple data (high-perf physics, science, ...)

Distributed processes

- Code running at multiple sites (e.g., internet agents,
DHT, Byzantine fault tolerance, Internet routing)

Different research communities = different notions

#7

(There Must Be) Fifty Ways to
Describe Concurrency

No Concurrency

- Sequential processes are modeled by the A-calculus.
Natural way to observe an algorithm: examine its output
for various inputs = functions

Threads and Shared Variables

- Small-step opsem with contextual semantics (e.g.,
callcc), or special type systems (e.g., [FFOO])

Parallel (SIMD)

- Not in this class (e.g., Titanium, etc.)

Distributed processes
- m

#8

Modeling Concurrency

e Concurrent systems are naturally non-deterministic
- Interleaving of atomic actions from different processes
- New concurrent scheduling possibly yields new result

e Concurrent processes can be observed in many ways
- When are two concurrent systems equivalent?
- Intra-process behavior vs. inter-process behavior

e Concurrency can be described in many ways

- Process creation: fork/wait, cobegin/coend, data
parallelism

- Process communication: shared memory, message
passing

- Process synchronization: monitors, semaphores,
transactions

#9

Message Passing

e These “many ways” lead to a variety of
process calculi

e We will focus on message passing!

LOOK ! A DECODER WOW! WE CAN SEND HA HA! NOW MOM AND
EACH OTHER SRCRET DAD WONT BE ABLE TO
MESSAGES WN COrE! &DEQST'AND US AT ALL!

Communication and Messages

Communication is a fundamental concept

- But not for everything (e.g., not much about parallel or
scientific computing in this lecture)

Communication through message passing

- synchronous or asynchronous

- static or dynamic communication topology

- first-order or high-order data

Historically: Weak treatment of communication
- 1/0 often not considered part of the language

Even “modern” languages have primitive |/0O
- First-class messages are rare
- Higher-level remote procedure call is rare

#11

Calculi and Languages

e Many calculi and languages use message-passing

Communicating Sequential Processes (CSP) (Hoare, 1978)
Occam (Jones)

Calculus of Communicating Systems (CCS) (Milner, 1980)
The Pi Calculus (Milner, 1989 and others)

Pict (Pierce and Turner)

Concurrent ML (Reppy)

Java RMI

e Messaging is built in some higher-level primitives

Remote procedure call
Remote method invocation

#12

The Pi Calculus

e The pi calculus is a process algebra
- Each process runs a different program
- Processes run concurrently
- But they can communicate
« Communication happens on channels

- channels are first-class objects
e channel names can be sent on channels

- can have access restrictions for channels
e In A-calculus everything is a function
e In Pi calculus everything is a process

#13

Pi Calculus Grammar

Processes communicate on channels

- ¢c<M> send message M on channel ¢

- ¢(x) receives message value x from channel c
Sequencing

- c<M>.p sends message M on ¢, then does p

- ¢(x).p receives x on ¢, then does p with x (x is bound in p)

Concurrency
- p | 9 isthe parallel composition of p and g

Replication
-Ip creates an infinite number of replicas of p

#14

Examples

e For example we might define

Speaker = air<m> // send msg M over air
Phone = air(x).wire<x> // copy air to wire
ATT = wire(x).fiber<x> // copy wire to fiber
System = Speaker | Phone | ATT

« Communication between processes is modeled by
reduction:

Speaker | Phone — wire<M> // send msg M to wire
wire<M> | ATT — fiber<M> // send msg M to fiber

o Composing these reductions we get
Speaker | Phone | ATT — fiber<M> // send msg M to fiber

#15

Channel Visibility

e Anybody can monitor an unrestricted
channel!
e Modeling such snooping:
WireTap = wire(x).wire<x>.NSA<x>
- Copies the messages from the wire to NSA
- Possible since the name “wire” is globally visible

e Now the composition:
WireTap | wire<M> | ATT —
wire<M>.NSA<M> | ATT —
NSA<M> | fiber<M> // OOPS !

#16

Restriction

* The restriction operator (vc) p makes a fresh
channel ¢ within process p

- v is the Greek letter “nu”
- The name c is local (bound) in p
- ¢ is not known outside of p
e Restricted channels cannot be monitored
wire(X) ... | (v wire)(wire<M> | ATT) —
wire(x) ... | fiber<M>
e The scope of the name wire is restricted
e There is no conflict with the global wire

#17

Restriction and Scope

e Restriction
- is a binding construct (like A, V, 3, ...)
- is lexically scoped
- allocates a new object (a new channel)
- somewhat like Unix pipe(2) system call

(vc)p is like let c = new Channel() inp

» C can be sent outside its initial scope
- But only if p decides so (intentional leak)

#18

First-Class Channels

« Channel c can leave its scope of declaration
- via a message d<c> from within p
- d is some other channel known to p

- Intentional with “friend” processes (e.g., send
my IM handle=c to a buddy via email=d)

« Allowing channels to be sent as messages
means communication topology is dynamic

- If channels are not sent as messages (or stored in
the heap) then the communication topology is
static

- This differentiates Pi-calculus from CCS

#19

Example of First-Class Channels

Consider: mflinlé liz
MobilePhone = air(x).cell<x> cell!
ATT1 = wire<cell> <
ATT2 = wire(y).y(x).fiber<x>

in

(v cell)(MobilePhone | ATT1) | ATT2

« ATT1 passes cell out of the static scope of
the restriction v cell

#20

Q: Books (734 / 842)

« Name either the Martian
protagonist or the Martian word for
"to drink” in Robert Heinlein's 1961
sci-fi novel Stranger in a Strange
Land. The novel won the Hugo
award and the word has entered
the OED.

Q: General (485 / 842)

e In the works Treatise on the Human
Being and Discourse on the Method
(1637) Descartes considers a theory in
which the soul is like a little person
that sits inside the brain to observe and
direct. Name the little person or the
gland most closely associated with this
theory. Optionally, translate “je pense,
donc je suis”, which first appears in
DoTM.

Scope Extrusion

e A channel is just a name
- First-class names must be usable in any scope

e The pi calculus restrictions distribute:

(ve)p) 1 g = (ve)(p | @) if c not free in g
« Renaming is needed in general:
(ve)p) I g= ((vd)[d/c]p) | q

= (vd)([d/c] pl q)
where “d” is fresh (does not appear in p or q)

e This scope extrusion distinguishes the pi
calculus from other process calculi

#23

Syntax of the Pi Calculus

There are many versions of the Pi calculus
A basic version:

P,q ::= (p and q are processes)
nil nil process (sometimes written 0)
X<y>.p sending data vy on channel x
X(Y).p receiving data vy from channel x
Pl g parallel composition
'p replication
(v X)p restriction (new channel x used in p)

e Note that only variables can be channels and
messages

#24

Operational Semantics

e One basic rule of computation: data transfer

(y).p | ©(2).qa — p|ly/zlq
- Synchronous communication: 1 sender, 1 receiver
- Both the sender and the receiver proceed afterwards

e Rules for local (non-communicating) progress:

p—p p—p
plg—7p|q (ve)p — (va)p’
p=p P—=4d d=q

p—4q

#25

Structural Congruence
gq=p P=qg g=T

P=p D=q p=r
p=yp p=yp

plg=p1q (vz)p = (va)yp/

p = pllp

plnil = p

plg = q|p
(ve)(vy)p = (vy)(vz)p
(vx)nil = nil

(vx)p|q x not free in g

(vz)(p | @)

#26

Semantics and Evaluation

e IMP opsem has the “diamond property”

e Does the Pi Calculus? Why or why not?

1+2+3 | pon B [—
3+3] | 1+5

Theory of Pi Calculus

e The Pi calculus does not have the Church-Rosser
property
- Recall: WireTap | wire<M> | ATT —" NSA<M> | fiber<M>
- Also: WireTap | wire<M> | ATT —" WireTap | fiber<M>
- This captures the non-deterministic nature of
concurrency

e For Pi-calculus there are

- Type systems

- Equivalences and logics

- Expressiveness results, through encodings of humbers,
lists, procedures, objects

#28

Pi Calculus Applications

A number of languages are based on Pi
- e.g., Pict (Pierce and Turner)

Specification and verification
- mobile phone protocols, security protocols

Pi channels have nice built-in properties, such as:
- integrity

- confidentiality (with v)

- exactly-once semantics

- mobility (channels as first-class values)

These properties are useful in high-level
descriptions of security protocols

More detailed descriptions are possible in the spi
calculus (= pi calculus + cryptography)

#29

A Typical Security Protocol

Establishment and use of a secret channel:

o New channel ¢, Same new channel c,;

1. Data

A and B are two clients
S is an authentication server
C, and ¢, are existing private channels with server

C,z 1S @ new channel for the clients

#30

That Security Protocol in Pi

e That protocol is described as follows:

A(M) = (V Cpp) Cus<Cpg™. Cpg <M>
S =1 (Cus(X). Cgg=x> | Cgg(X). Cy5<x>)
B = Cge(X). X(Y). Work(y)

System(M) = (v Cy5)(v Cg) AM) | S| B

- Where Work(y) represents what B does with the
message M (bound to y) that it receives

- The | ¢, (x). c,.<x> makes the server symmetric

#31

Some Security Properties

e An authenticity property
- For all N, if B receives N then A sent N to B

e A secrecy property

- An outsider cannot tell System(M) apart from
System(N), unless B reveals some part of A’s
message

e Both of these properties can be formalized
and proved in the Pi calculus

e The secrecy property can be treated via a
simple type system

#32

Mainstream Languages

« Communication channels are not found in
popular languages

- sockets in C are reminiscent of channels
- STREAMS (never used) are even closer
- ML has exactly what we’ve described (surprise)

e More popular is remote procedure call or
(for OO languages) remote method
invocation

#33

Concurrent ML

e Concurrent ML (CML) extends of ML with:
- threads
- typed channels
- pre-emptive scheduling
- garbage collection for threads and channels
- synchronous communication
events as first-class values
. OCaml has it (Event, Thread), etc.

- “First-class synchronous communication. This module implements
synchronous inter-thread communications over channels. As in John
Reppy's Concurrent ML system, the communication events are first-
class values: they can be built and combined independently before
being offered for communication.”

#34

Threads and Channels in CML

val spawn : (unit — unit) — thread (* create a new thread *)
val channel : unit — ‘a chan (* create a new typed channel *)
val accept : ‘achan — ‘a (* message passing operations *)

val send : (‘a chan * ‘a) — unit

So one can write, for example:

fun serverLoop () = let request = accept recCh in
send (replyCh, workOn request);
serverLoop ()

#35

Basic Events in Concurrent ML

val sync : ‘a event — ‘a (* force synchronization on an event, block
until this communication succeeds *)

val transmit : (‘a chan * ‘a) — unit event (* nonblocking; promises
to do the send at some point *)

val receive : ‘a chan — ‘a event (* sets up the rendezvous, but you
don’t actually get the value until you sync *)

val choose : ‘a event list — ‘a event (* succeeds when one of the
events in the list succeeds *)

val wrap : (‘a event * (‘a — ‘b)) — ‘b event (* do an action after
synchronization on an event *)

So you can write, as in Unix syscall select(2):
select (mylist : ‘a event list) : ‘a = sync (choose mylist)

#36

Java Remote Method Invocation

o Java RMI is a Java extension with
- Java method invocation syntax
- similar semantics

static checks

- distributed garbage collection

- exceptions for failures
| 15 CHANNELS]] SATELLITE HOOK-UP/

IanﬁE CHANNELS! ||Hr-Fl HIRES HI-DEF

/ URROUND
ANNELS! 1157500 SMOKIN.

RMI notes

« Compare RMI with pure message passing
- RMI is weaker, but OK for many purposes
 RMI not a perfect fit into Java:

- non-remote objects are passed by copy in RMI
- clients use remote interfaces, not remote classes
- clients must handle RemoteException

- using same syntax for Ml and RMI leads to hidden
performance costs

e But it is not an unreasonable design!

#38

Homework

e Project
- Need help? Stop by my office or send email.

#39

	Communication and Concurrency
	Preliminary Definition
	Cunning Plan
	Slide 4
	Slide 5
	Take-Home Message
	Possible Concurrency
	(There Must Be) Fifty Ways to Describe Concurrency
	Modeling Concurrency
	Message Passing
	Communication and Messages
	Calculi and Languages
	The Pi Calculus
	Pi Calculus Grammar
	Examples
	Channel Visibility
	Restriction
	Restriction and Scope
	First-Class Channels
	Example of First-Class Channels
	Q: Books (734 / 842)
	Q: General (485 / 842)
	Scope Extrusion
	Syntax of the Pi Calculus
	Operational Semantics
	Structural Congruence
	Semantics and Evaluation
	Theory of Pi Calculus
	Pi Calculus Applications
	A Typical Security Protocol
	That Security Protocol in Pi
	Some Security Properties
	Mainstream Languages
	Concurrent ML
	Threads and Channels in CML
	Basic Events in Concurrent ML
	Java Remote Method Invocation
	RMI notes
	Homework

