
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2005

CS 164: Final Examination

Name: Login:

You have three hours to complete this test. Please put your login on each sheet, as
indicated, in case pages get separated. Answer all questions in the space provided on the
exam paper. Show all work (but be sure to indicate your answers clearly.) The exam is worth
a total of 65+ points (out of the total of 200), distributed as indicated on the individual
questions.

You may use any notes, books, or computers you please—anything inanimate. We suggest
that you read all questions before trying to answer any of them and work first on those about
which you feel most confident.

You should have 6 problems on 10 pages.

1. /13

2. /15

3. /8

4. /15

5. /

6. /14

TOT /65

1

Login: 2

1. [13 points] For each of the following possible modifications to a fully functional Pyth
system, tell which components of the compiler and run-time system would have to be modified:
lexical analyzer, parser and tree-generator, static semantic analyzer, code generator, and run-
time libraries. In each case, indicate a minimal set of modules from this list that would have
to be changed, and indicate very briefly what change would be needed. When you have a
choice of two modules that might reasonably be changed, choose the one that makes for the
simplest change or is earlier in the list (e.g., prefer changing the lexical analyzer to the parser,
if either change would be about equally difficult).

a. Implement an “include FILE” directive (as in C and C++), whose effect is to substitute
the contents of FILE verbatim in place of the directive.

b. Allow for multiple inheritance, as in full Python, where you can write:

class A (B, C):

etc.

c. Introduce the ‘range’ function from Python, allowing one to write

for i in range (0, N):

etc.

and have i take on the values 0, 1, . . . , N − 1.

Login: 3

d. Propagate types to lambdas. For example, given the sequence

t = lambda x,n: x[n]

t: (List,Int) -> Any

cause the static type of the lambda expression to be the same as that of t, and the
static types of the parameters x and n to be List and Int respectively.

e. Instead of passing the static link to functions as the first parameter, always pass it in
register EBX.

f. Allow the following usage:

class A:

x = 3

def foo (self, n): x = n

That is, allow the programmer to refer to self.x as x (or more generally, to qualify
any “bare” mention of an attribute of class A in method foo with the first parameter of
foo.)

Login: 4

2. [15 points] Consider this simple language in which all quantities are integers:

program ::=stmts { #1 }
stmts ::=

ε { #2 }
| stmts stmt ; { #3 }

stmt ::=

print expr { #4 }
| var := expr { #5 }
| while-part do stmts od { #6 }

while-part ::=while expr { #6a }
expr ::=

var { #7 }
| intlit { #8 }
| expr op expr { #9 }
| (expr) { #10 }

op ::=+ | - | * | /

The meanings of all sentences should be obvious. In the case of the while construct, the
stmts repeat until the expr is 0. The lexical analyzer supplies semantic values for the terminal
symbols var and intlit (integer literal). The semantic value of an instance of var or op is
simply its text (a string), and that of an intlit is its denoted value (an integer).

The problem is to build a one-pass compiler for this language into virtual machine code.
The virtual machine has an infinite supply of registers and the following instructions:

• r1 := g2 ⊕ g3, where ⊕ is one of +, -, *, or /.

• r1 := g2

• call print, which prints the value in the special register a0.

• je r1,g2,L, which jumps to L if r1 = g2.

• jmp L, which jumps to L.

Here, r1, r2, . . . refer to a virtual registers (they don’t have to be distinct); g1, g2 are each
either a register or an immediate integer constant ($0, $-1, etc.); and L is a statement label.
We will assume that all intermediate results and all variables will be stored in virtual registers.

Fill in actions for the grammar that produce this virtual machine language. Your actions
may use the following functions:

• label() returns a new label.

• reg() returns a new virtual register.

Pseudo-code is fine. To indicate the output of an instruction, feel free to write things like

aReg = reg (); aLabel = label ();

N = some integer;

...

emit ‘je aReg, $N, aLabel’

Login: 5

You’ll find it convenient to make the semantic values of your non-terminal symbols be
operands (registers or immediate operands), or in some cases pairs of operands, allowing you
to communicate where to find the result of each subexpression. You may also introduce a
global variable to use as a symbol table (for whatever purpose you might find you need it).

Fill in the actions here (label them #1, #2, ..., #10).

Login: 6

3. [8 points] Receiver-class analysis attempts to determine the possible dynamic types of
the expressions “to left of dots” in languages like Java and Pyth. Consider a language that
contains just class and type declarations and the following kinds of statements:

x = T() // #1. T is a type; x now has exactly type T

x = y

x = y.m() // #2. m is a method of y (an object pointer)

x = T.m(y) // #3. m is a method of T, of which y must be a subtype

if b goto L1 // #4. b is a boolean variable, L1 is a label

goto L // #5. L is a label

In addition, any statement can have a label. As in Pyth, we use single inheritance, and all
possible methods of any given class are determined at compile time. To implement #2, you
fetch y’s virtual table pointer, and then from it fetch the pointer to the function code of m.
Implementing #3, on the other hand, will be faster—it requires no dereferences, because the
code to be called is determined at compile time. If we could determine that the possible
dynamic types of a variable y all share exactly the same code for m, we could implement line
#2 the same way we implement #3.

Thus, in the following:

class T:

def m (self): ... /*A*/

m: T -> U

def p (self): ... /*B*/

p: T -> T

class U (T):

def m (self): ... /*C*/

m: U -> U

class V (T):

pass

if b1 goto L1

y = T ()

goto L2

L1: if b2 goto L3

y = V ()

L2: z = y.m ()

goto L4

L3: y = U ()

L4: x = y.m ()

L5: x = y.p()

L6: x = x.p()

we can implement L5 and L6 as if they were T.p(y) and T.p(x) (that is, just do an ordinary
function call to the label for the code implementing B above), and we can implement L2 as
if it were T.m(y), since the only possible values of y at that point have dynamic types T or
V. But we have to implement L4 as a full method call, loading its virtual table first (since y

might have type U). In this problem, we’ll ignore entirely the possibility that a value might
be None.

Initially, all you know about a variable (or parameter) is its static type, given by a type
declaration (or Any if there is no declaration). All you know about the result of a method is
that its return value has a subtype of the static return type declared for it.

On the next page, provide a global flow-analysis procedure that takes a segment of code
such as that on the right above (a complete method or main procdure), complete information
on the set of all classes and their methods, and static types (if specified) of variables, methods,
and parameters, and computes the set of possible dynamic types for all variables at each point
in the program. To make our notation consistent, show how to compute TYPESin(s, v) and
TYPESout(s, v) for all statements s and variables v, which are the set of all possible dynamic
types of v just before and just after the statement s.

Login: 7

Answer goes here.

Login: 8

4. [15 points] Consider the following parse tree. The terminal symbols are ‘C’, ‘+’, ‘(’, ‘)’,
and ‘*’.

r

r

C +

r

r

C

r

r

p

p

(

r

C) *

r

p

(

r

r

r

C +

r

C +

r

)

(Yes, that really is an ‘r’ with no children.)

a. Of what string is this a parse tree?

b. Give at least 9 steps in the reverse rightmost derivation that corresponds to this parse
tree.

continued

Login: 9

c. Reconstruct as much of the BNF grammar corresponding to this parse as possible.

d. Here are the entries for a few of the states in a shift-reduce table for this grammar.
State 0 is the start state, and -| denotes the end of file.

State C () * + -| r p

0. s1 s2 rE rE rE s3 s4

1. rA rA rA rA rA

3. s1 s2 rE s6 s11 s7 s4

6. s1 s2 rE rE rE s10 s4

10. s1 ? rD ? rD s7 s4

Show what symbols could be on the parsing stack that would cause state 10 to be the
state of the top of the stack (Hint: examples arise in the parse tree at the beginning of
this problem). Should the ’?’ entry in state 10 under ‘(’ be filled in with a shift or with
a reduce? (I am not asking for which shift or reduce.) Should the ‘?’ under ‘+’ be filled
in with a shift or with a reduce? In both cases, why?

Login: 10

5. [1 point] Which of the following does not belong?

Aeolian, Corinthian, Dorian, Ionian, Locrian, Lydian, Mixolydian, Phrygian.

6. [14 points] For each of the following questions, provide a short, succinct answer.

a. In Pyth, we represent values of type Int differently from those of other types. Why?

b. Assuming that we wish avoid using the __callattr__ routine whenever possible, how
does the different representation of Int complicate code generation?

c. The runtime specification for the third Pyth project said that just before a function
call occurs, the stack must consist of an integral number of PythValues, plus possibly a
static link (at the top of the stack). What is the purpose of this requirement?

d. We included the runtime functions __callattr__, __callfunc__, __getattr__, and
__setattr__ in Pyth to deal with cases where the static type of an entity is Any. But
Java has the type Object, which serves much the same purpose as Any. So why don’t
we need equivalent functions in the Java runtime? For this question, assume that the
Int type and function types don’t exist.

