Semantics of Regular Expressions

1 Operational Semantics

$$
\begin{gathered}
\qquad r_{1} \text { matches } s_{1} \text { leaving } s_{2} \quad \vdash r_{2} \text { matches } s_{2} \text { leaving } s_{3} \\
\vdash r_{1} r_{2} \text { matches } s_{1} \text { leaving } s_{3} \\
\frac{\vdash r_{1} \text { matches } s_{1} \text { leaving } s_{2}}{\vdash r_{1} \mid r_{2} \text { matches } s_{1} \text { leaving } s_{2}} \\
\frac{\vdash r_{2} \text { matches } s_{1} \text { leaving } s_{2}}{\vdash r_{1} \mid r_{2} \text { matches } s_{1} \text { leaving } s_{2}} \\
\frac{\vdash r_{1} * \text { matches } s_{1} \text { leaving } s_{1}}{}
\end{gathered}
$$

$\vdash r$ matches s_{1} leaving $s_{2} \vdash r *$ matches s_{2} leaving s_{3}
$\vdash r_{1} *$ matches s_{1} leaving s_{3}

2 Denotational Semantics

2.1 Disjunction

$$
\mathcal{R} \llbracket r_{1} \mid r_{2} \rrbracket(s)=\mathcal{R} \llbracket r_{1} \rrbracket(s) \cup \mathcal{R} \llbracket r_{2} \rrbracket(s)
$$

or, equivalently:

$$
\mathcal{R} \llbracket r_{1} \mid r_{2} \rrbracket(s)=\left\{x \mid x \in \mathcal{R} \llbracket r_{1} \rrbracket(s) \vee x \in \mathcal{R} \llbracket r_{2} \rrbracket(s)\right\}
$$

2.2 Concatenation

$$
\mathcal{R} \llbracket r_{1} r_{2} \rrbracket(s)=\left\{x \mid \exists y . y \in \mathcal{R} \llbracket r_{1} \rrbracket(s) \wedge x \in \mathcal{R} \llbracket r_{2} \rrbracket(y)\right\}
$$

or, equivalently:

$$
\mathcal{R} \llbracket r_{1} r_{2} \rrbracket(s)=\bigcup_{y \in \mathcal{R} \llbracket r_{1} \rrbracket s} \mathcal{R} \llbracket r_{2} \rrbracket(y)
$$

2.3 Kleene Closure

Let $r^{0} \equiv$ empty and $r^{n} \equiv r_{1} r_{2} \ldots r_{n}$ (i.e., r concatenated with itself n times).

$$
\mathcal{R} \llbracket r * \rrbracket(s)=\bigcup_{k \in 0 \ldots \infty} \mathcal{R} \llbracket r^{k} \rrbracket(s)
$$

or, equivalently:
Consider the unwinding equation $r * \equiv r r *$. We define a context C (a regexp with a hole) so that $C \equiv r \bullet$. Note that $r * \equiv C[r *]$. The meaning of a context is a semantic function F such that $F \llbracket C[r * \rrbracket \rrbracket=F \llbracket r * \rrbracket$. The type of F is:

$$
F:(S \rightarrow \mathcal{P}(S)) \rightarrow(S \rightarrow \mathcal{P}(S))
$$

We want the least fixed point of F, where least is interpreted with respect to set inclusion \subseteq. We assert that F is monotonic and continuous. Let $F^{0}(W)=\mathcal{R} \llbracket$ empty $\rrbracket=$ $\lambda s .\{s\}$. We define F^{k+1} as follows:

$$
F^{k+1}(W)=F F^{k}(W)=\lambda s . \bigcup_{y \in \mathcal{R} \llbracket r \rrbracket(s)} F^{k}(y)
$$

Then we want the least fixed point:

$$
\mathcal{R} \llbracket r * \rrbracket(s)=\bigsqcup_{k} F^{k}(\lambda s .\{s\})=\bigcup_{k} F^{k}(\lambda s .\{s\})
$$

3 Incorrect Answers

The following definition of Kleene star is incorrect:

$$
\mathcal{R} \llbracket r * \rrbracket(s) \neq\{s\} \cup \mathcal{R} \llbracket r r * \rrbracket
$$

Using the rule for concatenation above, it is equivalent to the following also-incorrect definition:

$$
\mathcal{R} \llbracket r * \rrbracket(s) \neq\{s\} \cup\{x \mid \exists y . y \in \mathcal{R} \llbracket r \rrbracket(s) \wedge x \in \mathcal{R} \llbracket r * \rrbracket(y)\}
$$

The definitions are incorrect because they define $\mathcal{R} \llbracket r * \rrbracket$ directly in terms of itself. Such circular definitions correspond to implementation code such as:

```
| Star(r) -> (* incorrect *)
2 matches (Or(Empty,Concat(r,Star(r)))) s
```

On regular expressions such as $r=$ empty $*$, this leads to an infinite loop (and usually a stack overflow).

There are two typical approaches for a correct implementation. The first chooses some large k (say, based on the length of the input string s) and computes $\cup_{i=0 . . k} \mathcal{R} \llbracket r^{k} \rrbracket(s)$. The second actually computes the fixed point (instead of picking k in advance) by repeating the process until nothing new is added to the answer.

Regular expression matching is used almost everywhere. Note that understanding the denotational semantics actually helps one to write a real-world program correctly.

