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ABSTRACT

We extended the UNIX® system's profiler by gathering arcs in the
call graph of a program. Here is it 20 years later and this profiler
is still in daily use. Why is that? It's not because there aren't
well-known areas for improvement.

RETROSPECTIVE

In the early 1980's, a group of us at the University of California at
Berkeley were involved in a project to build compiler
construction tools [1]. We were, more or less simultaneously,
rewriting pieces of the UNIX operating system [2]. For many of
us, these were the largest, and most complex, programs on which
we had ever worked. Of course we were interested in squeezing
the last bits of performance out of these programs.

The UNIX system comes with a profiling tool, prof [3], which
we had found adequate up until then. The profiler consists of
three parts: a kernel module that maintains a histogram of the
program counter as it is observed at every clock tick; a runtime
routine, a call to which is inserted by the compilers at the head of
every function compiled with a profiling option; and a post-
processing program that aggregates and presents the data. The
program counter histogram provides statistical sampling of where
time is spent during execution. The runtime routine gathers
precise call counts. These two sources of information are
combined by post-processing to produce a table of each function
listing the number of times it was called, the time spent in it, and
the average time per call.

As our programs became more complex, and as we became
better at structuring them into shared, reusable pieces, we noticed
that the profiles were becoming more diffuse and less useful. We
observed two sources of confusion: as we partitioned operations
across several functions to make them more general, the time for
an operation spread across the several functions; and as the
functions became more useful, they were used from many places,
so it wasn't always clear why a function was being called as many
times as it was. The difficulty we were having was that we
wanted to understand the abstractions used in our system, but the
function boundaries did not correspond to abstraction boundaries.

Not being afraid to hack on the kernel and the runtime
libraries, we set about building a better profiler [4]. Our ground
rules were to change only what we needed and to make sure we
preserved the efficiency of the tool.

In fact, except for fixing a few bugs, the program counter
histogram part of the profiler worked fine. Incrementing the
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appropriate bucket of the program counter histogram had an
almost negligible overhead, which allowed us to profile
production systems. The space for the histogram could be
controlled by getting a finer or coarser histogram. (Another thing
that was happening around this time was that we were moving
from 16-bit address spaces to 32-bit address spaces and felt quite
expansive in the amount of memory we were willing to use.)
One of us remembers an epiphany of being able to use a
histogram array that was four times the size of the text segment
of the program, getting a full 32-bit count for each possible
program counter value!

But it was in the runtime routine called from the top of each
profiled function that we made the most difference. The standard
routine uses a per-function data structure to count the number of
times each function is called. In its place, we wrote a routine that
uses the per-function data structure, and the return address of the
call, to record the callers of the function and the number of times
each had called this function. That is, we recorded incoming call
graph arcs with counts. (We were surprised at how easily, and
how dramatically, we could change the profiler with a single
“late bound” function call.) We wrote a new post-processing
program, i.e., gprof, to combine the call graph arcs with the
program counter histogram data to show not only the time spent
in each function but also the time spent in other functions called
from each function.

Our techniques are not without their pitfalls. For example, we
have a statistical sample of the time spent in a function from the
program counter histogram, and the count of the number of calls
to that function. From those we derive an average time per call
that need not reflect reality, e.g., if some calls take longer than
others. Further, when attributing time spent in called functions to
their callers, we have only single arcs in the call graph, and so
distribute the “average time” to callers in proportion to how
many times they called the function.

Another difficulty we had was when we encountered cycles in
the call graph: e.g., mutually recursive functions. We could not
accumulate time from called functions into a cycle and then
propagate that time towards the roots of the graph, because we
would go around the cycle endlessly. First we had to identify the
cycles and treat them specially. We had good graduate computer
science educations, and knew of Tarjan's strongly-connected-
components algorithm [5]. That was fun to implement.

Modern profilers solve both these problems by periodically
gathering not just isolated program counter samples and isolated
call graph arcs, but complete call stacks [6]. The additional
overhead of gathering the call stack can be hidden by backing off
the frequency with which the call stacks are sampled. Gathering
complete call stacks depends on being able to find the return
addresses all the way up the stack, a convention imposed in order
to debug programs.
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Another difficulty was presenting the data. Fundamentally we
had a graph with a lot of data on the arcs and summary
information at the nodes. We were limited by the output devices
of the time to character-based formatting. We ended up with a
rather dense display of the information at each node, and a view
of the arcs into and out of that node. All we can say for our
layout is that after a while we got used to it. We did add
notations to help us navigate the output in the visual editors
becoming popular at that time.

After using the profiles for a while we discovered the need to
filter the data, i.e., to show only hot functions, or only parts of the
graph containing certain methods. We also added a facility to
crawl over the executable image of the program and add arcs to
the call graph that were apparent in the code even if they hadn't
been traversed during a particular execution. We would add
these arcs so that we could better understand the shape of the call
graph. We also added the ability to sum the data over several
profiled runs, to accumulate enough time in short-running
methods to get an idea of their performance.

We had great success applying our new profiler to the program
for which we wrote it. Then we set about profiling lots of other
programs. Of course, among the programs on which we used the
new profiler was the profiler itself.

The next challenge was to adapt the profiler to profile the
Berkeley Unix kernel on which we were working. That required
adding a programmer's interface to control the profiler, and a tool
to communicate through that interface. Unlike user programs that
could be run to completion, dump their profiling data to a file,
and exit, we had to be able to profile events of interest in the
kernel without taking the kernel down. (Remember, this was a
time-sharing system with lots of users.) The programmer's
interface allowed us to turn the profiler on and off, extract the
profiling data, and reset the data.

Because of the interactions of the kernel's major subsystems,
there were several large cycles in the profiles. The effect of these
cycles was that it was impossible to get useful timing results for
modules like the networking stack. When we looked at the
profiles there were just a few arcs -- with low traversal counts --
that closed the cycles. We added an option to specify a set of
arcs to be removed from the analysis. Using this option was a
matter of trial and error (or intimate knowledge of the profiled
program), but effective when used properly. To aid users unable
or unwilling to find an arc set for themselves, we added a
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heuristic to help choose arcs to remove. The underlying problem
is NP-complete, so we added a bound on the number of arcs the
tool would attempt to remove. In practice, we found that the
information lost by omitting these arcs was far less than the
information gained by separating the abstractions formerly
contained in the cycle.

After going out with the Berkeley Software Distributions,
gprof has been ported to all the major variants of Unix. Its wide-
spread distribution was assured when it was adopted (and
extended) by the GNU project [7].

What is amazing to us is that gprof has survived as long as it
has, in spite of its well-known flaws. While we are happy to
have contributed such a useful tool to the community, we are
happy to see that gprof is gradually being replaced by more
accurate and more usable tools.
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Abstract

Large complex programs are composed of many
small routines that implement abstractions for the
routines that call them. To be useful, an execution
profiler must attribute execution time in a way that
is significant for the logical structure of a program
as well as for its textual decomposition. This data
must then be displayed to the user in a convenient
and informative way. The gprof profiler accounts
for the running time of called routines in the run-
ning time of the routines that call them. The design
and use of this profiler is described.

1. Programs to be Profiled

Software research environments normally
include many large programs both for production
use and for experimental investigation. These pro-
grams are typically modular, in accordance with
generally accepted principles of good program
design. Often they consist of numerous small rou-
tines that implement various abstractions. Some-
times such large programs are written by one pro-
grammer who has understood the requirements for
these abstractions, and has programmed them
appropriately. More frequently the program has
had multiple authors and has evolved over time,
changing the demands placed on the implementa-
tion of the abstractions without changing the imple-
mentation itself. Finally, the program may be
assembled from a library of abstraction implemen-
tations unexamined by the programmer.

Once a large program is executable, it is often
desirable to increase its speed, especially if small
portions of the program are found to dominate its
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execution time. The purpose of the gprof profiling
tool is to help the user evaluate alternative imple-
mentations of abstractions. We developed this tool
in response to our efforts to improve a code genera-
tor we were writing [Graham82].

The gprof design takes advantage of the fact
that the programs to be measured are large, struc-
tured and hierarchical. We provide a profile in
which the execution time for a set of routines that
implement an abstraction is collected and charged
to that abstraction. The profile can be used to com-
pare and assess the costs of various implementa-
tions.

The profiler can be linked into a program
without special planning by the programmer. The
overhead for using gprof is low; both in terms of
added execution time and in the volume of profiling
information recorded.

2. Types of Profiling

There are several different uses for program
profiles, and each may require different information
from the proflles, or different presentation of the
information. We distinguish two broad categories of
profiles: those that present counts of statement or
routine invocations, and those that display timing
information about statements or routines. Counts
are typically presented in tabular form, often in
parallel with a listing of the source code. Timing
information could be similarly presented; but more
than one measure of time might be associated with
each statement or routine. For example, in the
framework used by gprof each profiled segment
would display two times: one for the time used by
the segment itself, and another for the time inher-
ited from code segments it invokes.

Execution counts are used in many different
contexts. The exact number of times a routine or
statement is activated can be used to determine if
an algorithm is performing as expected. Cursory
inspection of such counters may show algorithms
whose complexity is unsuited to the task at hand.
Careful interpretation of counters can often suggest
improvements to acceptable algorithms. Precise
examination can uncover subtle errors in an
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algorithm. At this level, profiling counters are simi-
lar to debugging statements whose purpose is to
show the number of times a piece of code is exe-
cuted. Another view of such counters is as boolean
values. One may be interested that a portion of
code has executed at all, for exhaustive testing, or
to check that one implementation of an abstraction
completely replaces a previous one.

Execution counts are not necessarily propor-
tional to the amount of time required to execute
the routine or statement. Further, the execution
time of a routine will not be the same for all calls on
the routine. The criteria for establishing execution
time must be decided. If a routine implements an
abstraction by invoking other abstractions, the time
spent in the routine will not accurately reflect the
time required by the abstraction it implements.
Similarly, if an abstraction is implemented by
several routines the time required by the abstrac-
tion will be distributed across those routines.

Given the execution time of individual routines,
gprof accounts to each routine the time spent for it
by the routines it invokes. This accounting is done
by assembling a call graph with nodes that are the
routines of the program and directed arcs that
represent calls from call sites to routines. We dis-
tinguish among three different call graphs for a pro-
gram. The complete call graph incorporates all rou-
tines and all potential arcs, including arcs that
represent calls_to functional parameters or func-
tional variables. This graph contains the other two
graphs as subgraphs. The static call graph includes
all routines and all possible arcs that are not calls
to functional parameters or variables. The dynamic
call graph includes only those routines and arcs
traversed by the profiled execution of the program.
This graph need not include all routines, nor need it
include all potential arcs between the routines it
covers. It may, however, include arcs to functional
parameters or variables that the static call graph
may omit. The static call graph can be determined
from the (static) program text. The dynamic call
graph is determined only by profiling an execution
of the program. The complete call graph for a
monolithic program could be determined by data
flow analysis techniques. The complete call graph
for programs that change during execution, by
modifying themselves or dynamically loading or
overlaying code, may never be determinable. Both
the static call graph and the dynamic call graph are
used by gprof, but it does not search for the com-
plete call graph.

3. Gathering Proflle Data

Routine calls or statement executions can be
measured by having a compiler augment the code
at strategic points. The additions can be inline
increments to counters {Knuth?71] [Satterthwaite?2]
[Joy78] or calls to monitoring routines [Unix]. The
counter increment overhead is low, and is suitable
for profiling statements. A call of the monitoring
routine has an overhead comparable with a call of a
regular routine, and is therefore only suited to
profiling on a routine by routine basis. However,

ACM SIGPLAN

52

the monitoring routine solution has certain advan-
tages. Whatever counters are needed by the moni-
toring routine can be managed by the monitoring
routine itself, rather than being distributed around
the code. In particular, a monitoring routine can
easily be called from separately compiled pro-
grams. In addition, different monitoring routines
can be linked into the program being measured to
assemble different profiling data without having to
change the compiler or recompile the program. We
have exploited this approach; our compilers for C,
Fortran?7, and Pascal can insert calls to a monitor-
ing routine in the prologue for each routine. Use of
the monitoring routine requires no planning on part
of a programmer other than to request that aug-
mented routine prologues be produced during com-
pilation.

We are interested in gathering three pieces of
information during program execution: call counts
and execution times for each profiled routine, and
the arcs of the dynamic call graph traversed by this
execution of the program. By post-processing of
this data we can build the dynamic call graph for
this execution of the program and propagate times
along the edges of this graph to attribute times for
routines to the routines that invoke them.

Gathering of the profiling information should
not greatly interfere with the running of the pro-
gram. Thus, the monitoring routine must not pro-
duce trace output each time it is invoked. The
volume of data thus produced would be unmanage-
ably large, and the time required to record it would
overwhelm the running time of most programs.
Similerly, the monitoring routine can not do the
analysis of the profiling data (e.g. assembling the
call graph, propagating times around it, discovering
cycles, etc.) during program execution. Qur solu-
tion is to gather profiling data in memory during
program execution and to condense it to a file as
the profiled program exits. This flle is then pro-
cessed by a separate program to produce the listing
of the profile data. An advantage of this approach is
that the profile data for several executions of a pro-
gram can be combined by the post-processing to
provide a proflle of many executions.

The execution time monitoring consists of three
parts. The first part allocates and initializes the
runtime monitoring data structures before the pro-
gram begins execution. The second part is the mon-
itoring routine invoked from the prologue of each
profiled routine. The third part condenses the data
structures and writes them to a file as the program
terminates. The monitoring routine is discussed in
detail in the following sections.

3.1. Execution Counts

The gprof monitoring routine counts the
number of times each profiled routine is called. The
monitoring routine also records the arc in the call
graph that activated the profiled routine. The count
is associated with the arc in the call graph rather
thdn with the routine. Call counts for routines can
then be determined by summing the counts on arcs
directed into that routine. In a machine-dependent
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fashion, the monitoring routine notes its own return
address. This address is in the prologue of some
profiled routine that is the destination of an arc in
the dynamic call graph. The monitoring routine
also discovers the return address for that routine,
thus identifying the call site, or source of the arc.
The source of the arc is in the caller, and the desti-
nation is in the callee. For example, if a routine A
calls a routine B, A is the caller, and B is the callee.
The prologue of B will include a call to the monitor-
ing routine that will note the arc from A to B and
either initialize or increment a counter for that arc.

One can not afford to have the monitoring rou-
tine ocutput tracing information as each arc is
identified. Therefore, the monitoring routine main-
tains a table of all the arcs discovered, with counts
of the numbers of times each is traversed during
execution. This table is accessed once per routine
call. Access to it must be as fast as possible so as
not to overwhelm the time required to execute the
program.

Our solution is to access the table through a
hash table. We use the call site as the primary key
with the callee address being the secondary key.
Since each call site typically calls only one callee,
we can reduce (usually to one) the number of minor
lookups based on the callee. Another alternative
would use the callee as the primary key and the call
site as the secondary key. Such an organization has
the advantage of associating callers with callees, at
the expense of longer lookups in the monitoring
routine. We are fortunate to be running in a virtual
memory environment, and (for the sake of speed)
were able to allocate enough space for the primary
hash table to allow a one-to-one mapping from call
site addresses to the primary hash table. Thus our
hash function is trivial to calculate and collisions
occur only for call sites that call multiple destina-
tions (e.g. functional parameters and functional
variables). A one level hash function using both call
site and callee would result in an unreasonably
large hash table. Further, the number of dynamic
call sites and callees is not known during execution
of the profiled program.

Not all callers and callees can be identified by
the monitoring routine. Routines that were com-
piled without the profiling augmentations will not
call the monitoring routine as part of their prolo-
gue, and thus no arcs will be recorded whose desti-
nations are in these routines. One need not profile
all the routines in a program. Routines that are not
profiled run at full speed. Certain routines, notably
exception handlers, are invoked by non-standard
calling sequences. Thus the monitoring routine may
know the destination of an arc (the callee), but find
it difficult or impossible to determine the source of
the arc (the caller). Often in these cases the
apparent source of the arc is not a call site at all.
Such anomalous invocations are declared ‘‘spon-
taneous’.

8.2. Execution Times

The execution times for routines can be gath-
ered in at least two ways. One method measures
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the execution time of a routine by measuring the
elapsed time from routine entry to routine exit.
Unfortunately, time measurement is complicated
on time-sharing systems by the time-slicing of the
program. A second method samples the value of
the program counter at some interval, and infers
execution time from the distribution of the samples
within the program. This technique is particularly
suited to time-sharing systems, where the time-
slicing can serve as the basis for sampling the pro-
gram counter. Notice that, whereas the first
method could provide exact timings, the second is
inherently a statistical approximation.

The sampling method need not require support
from the operating system: all that is needed is the
ability to set and respond to '‘alarm clock’ inter-
rupts that run relative to program time. It is
imperative that the intervals be uniform since the
sampling of the program counter rather than the
duration of the interval is the basis of the distribu-
tion. If sampling is done too often, the interrup-
tions to sample the program counter will overwhelm
the running of the profiled program. On the other
hand, the program must run for enough sampled
intervals that the distribution of the samples accu-
rately represents the distribution of time for the
execution of the program. As with routine call trac-
ing, the monitoring routine can not afford to qutput
information for each program counter sample. In
our computing environment, the operating system
can provide a histogram of the location of the pro-
gram counter at the end of each clock tick (1/60th
of a second) in which a program runs. The histo-
gram is assembled in memory as the program runs.
This facility is enabled by our monitoring routine.
We have adjusted the granularity of the histogram
so that program counter values map one-to-one
onto the histogram. We make the simplifying
assumption that all calls to a specific routine
require the same amount of time to execute. This
assumption may disguise that some calls (or worse,
some call sites) always invoke a routine such that
its execution is faster (or slower) than the average
time for that routine.

When the profiled program terminates, the arc
table and the histogram of program counter sam-
ples are written to a file. The arc table is condensed
to consist of the source and destination addresses
of the arc and the count of the number of times the
arc was traversed by this execution of the program.
The recorded histogram consists of counters of the
number of times the program counter was found to
be in each of the ranges covered by the histogram.
The ranges themselves are summarized as a lower
and upper bound and a step size.

4. Post Processing

Having gathered the arcs of the call graph and
timing information for an execution of the program,
we are interested in attributing the time for each
routine to the routines that call it. We build a
dynamic call graph with arcs from caller to callee,
and propagate time from descendants to ancestors
by topologically sorting the call graph. Time
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propagation is performed irom the leaves of the call
graph toward the roots, according to the order
assigned by a topological numbering algorithm. The
topological numbering ensures that all edges in the
graph go from higher numbered nodes to lower
numbered nodes. An example is given in Figure 1.
If we propegate time from nodes in the order
assigned by the algorithm, execution time can be
propagated from descendants to ancestors after a
single traversal of each arc in the call graph. Each
parent receives some fraction of a child's time.
Thus time is charged to the caller in addition to
being charged to the callee.

Let C, be the number of calls to some routine,
e, and C] be the number of calls from a caller r to a
callee e. Since we are assuming each call to a rou-
tine takes the average amount of time for all calls
to that routine, the caller is accountable for C;/ C,
of the time spent by the callee. Let the S, be the
selftime of a routine, e. The selftime of a routine
can be determined from the timing information
gathered during profiled program execution. The
total time, 7,, we wish to account to a routine r, is
then given by the recurrence equation:

4
Tr=8 4 3 Tex——
r CALLS s C‘

where r CALLS e is a relation showing all routines e
called by a routine r. This relation is easily avail-
able from the call graph.

However, if the execution contains recursive
calls, the call graph has cycles that cannot be topo-
logically sorted. In these cases, we discover
strongly-connected components in the call graph,
treat each such component as a single node, and
then sort the resulting graph. We use a variation of
Tarjan's strongly-connected components algorithm
that discovers strongly-connected components as it
is assigning topological order numbers [Tarjan72].

Time propagation within strongly connected
components is a problem. For example, a seli-
recursive routine (a trivial cycle in the call graph) is
accountable for all the time it uses in all its recur-
sive instantiations. In our scheme, this time should
be shared among it call graph parents. The arcs
from a routine iu itself are of interest, but do not
participate in time propagation. Thus the simple

o ®
oo
e‘e' ®
oo
Topological ordering

Figure 1.
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equation for time propagation does not work within
strongly connected components. Time is not pro-
pagated from one member of a cycle to another,
since, by definition, this involves propagating time
from a routine to itself. In addition, children of one
member of a cycle must be considered children of
all members of the cycle. Similarly, parents of one
member of the cycle must inherit all members of
the cycle as descendants. It is for these reasons
that we collapse connected components. Our solu-
tion collects all members of a cycle together, sum-
ming the time and call counts for all members. All
calls into the cycle are made to share the total time
of the cycle, and all descendants of the cycle pro-
pagate time into the cycle as a whole. Calls among
the members of the cycle do not propagate any
time, though they are listed in the call graph
profile.

Figure 2 shows a modified version of the call
graph of Figure 1, in which the nodes labelled 3 and
7 in Figure 1 are mutually recursive. The topologi-
cally sorted graph after the cycle is collapsed is
given in Figure 3.

Since the technique described above only col-
lects the dynamic call graph, and the program typi-
cally does not call every routine on each execution,
different executions can introduce different cycles
in the dynamic call graph. Since cycles often have
a significant eflect on time propagation, it is desir-
able to incorporate the static call graph so that
cycles will have the same members regardless of
how the program runs.

Cycle to be collapsed.
Figure 2.

@ O,
e‘e ®
O &
Topological numbering after cycle collapsing.

Figure 3.
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The static call graph can be constructed from
the source text of the program. However, discover-
ing the static call graph from the source text would
require two moderately difficult steps: finding the
source text for the program (which may not be
available), and scanning and parsing that text,
which may be in any one of several languages.

In our programming system, the static calling
information is also contained in the executable ver-
sion of the program, which we already have avail-
able, and which is in language-independent form.
One can examine the instructions in the object pro-
gram, looking for calls to routines, and note which
routines can be called. This technique allows us to
add arcs to those already in the dynamic call graph.
If a statically discovered arc already exists in the

dynamic call graph, no action is required. Statically’

discovered arcs that do not exist in the dynamic
call graph are added to the graph with a traversal
count of zero. Thus they are never responsible for
any time propagation. However, they may affect
the structure of the graph. Since they may com-
plete strongly connected components, the static
call graph construction is done before topological
ordering.

5. Data Presentation

The data is presented to the user in two
diflerent formats. The first presentation simply
lists the routines without regard to the amount of
time their descendants use. The second presenta-
tion incorporates the call graph of the program.

5.1. The Flat Profile

The flat profile consists of a list of all the rou-
tines that are called during execution of the pro-
gram, with the count of the number of times they
are called and the number of seconds of execution
time for which they are themselves accountable.
The routines are listed in decreasing order of execu-
tion time. A list of the routines that are never
called during execution of the program is alsc avail-
able to verify that nothing important is omitted by
this execution. The flat profile gives a quick over-
view of the routines that are used, and shows the
routines that are themselves responsible for large
fractions of the execution time. In practice, this
profile usually shows that no single function is
overwhelmingly responsible for the total time of the
program. Notice that for this profile, the individual
times sum to the total execution time.

5.2. The Call Graph Profile

Ideally, we would like to print the call graph of
the program, but we are limited by the two-
dimensional nature of our output devices. We can-
not asSume that a call graph is planar, and even if it
is, that we can print a planar version of it. Instead,
we choose to list each routine, together with infor-
mation about the routines that are its direct
parents and children. This listing presents a win-
dow into the call graph. Based on our experience,
both parent information and child information is
important, and should be available without
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searching through the output.

The major entries of the call graph profile are
the entries from the flat profile, augmented by the
time propagated to each routine from its descen-
dants. This profile is sorted by the sum of the time
for the routine itself plus the time inherited from
its descendants. The profile shows which of the
higher level routines spend large portions of the
total execution time in the routines that they call.
For each routine, we show the amount of time
passed by each child to the routine, which includes
time for the child itself and for the descendants of
the child (and thus the descendants of the routine).
We also show the percentage these times represent
of the total time accounted to the chjld. Similarly,
the parents of each routine are listed, along with
time, and percentage of total routine time, pro-
pagated to each one.

Cycles are handled as single entities. The cycle
as a whole is shown as though it were a single rou-
tine, except that members of the cycle are listed in
place of the children. Although the number of calls
of each member from within the cycle are shown,
they do not affect time propagation. When a child is
a member of a cycle, the time shown is the
appropriate fraction of the time for the whole cycle.
Seli-recursive routines have their calls broken down
into calls from the outside and self-recursive calls.
Only the outside calls affect the propagation of
time.

The following example is a typical fragment of a
call graph.

The entry in the call graph profile listing for this
example is shown in Figure 4.

The entry is for routine EXAMPLE, which has the
Caller routines as its parents, and the Sub routines
as its children. The reader should keep in mind
that all information is given with respect to EXAM-
PLE. The index in the first column shows that EXAM-
PLE is the second entry in the profile listing. The
EXAMPLE routine is ¢alled ten times, four times by
CALLER1, and six times by CALLER2. Consequently

'40% of EXAMPLE's time is propagated to CALLER1, and

60% of EXAMPLE's time is propagated to CALLER2.
The self ‘and descendant fields of the parents show
the amount of self and descendant time EXAMPLE
propagates to them (but not the time used by the
parents diréctly). Note that EXAMPLE calls itself
recursively four times. The routine EXAMPLE calls
routine SUB1 twenty times, SUB2 once, and never
calls SUB3. Since SUB2 is called a total of five times,
207 of its self and descendant time is propagated to
EXAMPLE's descendant time field. Because SUB1 is a
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called/total  parents
index %time self descendants called+self name index
called/total children
0.20 1.20 4/10 CALLER1 [7]
0.30 1.80 8/10 CALLER2 =1]
(2] 41.5  0.50 3.00 10+4 EXAMPLE 2]
1.50 1.00 20/40 SUB1 <cyclel> :4]
0.00 0.50 1/5 SUB2 [9]
0.00 0.00 0/5 SUB3 11]

Profile entry for EXAMPLE.
Figure 4.

member of cycle 1, the self and descendant times
and call count fraction are those for the cycle as a
whole. Since cycle 1 is called a total of forty times
(not counting calls among members of the cycle), it
propagates 50% of the cycle's self and descendant
time to EXAMPLE's descendant time field. Finally
each name is followed by an index that shows where
on the listing to find the entry for that routine.

6. Using the Profiles

The profiler is a useful tool for improving a set
of routines that implement an abstraction. It can
be helpful in identifying poorly coded routines, and
in evaluating the new algorithms and code that
replace them. Taking full advantage of the profiler
requires a careful examination of the call graph
profile, and a thorough knowledge of the abstrac-
tions underlying the program.

The easiest optimization that can be performed
is a small change to a control construct or data
structure that improves the running time of the
program. An obvious starting point is a routine that
is called many times. For example, suppose an cut-
put routine is the only parent of a routine that for-
mats the data. If this format routine is expanded
inline in the output routine, the overhead of a func-
tion call and return can be saved for each datum
that needs to be formatted.

The drawback to inline expansion is that the
data abstractions in the program may become less
parameterized, hence less clearly defined. The
profiling will also become less useful since the loss
of routines will make its output more granular. For
example, if the symbol table functions ‘‘lookup’,
“insert’’, and ‘‘delete’ are all merged into a single
parameterized routine, it will be impossible to
determine the costs of any one of these individual
functions from the profile.

Further potential for optimization lies in rou-
tines that implement date abstractions whose total
execution time is long. For example, a lookup rou-
tine might be called only a fe'v times, but use an
inefficient linear search algorithm, that might be
replaced with a binary search. Alternately, the
discovery that a rehashing function is being called
excessively, can lead to a different hash function or
a larger hash table. If the data abstraction function
cannot easily be speeded up, it may be advanta-
geous to cache its results, and eliminate the need to
rerun it for identical inputs. These and other ideas
for program improvement are discussed in [Bent-
ley81].
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This tool is best used in an iterative approach:
proflling the program, eliminating one bottleneck,
then finding some other part of the program that
begins to dominate execution time. For instance,
we have used gprof on itself; eliminating, rewriting,
and inline expanding routines, until reading data
files (hardly a target for optimization!) represents
the dominating factor in its execution time.

Certain types of programs are not easily
analyzed by gprof. They are typified by programs
that exhibit a large degree of recursion, such as
recursive descent compilers. The problem is that
most of the major routines are grouped into a single
monolithic cycle. As in the symbol table abstrac-
tion that is placed in one routine, it is impossible to
distinguish which members of the cycle are respon-
.sible for the execution time. Unfortunately there
are no easy modifications to these programs that
make them amenable to analysis.

A completely different use of the profiler is to
analyze the control flow of an unfamiliar program.
If you regeive a program from another user that you
need to modify in some small way, it is often
unclear where the changes need to be made. By
running the program on an example and then using
gprof, you can get a view of the structure of the
program.

Consider an example in which you need to
change the output format of the program. For pur-
poses of this example suppose that the call graph of
the output portion of the program has the following
structure:

Initially you look through the gprof output for the
system call “WRITE". The format routine you will
need to change is probably among the parents of
the “"WRITE” procedure. The next step is tc look at
the profile entry for each of parents of ““WRITE", in
this example either '‘FORMAT1” or "FORMAT2", to
determine which one to change. Each format rou-
tine will have one or more parents, in this example
“CALC1”, “'CALC2"”, and '‘CALC3". By inspecting the
source tode for each of these routines you can
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determine which format routine generates the out-
put that you wish to modify. Since the gprof entry
shows all the potential calls to the format routine
you intend to change, you can determine if your
modifications will affect output that should be left
alone. If you desire to change the output of
**CALC2", but not ""CALC3”, then formatting routine
“'FORMAT2'" needs to be split into two separate rou-
tines, one of which implements the new format.
You can then retarget just the call by “'CALC2'’ that
needs the new format. It should be noted that the
static call information is particularly useful here
since the test case you run probably will not exer-
cise the entire program.

7. Conclusions

We have created a profiler that aids in the
evaluation of modular programs. For each routine
in the program, the profile shows the extent to
which that routine helps support various abstrac-
tions, and how that routine uses other abstractions.
The profile accurately assesses the cost of routines
at all levels of the program decomposition. The
profiler is easily used, and can be compiled into the
program without any prior planning by the pro-
grammer. It adds only five {o thirty percent execu-
tion overhead to the program being profiled, pro-
duces no additional output until after the program
finishes, and allows the program to be measured in
its actual environment. Finally, the profiler runs on
a time-sharing system using only the normal ser-
vices provided by the operating system and com-
pilers.
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