
Axiomatic Semantics of Loops

1 VC For Let

First, we unwind let, where t is a fresh variable:

let x = e in c ≡ t := x; x := e; c; x := t

Thus we compute the VC:

VC(let x = e in C, B) ≡ VC(t := x; x := e; c; x:= t, B)

So the result is:
VC(t := x; x := e; c; x := t, B) =
VC(t := x,VC(x := e; c; x := t, B)) =
[x/t]VC(x := e; c; x := t, B) =
[x/t]VC(x := e,VC(c; x := t, B)) =
[x/t] [e/x]VC(c; x := t, B) =
[x/t] [e/x]VC(c,VC(x := t, B)) =
[x/t] [e/x]VC(c,[t/x]B)

An alternative formulation is to apply substitution to the command:

VC(let x = e in c, B) = VC([e/x]c,B)

2 Unsound Let

The basic problem with the buggy let rule is that it does not restore the old value.

1. c = let x = 1 in skip

2. B = x = 1

3. σ(x) = 0

4. σ |= V C(c, b), since V C(c, b) is 1 = 1

5. 〈c, σ〉 ⇓ σ′, where σ′(x) = 0, because the original value is restored after a let

6. σ′ 6|= B because σ′ 6|= x=1 because σ′(x) = 0.

3 Hoare Rule

First, we unwind do-while:
do c while b ≡ c ; while b do c

We will obtain our final Hoare rule by substituting in the appropriate rules:

` {A}c{B} ` {B}while b do c{C}
` {A}do c while b{C}

That answer is officially good enough. You can view it as using the “alternate” while rule given on the Alternate
Hoare Rules slide (near page 16) of the Introduction To Axiomatic Semantics lecture. We could also rephrase it
using the more common while rule:

` {A}c{B} ` {B}while b do c{B ∧ ¬b}
` {A}do c while b{B ∧ ¬b}

Which is then equivalent to:
` {A}c{B} ` {B ∧ b}c{B}
` {A}do c while b{B ∧ ¬b}

1

4 Backwards VC

First, we unwind do-while:
doInv c while b ≡ c ; whileInv b do c

Now we can compute the VC:

VC(c; whileInv b do c, B) =
VC(c,VC(whileInv b do c, B)) =
VC(c, Inv ∧ (∀x1 . . . xn. Inv =⇒ ((b =⇒ V C(c, Inv)) ∧ ¬b =⇒ B))) =
VC(c, Inv) ∧ (∀x1 . . . xn. Inv =⇒ ((b =⇒ V C(c, Inv)) ∧ ¬b =⇒ B))

where x1 . . . xn are the variables modified in c.
For the alternate formulation (4B), we again start by unwinding:

doInv1,Inv2 c while b ≡ assert(Inv1); c ; whileInv2 b do c

The assertion comes from the problem description that Inv1 is true before and after c is executed. We use Inv2 to
refer to the loop invariant of the while loop; it is typically the same as Inv1, but may potentially be stronger (i.e., it
may incorporate information from the first execution of c). Note that Inv2 must imply Inv1 since Inv1 must also
be true on every iteration of the while loop. So the result is:

VC(assert(Inv1 ∧ Inv2⇒ Inv1); c; whileInv2 b do c, B) =
VC(assert(Inv1 ∧ Inv2⇒ Inv1),VC(c; whileInv2 b do c, B)) =
Inv1 ∧ Inv2⇒ Inv1 ∧VC(c; whileInv2 b do c, B) =
Inv1 ∧ Inv2⇒ Inv1 ∧VC(c,VC(whileInv2 b do c, B)) =
Inv1 ∧ Inv2⇒ Inv1 ∧VC(c, Inv2 ∧ (∀x1 . . . xn. Inv2 =⇒ (b =⇒ V C(c, Inv2)) ∧ ¬b =⇒ B))

where x1 . . . xn are the variables modified in c.

4.1 Common Mistake

The fact that the VC encodes the first execution of the command c is critical. One common mistake was to use
something like the while rule from class:

Inv ∧ (∀x1 . . . xn. Inv =⇒ (b =⇒ V C(c, Inv)) ∧ ¬b =⇒ B))

Consider the program “do x := 1 while false”. The program is basically an assignment statement dressed up as a
loop. We should be able to compute the VC of it with respect to the post-condition x = 1. We expect that VC to
be equivalent to “true”. Unfortunately, with the mistaken rule, we get:

Inv ∧ (∀x. Inv =⇒ (false =⇒ V C(x := 1, Inv)) ∧ true =⇒ x = 1)) =
Inv ∧ (∀x. Inv =⇒ true =⇒ x = 1)) =
Inv ∧ (∀x. Inv =⇒ x = 1))

There is no value of Inv for which this works. If we take Inv to be x = 1 we satisfy the right conjunct but cannot
sastify the left. If we take Inv to be true, we satisfy the left but cannot satisfy the right.

If we do not use the mistaken rule but instead use the correct rule above, we get the following VC:

VC(x:=1, x = 1) ∧ (∀x. Inv =⇒ (false =⇒ VC(x:=1, Inv)) ∧ (true =⇒ x = 1)) =
VC(x:=1, x = 1) ∧ (∀x. Inv =⇒ (true =⇒ x = 1)) =

We can take Inv to be x = 1:

VC(x:=1, x = 1) ∧ (∀x. x = 1 =⇒ (true =⇒ x = 1)) =
VC(x:=1, x = 1) ∧ (∀x. x = 1 =⇒ x = 1) =

VC(x:=1, x = 1) ∧ (∀x. true) =
VC(x:=1, x = 1) =

[1/x]x = 1 =
1 = 1 =
true

2

5 The Man They Call Jayne

The Jayne rule is incomplete because it does not allow you to assume ¬b after the loop terminates.

1. jayne

2. A = true

3. B = x = 1

4. σ(x) = 0

5. σ′(x) = 1

6. c = while x 6= 1 do x := 1

7. 〈c, σ〉 ⇓ σ′ — not shown, but easily verified

8. σ |= A because σ |= true

9. σ′ |= B because σ |= x = 1 because σ′(x) = 1.

10. it is not possible to prove {A} while x 6= 1 do x = 1 {B} using the jayne rule. Assume, for the purpose of
contradiction, that it is. Then we must have a derivation D that does so:

D :: ` {true} while x 6= 1 do x := 1 {x=1}

By inversion, the last rule used in D must have been jayne or the rule of consequence. We proceed by cases.

(a) The last rule used in D was jayne. We reach an immediate contradiction, since jayne requires the pre-
and post-conditions to be identical, but true is not identical to x=1.

(b) The last rule used in D was the rule of consequence. If so, by inversion again the derivation D must look
like this:

` true⇒ P D2 :: ` {P}while x 6= 1 do x := 1{P} ` P ⇒ {x = 1}
` {true} while x 6= 1 do x := 1 {x=1}

where D2 is an instance of the jayne rule. However, there is no P such that ` true ⇒ P ⇒ x = 1, so we
reach a contradiction.

Since both cases led to a contradiction, we cannot have any such derivation D, so we cannot prove
{A} while x 6= 1 do x := 1 {B} using the jayne rule. You can also show the jayne rule to incomplete using
the “counting to six” loop from class.

The River rule is incomplete because it does not allow you to assume b inside the loop body. We’ll use the “count
to six” loop as a counterexample.

1. river

2. A = x ≤ 6

3. B = x = 6

4. σ(x) = 0

5. σ′(x) = 6

6. c = while x < 6 do x := x + 1

7. 〈c, σ〉 ⇓ σ′ — not shown, but easily verified (and discussed in class)

8. σ |= A because σ |= x ≤ 6 because σ(x) = 0 ≤ 6

9. σ′ |= B because σ′ |= x = 6 because σ′(x) = 6

10. it is not possible to prove {A} while x < 6 do x := x+1 {B} using the river rule. Assume, for the purposes of
contradiction, that is it. Then we must have a derivation D that does so:

D :: ` {x ≤ 6} while x < 6 do x := x+1 {x=6}

By inversion, the last rule used in D must have been river or the rule of consequence. We proceed by cases.

3

(a) The last rule used in D was river. We reach an immediate contradiction, since river requires the post
condition be textually equal to the precondition ∧¬x < 6.

(b) The last rule used in D was the rule of consequence. If so, by inversion again the derivation D must look
like this:

D1 :: ` x ≤ 6⇒ P D2 ::

D4 :: ` {P}x := x+1{P}
` {P}while x < 6 do x := x+1{P ∧ ¬x < 6} D3 :: ` P ∧ ¬x < 6⇒ x = 6

` {x ≤ 6} while x < 6 do x := x+1 {x=6}

where D2 is an instance of the river rule. From D3 and D1, we know that P must be x ≤ 6. When then
reach a contradiction, because D4 :: ` {x ≤ 6}x := x + 1{x ≤ 6} cannot exist by soundness (consider
x = 6 going in to the assignment).

Since both cases led to a contradiction, we cannot have any such derivation D, so we cannot prove
{x ≤ 6} while x < 6 do x := x+1 {x=6} using the river rule.

5.1 Common Mistakes

A common mistake was to choose the mal rule. The mal rule is not incomplete; it is the while rule from class
composed with the rule of consequence. We will show its derivation in gory detail below. Recall these rules from
class:

` {A ∧ b}c{A}
` {A}while b do c{A ∧ ¬b}

while
` P ′ ⇒ P ` {P}c{Q} ` Q⇒ Q′

` {P ′}c{Q′}
consequence

We will start with consequence:
` P ′ ⇒ P ` {P}c{Q} ` Q⇒ Q′

` {P ′}c{Q′}
step1

And choose P ′ = (b⇒ X ∧ ¬b⇒ Y):

` (b⇒ X ∧ ¬b⇒ Y)⇒ P ` {P}c{Q} ` Q⇒ Q′

` {(b⇒ X ∧ ¬b⇒ Y)}c{Q′}
step2

We choose c to be “while b do c”:

` (b⇒ X ∧ ¬b⇒ Y)⇒ P ` {P}while b do c{Q} ` Q⇒ Q′

` {(b⇒ X ∧ ¬b⇒ Y)}while b do c{Q′}
step3

We choose P = A and Q = A ∧ ¬b:

` (b⇒ X ∧ ¬b⇒ Y)⇒ A ` {A}while b do c{A ∧ ¬b} ` A ∧ ¬b⇒ Q′

` {(b⇒ X ∧ ¬b⇒ Y)}while b do c{Q′}
step4

Inlining the while rule from above, we obtain:

` (b⇒ X ∧ ¬b⇒ Y)⇒ A ` {A ∧ b}c{A} ` A ∧ ¬b⇒ Q′

` {(b⇒ X ∧ ¬b⇒ Y)}while b do c{Q′}
step5

Choose A = (b⇒ X ∧ ¬b⇒ Y), and eliminate now-trivial left hypothesis, while simplifying the middle hypothesis:

` {X}c{(b⇒ X ∧ ¬b⇒ Y)} ` (b⇒ X ∧ ¬b⇒ Y) ∧ ¬b⇒ Q′

` {(b⇒ X ∧ ¬b⇒ Y)}while b do c{Q′}
step6

Choose Q′ = Y and simplify away the now-trivial right hypothesis:

` {X}c{(b⇒ X ∧ ¬b⇒ Y)}
` {(b⇒ X ∧ ¬b⇒ Y)}while b do c{Y }

step7

Note that we’ve arrived at the mal rule just by substituting values in to consequence and while rules. So the mal
rule has to be equivalent to those rules. Since they are not incomplete, the mal rule is not incomplete.

4

