
Graduate Programming Languages
Homework Assignment 4

Exercise 1: In class we gave the following rules for the (backward) verifi-
cation condition generation of assignment and let:

VC(c1; c2, B) = VC(c1,VC(c2, B))
VC(x := e, B) = [e/x] B
VC(let x = e in c, B) = [e/x] VC(c, B)

That rule for let has a bug. Give a correct rule for let.

Exercise 2: Extra Credit. Given {A}c{B} we desire thatA⇒ VC(c, B) ⇒
WP(c, B). We say that our VC rules are sound if |= {VC(c, B)} c {B}.
Demonstrate the unsoundness of the buggy let rule by giving the following
six things:

1. a command c and

2. a post-condition B and

3. a state σ such that

4. σ |= VC(c, B) and

5. 〈c, σ〉 ⇓ σ′ but

6. σ′ 6|= B.

Exercise 3: Write a sound and complete Hoare rule for do c while b. This
statement has the standard semantics (e.g., c is executed at least once, before
b is tested).

Exercise 4: Choose exactly one of the 4A and 4B below. (If you are not
certain, pick 4A. The answers end up being equivalent, but 4A may be easier
to grasp for some students and 4B easier to grasp for others.)

1



4A. Give the (backward) verification condition formula for the command
doInv c while b with respect to a post-condition P . The invariant Inv
is true before each evaluation of the predicate b. Your answer may not
be defined in terms of VC(while...).

4B. Give the (backward) verification condition formula for the command
doInv1 ,Inv2 c while b with respect to a post-condition P . The invariant
Inv1 is true before c is first executed. The invariant Inv2 is true before
each evaluation of the loop predicate b. Your answer may not be defined
in terms of VC(while...).

Exercise 5: Consider the following three alternate while Hoare rules (named
mal, jayne, and river):

` {X} c {b⇒ X ∧ ¬b⇒ Y }
` {b⇒ X ∧ ¬b⇒ Y }while b do c {Y }

mal
` {X ∧ b} c {X}

` {X}while b do c {X}
jayne

` {X} c {X}
` {X}while b do c {X ∧ ¬b}

river

All three rules are sound, but only one rule is complete. Identify the two
incomplete rules. For each incomplete rule provide the following:

1. the name of the rule and

2. A and

3. B and

4. σ and

5. σ′ and

6. c such that

7. 〈c, σ〉 ⇓ σ′ and

8. σ |= A and

9. σ′ |= B but

10. it is not possible to prove ` {A} c {B}.

Flavor text: Incompleteness in an axiomatic semantics or type system is
typically not as dire as unsoundness. An incomplete system cannot prove all
possible properties or handle all possible programs. Many research results
that claim to work for the C language, for example, are actually incomplete
because they do not address setjmp/longjmp or bitfields. (Many of them
are also unsound because they do not correctly model unsafe casts, pointer
arithmetic, or integer overflow.)

2



Exercise 6: No coding component. Instead, tell me how long you spent
on this, something you like about the class (or the work, or the project, or
whatever), something you do not like, and something I do not know about
you. All non-null answers receive full credit. Think about your project
proposal.

3


