
CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 237 1–867

10Functional Languages

10.6 Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every elementEXAMPLE 10.44
Functions as mappings in one set (the domain) with (at most) one element in another set (the range). In

conventional notation, we indicate the domain and range by writing

sqrt : R −→ R
We can of course, have functions of more than one variable—that is, functions
whose domains are Cartesian products:

plus : [R × R] −→ R �

If a function provides a mapping for every element of the domain, the function
is said to be total. Otherwise, it is said to be partial. Our sqrt function is partial: it
does not provide a mapping for negative numbers. We could change our definition
to make the domain of the function the non-negative numbers, but such changes
are often inconvenient, or even impossible: inconvenient because we should like
all mathematical functions to operate on R; impossible because we may not
know which elements of the domain have mappings and which do not. Consider
for example the function f that maps every natural number a to the smallest
natural number b such that the digits of the decimal representation of a appear
b digits to the right of the decimal point in the decimal expansion of π. Clearly
f (59) = 4, because π = 3.14159 But what about f (428945028), or in general
f (n) for arbitrary n? Absent results from number theory, it is not at all clear how
to characterize the values at which f is defined. In such a case a partial function is
essential.

It is often useful to characterize functions as sets or, more precisely, as subsetsEXAMPLE 10.45
Functions as sets of the Cartesian product of the domain and the range:

sqrt ⊂ [R × R]

plus ⊂ [R × R × R]

Copyright c© 2009 by Elsevier Inc. All rights reserved. 237

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 238 1–867

238 Chapter 10 Functional Languages

We can specify which subset using traditional set notation:

sqrt ≡ {
(x, y) ∈ R × R | y > 0 ∧ x = y2}

plus ≡ {(x, y, z) ∈ R × R × R | z = x + y}

Note that this sort of definition tells us what the value of a function like sqrt is,
but it does not tell us how to compute it; more on this distinction below. �

One of the nice things about the set-based characterization is that it makes it
clear that a function is an ordinary mathematical object. We know that a functionEXAMPLE 10.46

Functions as powerset
elements

from A to B is a subset of A × B. This means that it is an element of the powerset
of A × B—the set of all subsets of A × B, denoted 2A×B :

sqrt ∈ 2R×R

Similarly
plus ∈ 2R×R×R

Note the overloading of notation here. The powerset 2A should not be confused
with exponentiation, though it is true that for a finite set A the number of elements
in the powerset of A is 2n , where n = |A|, the cardinality of A. �

Because functions are single-valued, we know that they constitute only some of
the elements of 2A×B . Specifically, they constitute all and only those sets of pairs
in which the first component of each pair is unique. We call the set of such setsEXAMPLE 10.47

Function spaces the function space of A into B, denoted A → B. Note that (A → B) ⊂ 2A×B . In
our examples:

sqrt ∈ [R → R]

plus ∈ [(R × R) → R]

Now that functions are elements of sets, we can easily build higher-orderEXAMPLE 10.48
Higher-order functions as
sets

functions:

compose ≡ {(f , g , h) | ∀x ∈ R, h(x) = f (g (x))}

What are the domain and range of compose? We know that f , g , and h are elements
of R → R. Thus

compose ∈ [(R → R) × (R → R)] → (R → R)

Note the similarity to the notation employed by the ML type inference system
(Section 7.2.4). �

Using the notion of “currying” from Section 10.5, we note that there is an
alternative characterization for functions like plus. Rather than a function fromEXAMPLE 10.49

Curried functions as sets pairs of reals to reals, we can capture it as a function from reals to functions from
reals to reals:

curried plus ∈ R → (R → R) �

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 239 1–867

10.6.1 Lambda Calculus 239

We shall have more to say about currying in Section 10.6.3.

10.6.1 Lambda Calculus

As we suggested in the main text, one of the limitations of the function-as-
set notation is that it is nonconstructive: it doesn’t tell us how to compute the
value of a function at a given point (i.e., on a given input). Church designed
the lambda calculus to address this limitation. In its pure form, lambda cal-
culus represents everything as a function. The natural numbers, for exam-
ple, can be represented by a distinguished zero function (commonly the iden-
tity function) and a successor function. (One common formulation uses a
select second function that takes two arguments and returns the second of
them. The successor function is then defined in such a way that the number n
ends up being represented by a function that, when applied to select second
n times, returns the identity function [Mic89, Sec. 3.5; Sta95, Sec. 7.6]; see
Exercise 10.21.) While of theoretical importance, this formulation of arith-
metic is highly cumbersome. We will therefore take ordinary arithmetic as a given
in the remainder of this subsection. (And of course all practical functional pro-
gramming languages provide built-in support for both integer and floating-point
arithmetic.)

A lambda expression can be defined recursively as (1) a name; (2) a lambda
abstraction consisting of the letter λ, a name, a dot, and a lambda expression;
(3) a function application consisting of two adjacent lambda expressions; or (4) a
parenthesized lambda expression. To accommodate arithmetic, we will extend this
definition to allow numeric literals.

When two expressions appear adjacent to one another, the first is interpretedEXAMPLE 10.50
Juxtaposition as function
application

as a function to be applied to the second:

sqrt n

Most authors assume that application associates left-to-right (so f A B is inter-
preted as (f A) B, rather than f (A B)), and that application has higher precedence
than abstraction (so λx.A B is interpreted as λx.(A B), rather than (λx.A) B). ML
adopts these rules. �

Parentheses are used as necessary to override default groupings. Specifically, ifEXAMPLE 10.51
Lambda calculus syntax we distinguish between lambda expressions that are used as functions and those

that are used as arguments, then the following unambiguous CFG can be used to
generate lambda expressions with a minimal number of parentheses:

expr −→ name | number | λ name . expr | func arg

func −→ name | (λ name . expr) | func arg

arg −→ name | number | (λ name . expr) | (func arg)

In words: we use parentheses to surround an abstraction that is used as either
a function or an argument, and around an application that is used as an
argument. �

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 240 1–867

240 Chapter 10 Functional Languages

The letter λ introduces the lambda calculus equivalent of a formal parameter.EXAMPLE 10.52
Binding parameters with λ The following lambda expression denotes a function that returns the square of its

argument:

λx.times x x

The name (variable) introduced by a λ is said to be bound within the expression
following the dot. In programming language terms, this expression is the variable’s
scope. A variable that is not bound is said to be free. �

As in a lexically scoped programming language, a free variable needs to
be defined in some surrounding scope. Consider, for example, the expressionEXAMPLE 10.53

Free variables λx.λy.times x y . In the inner expression (λy.times x y), y is bound but x is free.
There are no restrictions on the use of a bound variable: it can play the role of a
function, an argument, or both. Higher-order functions are therefore completely
natural. �

If we wish to refer to them later, we can give expressions names:EXAMPLE 10.54
Naming functions for
future reference square ≡ λx.times x x

identity ≡ λx.x

const7 ≡ λx.7

hypot ≡ λx.λy.sqrt (plus (square x) (square y))

Here ≡ is a metasymbol meaning, roughly, “is an abbreviation for.” �
To compute with the lambda calculus, we need rules to evaluate expressions. ItEXAMPLE 10.55

Evaluation rules turns out that three rules suffice:

beta reduction: For any lambda abstraction λx.E and any expression M , we say

(λx.E) M →β E[M \x]

where E[M\x] denotes the expression E with all free occurrences of x replaced
by M . Beta reduction is not permitted if any free variables in M would become
bound in E[M \x].

alpha conversion: For any lambda abstraction λx.E and any variable y that has
no free occurrences in E , we say

λx.E →α λy.E[y\x]

eta reduction: A rule to eliminate “surplus” lambda abstractions. For any lambda
abstraction λx.E , where E is of the form F x , and x has no free occurrences in
F , we say

λx.F x →η F �

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 241 1–867

10.6.1 Lambda Calculus 241

(λf .λg .λh.fg (h h))(λx.λy.x)h(λx.x x)

→β (λg .λh.(λx.λy.x)g (h h))h(λx.x x) (1)

→α (λg .λk.(λx.λy.x)g (k k))h(λx.x x) (2)

→β (λk.(λx.λy.x)h(k k))(λx.x x) (3)

→β (λx.λy.x)h((λx.x x) (λx.x x)) (4)

→β (λy.h)((λx.x x) (λx.x x)) (5)

→β h (6)

Figure 10.3 Reduction of a lambda expression. The top line consists of a function applied to
three arguments. The first argument (underlined) is the “select first” function, which takes two
arguments and returns the first. The second argument is the symbol h, which must be either a
constant or a variable bound in some enclosing scope (not shown). The third argument is an
“apply to self ” function that takes one argument and applies it to itself. The particular series of
reductions shown occurs in normal order. It terminates with a simplest (normal) form of simply h.

To accommodate arithmetic we will also allow an expression of the form op xEXAMPLE 10.56
Delta reduction for
arithmetic

y , where x and y are numeric literals and op is one of a small set of standard
functions, to be replaced by its arithmetic value. This replacement is called delta
reduction. In our examples we will need only the functions plus, minus, and
times:

plus 2 3 →δ 5

minus 5 2 →δ 3

times 2 3 →δ 6 �

Beta reduction resembles the use of call by name parameters (Section 8.3.1).
Unlike Algol 60, however, the lambda calculus provides no way for an argument to
carry its referencing environment with it; hence the requirement that an argument
not move a variable into a scope in which its name has a different meaning. Alpha
conversion serves to change names to make beta reduction possible. Eta reduction
is comparatively less important. If square is defined as above, eta reduction allowsEXAMPLE 10.57

Eta reduction us to say that

λx.square x →η square

In English, square is a function that squares its argument; λx.square x is a func-
tion of x that squares x . The latter reminds us explicitly that it’s a function (i.e.,
that it takes an argument), but the former is a little less messy looking. �

Through repeated application of beta reduction and alpha conversion (and
possibly eta reduction), we can attempt to reduce a lambda expression to its sim-
plest possible form—a form in which no further beta reductions are possible. AnEXAMPLE 10.58

Reduction to simplest form example can be found in Figure 10.3. In line (2) of this derivation we have to

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 242 1–867

242 Chapter 10 Functional Languages

employ an alpha conversion because the argument that we need to substitute for
g contains a free variable (h) that is bound within g ’s scope. If we were to make
the substitution of line (3) without first having renamed the bound h (as k), then
the free h would have been captured, erroneously changing the meaning of the
expression.

In line (5) of the derivation, we had a choice as to which subexpression to
reduce. At that point the expression as a whole consisted of a function application
in which the argument was itself a function application. We chose to substi-
tute the main argument ((λx.x x) (λx.x x)), unevaluated, into the body of the
main lambda abstraction. This choice is known as normal-order reduction, and
corresponds to normal-order evaluation of arguments in programming languages,
as discussed in Sections 6.6.2 and 10.4. In general, whenever more than one beta
reduction could be made, normal order chooses the one whose λ is left-most in
the overall expression. This strategy substitutes arguments into functions before
reducing them. The principal alternative, applicative-order reduction, reduces
both the function part and the argument part of every function application to
the simplest possible form before substituting the latter into the former. �

Church and Rosser showed in 1936 that simplest forms are unique: any series
of reductions that terminates in a nonreducible expression will produce the same
result. Not all reductions terminate, however. In particular, there are expres-
sions for which no series of reductions will terminate, and there are others in
which normal-order reduction will terminate but applicative-order reduction will
not. The example expression of Figure 10.3 leads to an infinite “computation”EXAMPLE 10.59

Nonterminating
applicative-order reduction

under applicative-order reduction. To see this, consider the expression at line
(5). This line consists of the constant function (λy.h) applied to the argument
(λx.x x) (λx.x x). If we attempt to evaluate the argument before substituting it
into the function, we run through the following steps:

(λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

. . . �

In addition to showing the uniqueness of simplest (normal) forms, Church and
Rosser showed that if any evaluation order will terminate, normal order will. This
pair of results is known as the Church-Rosser theorem.

10.6.2 Control Flow

We noted at the beginning of the previous subsection that arithmetic can be
modeled in the lambda calculus using a distinguished zero function (commonly
the identity) and a successor function. What about control-flow constructs—
selection and recursion in particular?

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 243 1–867

10.6.2 Control Flow 243

The select first function, λx.λy.x , is commonly used to represent the BooleanEXAMPLE 10.60
Booleans and conditionals value true. The select second function, λx.λy.y , is commonly used to represent

the Boolean value false. Let us denote these by T and F . The nice thing about
these definitions is that they allow us to define an if function very easily:

if ≡ λc .λt .λe.c t e

Consider:

if T 3 4 ≡ (λc .λt .λe.c t e) (λx.λy.x) 3 4

→∗
β (λx.λy.x) 3 4

→∗
β 3

if F 3 4 ≡ (λc .λt .λe.c t e) (λx.λy.y) 3 4

→∗
β (λx.λy.y) 3 4

→∗
β 4 �

Functions like equal and greater than can be defined to take numeric values as
arguments, returning T or F .

Recursion is a little tricky. An equation likeEXAMPLE 10.61
Beta abstraction for
recursion gcd ≡ λa.λb.(if (equal a b) a

(if (greater than a b) (gcd (minus a b) b) (gcd (Minus b a) a)))

is not really a definition at all, because gcd appears on both sides. Our previ-
ous definitions (T , F , if) were simply shorthand: we could substitute them out
to obtain a pure lambda expression. If we try that with gcd, the “definition”
just gets bigger, with new occurrences of the gcd name. To obtain a real defini-
tion, we first rewrite our equation using beta abstraction (the opposite of beta
reduction):

gcd ≡ (λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a)))) gcd

Now our equation has the form

gcd ≡ f gcd

where f is the perfectly well-defined (nonrecursive) lambda expression

λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a)))

Clearly gcd is a fixed point of f . �

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 244 1–867

244 Chapter 10 Functional Languages

As it turns out, for any function f given by a lambda expression, we can findEXAMPLE 10.62
The fixed-point
combinatorY

the least fixed point of f , if there is one, by applying the fixed-point combinator

λh.(λx.h(xx)) (λx.h(xx))

commonly denoted Y. Y has the property that for any lambda expression f , if the
normal-order evaluation of Yf terminates, then f (Yf) and Yf will reduce to
the same simplest form (see Exercise 10.9). In the case of our gcd function, we
have

gcd ≡ (λh.(λx.h(x x)) (λx.h(x x)))

(λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a))))

Figure 10.4 traces the evaluation of gcd 4 2. Given the existence of the
Y combinator, most authors permit recursive “definitions” of functions, for
convenience. �

10.6.3 Structures

Just as we can use functions to build numbers and truth values, we can also use
them to encapsulate values in structures. Using Scheme terminology for the sakeEXAMPLE 10.63

Lambda calculus list
operators

of clarity, we can define simple list-processing functions as follows:

cons ≡ λa.λd.λx.x a d

car ≡ λl.l select first

cdr ≡ λl.l select second

nil ≡ λx.T

null? ≡ λl.l(λx.λy.F)

where select first and select second are the functions λx.λy.x and λx.λy.y ,
respectively—functions we also use to represent true and false. �

Using these definitions we can see thatEXAMPLE 10.64
List operator identities

car(cons A B) ≡ (λl.l select first) (cons A B)

→β (cons A B) select first

≡ ((λa.λd.λx.x a d) A B) select first

→∗
β (λx.x A B) select first

→β select first A B

≡ (λx.λy.x) A B

→∗
β A

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 245 1–867

10.6.3 Structures 245

gcd 2 4 ≡ Yf 2 4

≡ ((λh.(λx.h(x x)) (λx.h(x x)))f) 2 4

→β ((λx.f (x x)) (λx.f (x x))) 2 4

≡ (k k) 2 4, where k ≡ λx.f (x x)

→β (f (k k)) 2 4

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a)))) (k k)) 2 4

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) 2 4

→∗
β if (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λc .λt .λe.c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→δ F 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λx.λy.y) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2)

→ . . .

→ (k k) (− 4 2) 2

≡ ((λx.f (x x))k) (− 4 2) 2

→β (f (k k)) (− 4 2) 2

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a)))) (k k)) (− 4 2) 2

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) (− 4 2) 2

→∗
β if (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λc .λt .λe.c t e)

(= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ (= 2 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ T (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λx.λy.x) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (− 4 2)

→δ 2

Figure 10.4 Evaluation of a recursive lambda expression. As explained in the body of the text, gcd is defined to be the fixed-
point combinator Y applied to a beta abstraction f of the standard recursive definition for greatest common divisor. Specifically,
Y is λh.(λx.h(x x)) (λx.h(x x)) and f is λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a))). For brevity we have
used =, >, and − in place of equal, greater than, and minus. We have performed the evaluation in normal order.

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 246 1–867

246 Chapter 10 Functional Languages

cdr(cons A B) ≡ (λl.l select second) (cons A B)

→β (cons A B) select second

≡ ((λa.λd.λx.x a d) A B) select second

→∗
β (λx.x A B) select second

→β select second A B

≡ (λx.λy.y) A B

→∗
β B

null? nil ≡ (λl.l (λx.λy.select second)) nil

→β nil (λx.λy.select second)

≡ (λx.select first) (λx.λy.select second)

→β select first

≡ T

null? (cons A B) ≡ (λl.l (λx.λy.select second)) (cons A B)

→β (cons A B) (λx.λy.select second)

≡ ((λa.λd.λx.x a d) A B) (λx.λy.select second)

→∗
β (λx.x A B) (λx.λy.select second)

→β (λx.λy.select second) A B

→∗
β select second

≡ F �

Because every lambda abstraction has a single argument, lambda expressions
are naturally curried. We generally obtain the effect of a multiargument functionEXAMPLE 10.65

Nesting of lambda
expressions

by nesting lambda abstractions:

compose ≡ λf .λg .λx.f (g x)

which groups as

λf .(λg .(λx.(f (g x))))

We commonly think of compose as a function that takes two functions as argu-
ments and returns a third function as its result. We could just as easily, however,
think of compose as a function of three arguments: the f , g , and x above. The
official story, or course, is that compose is a function of one argument that eval-
uates to a function of one argument that in turn evaluates to a function of one
argument. �

If desired, we can use our structure-building functions to define a noncurriedEXAMPLE 10.66
Paired arguments and
currying

version of compose whose (single) argument is a pair:

paired compose ≡ λp.λx.(car p) ((cdr p) x)

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 247 1–867

10.6.3 Structures 247

If we consider the pairing of arguments as a general technique, we can write a curry
function that reproduces the single-argument version, just as we did in Scheme in
Section 10.5:

curry ≡ λf .λa.λb.f (cons a b) �

3CHECK YOUR UNDERSTANDING

22. What is the difference between partial and total functions? Why is the differ-
ence important?

23. What is meant by the function space A → B ?

24. Define beta reduction, alpha conversion, eta reduction, and delta reduction.

25. How does beta reduction in lambda calculus differ from lazy evaluation of
arguments in a nonstrict programming language like Haskell?

26. Explain how lambda expressions can be used to represent Boolean values and
control flow.

27. What is beta abstraction?

28. What is the Y combinator? What useful property does it possess?

29. Explain how lambda expressions can be used to represent structured values
such as lists.

30. State the Church-Rosser theorem.

Copyright c© 2009 by Elsevier Inc. All rights reserved.

CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 248 1–867

