
Downgrading Policies and Relaxed Noninterference

Peng Li
University of Pennsylvania

lipeng@cis.upenn.edu

Steve Zdancewic
University of Pennsylvania

stevez@cis.upenn.edu

ABSTRACT
In traditional information-flow type systems, the security
policy is often formalized as noninterference properties. How-
ever, noninterference alone is too strong to express security
properties useful in practice. If we allow downgrading in
such systems, it is challenging to formalize the security pol-
icy as an extensional property of the system.
This paper presents a generalized framework of downgrad-

ing policies. Such policies can be specified in a simple and
tractable language and can be statically enforced by mecha-
nisms such as type systems. The security guarantee is then
formalized as a concise extensional property using program
equivalences. This relaxed noninterference generalizes tradi-
tional pure noninterference and precisely characterizes the
information released due to downgrading.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints, Data types and structures, Frame-
works; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—Speci-
fication Techniques, Invariants, Mechanical verification; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection.

General Terms
Languages, Design, Security, Theory.

Keywords
Downgrading policies, information flow, language-based se-
curity, relaxed noninterference, program equivalence.

1. INTRODUCTION

The Challenge of Downgrading

In this paper we focus on a specific area of computer secu-
rity research, namely, language-based information-flow secu-
rity [17], where the target systems are computer programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

The security properties we care about are confidentiality
and integrity, specified by information-flow policies, which
are usually formalized as noninterference [4] [8], a global
extensional property of the program that requires that con-
fidential data not affect the publicly visible behavior. Such
information flow policies can be enforced by mechanisms like
type systems and static program analysis [19] [13] [14] [1].
In information-flow control, each piece of data is anno-

tated by a label that describes the security level of the data.
Such labels usually form a partially ordered set. Pure non-
interference policies only allow data flow from low security
places to high security places. As a program runs, the la-
bel of data can only become higher. This restriction is not
practical in most applications. Take the example of a login
process, the password is a secret and it has a higher secu-
rity level than the user-level data. By comparing the user
input with the password and sending the result back to the
user, data flows from high to low, thus the noninterference
property is violated.
We use the word downgrading to specify information flow

from a high security level to low security level. It is also
called declassification for confidentiality and endorsement
for integrity. As we allow downgrading in the system, pure
noninterference no longer holds and the security policy of
the whole system becomes much more complex. Instead of
using an elegant extensional property such as noninterfer-
ence, most downgrading policies are intensional, specifying
exactly what circumstances information can flow in which
order. To formally specify such policies, we may require
an accurate description of these intensional properties in a
complex piece of software, which can be very complicated.
Such security policies can be hard to specify, understand
and enforce. It is also difficult to prove the soundness of the
corresponding enforcement mechanism.

Our Contribution

We approach the downgrading problem by allowing the user
to specify downgrading policies. We use a type system to
enforce such policies, and formalize the security goal as an
extensional property called relaxed noninterference, which
generalizes pure noninterference and accurately describes
the effects due to downgrading. Our research is based on
the observation that a noninterfering program f(h, l) can
usually be factored to a “high security” part fH(h, l) and a
“low security part” fL(l) that does not use any of the high-
level inputs h. As a result, noninterference can be proved by
transforming the program into a special form that does not
depend on the high-level input. Relaxed noninterference
can then be formalized by factoring the program into the

158

composition of such a special form and some functions that
depend on the high-level inputs, which we treat as down-
grading policies.

2. BACKGROUND AND RELATED WORK
Before presenting our results in detail, it is useful to de-

scribe some prior approaches to the problem of downgrading.

DLM and Robust Declassification

The decentralized label model (DLM) invented by Myers and
Liskov [10] puts access control information in the security
labels to specify the downgrading policy for the annotated
data. Different mutually-distrusting principals can specify
their own access control rules in the same label. Such labels
are well-structured and can be used to express both con-
fidentiality and integrity. Downgrading is controlled based
on the code authority and the access control information in
the label of data to be downgraded: each principle can only
weaken its own access control rules. Practical languages
such Jif [9] have been built based on the DLM.
The downgrading policy specified by the DLM is highly

intensional and it is difficult to formalize as an extensional
property of the program. Once downgrading happens in
the program, the noninterference property is broken and
the user cannot reason about the effects of downgrading.
Trusted code can downgrade its data in arbitrary ways,
whereas untrusted code cannot downgrade any data that
does not belong to it.
Robust declassification [20] improves the DLM by impos-

ing a stronger policy on downgrading that requires the de-
cision to perform downgrading operations only depend on
trustworthy (high-integrity, untainted) data. Such a policy
can be formalized and the security guarantee can be ex-
pressed as an extensional property of the system [11]. Nev-
ertheless, it only addresses one particular useful policy for
downgrading. It cannot provide detailed guarantees on how
the data is downgraded, and downgrading is still forbidden
for untrusted code.
Our work borrows some philosophy from robust declassifi-

cation. Although we are concerned with confidentiality and
the process of declassification, the policies for downgrad-
ing can be thought of as integrity properties of the system:
they require the downgrading operation to be trustworthy
and correct with respect to some specification.

Complexity Analysis and Relative Secrecy

To look for a system-wide extensional guarantee with the
existence of downgrading, Volpano and Smith proposed the
relative secrecy [18] approach as a remedy for noninterfer-
ence. They designed a type system that contains a match
primitive, where the secret can only be leaked by comparing
it to untrusted data via this primitive. The security goal
is then formalized as a computational complexity bound of
the attack.
However, this approach lacks some flexibility in practical

applications. It assumes that there is a single secret in the
system and the attack model for the system is fixed, thus
it only enforces one particular useful downgrading policy
using a particular mechanism. To express and enforce other
downgrading policies like “the parity of the secret integer
n can be leaked”, we need completely different frameworks
and mechanisms.

Abstract Noninterference

Giacobazzi and Mastroeni used abstract interpretations to
generalize the notion of noninterference by making it para-
metric to what the attacker can analyze about the informa-
tion flow [3]. Many downgrading scenarios can be formally
characterized in this framework, and the security guarantee
is formalized in a weakened form of noninterference. How-
ever, this framework is mainly theoretical. To practically
apply this theory in building program analysis tools, we need
to design ways to express the security policies and mecha-
nisms to enforce such policies.

Intransitive Noninterference

Our work has a close relationship to intransitive noninter-
ference [15] [7], where special downgrading paths exist in
the security lattice. During downgrading, data can flow in-
directly through these paths, although there is no direct
lattice ordering between the source and the destination. We
improve this idea of intransitive noninterference by param-
eterizing the downgrading paths with actions, and globally
reasoning about the effects due to downgrading.

Quantifying Information Flow

Some interesting work has been done using quantitative ap-
proaches [5] [6] [12] to precisely estimate the amount of in-
formation leakage when downgrading is available. Drawing
on this research, we order the security levels by comparing
their abilities to leak information. Programs leaking more
information are considered less secure. However, comparing
the quantity of information leakage does not have directly
sensible meanings in many situations. Instead of using real
numbers as metrics for information leakage, we use program
fragments; the information order is defined among these pro-
grams.

Delimited Information Release

Sabelfeld and Myers [16] proposed an end-to-end security
guarantee called delimited release that generalizes nonin-
terference by explicitly characterizing the computation re-
quired for information release. Our work generalizes delim-
ited release in two ways. First, we treat the computation re-
quired for declassification as security policies and use these
policies to represent security levels for each piece of data in
the system. Second, downgrading can be fine-grained and
implicit in our framework. We formalize the security guar-
antee by transforming a safe program to the form of delim-
ited release, where all the downgrading expressions explicitly
match the downgrading policies.

3. A FRAMEWORK OF DOWNGRADING
POLICIES

3.1 The Motivation
The focus of our research is studying downgrading policies.

Instead of studying “who can downgrade the data” as the
decentralized label model did, we take an orthogonal direc-
tion and study “how the data can be downgraded”. Instead
of having various mechanisms that provides vastly different
kinds of security guarantees, we would like to have a more
general framework where the user can specify downgrading
policies that accurately describes their security requirement,

159

and have the enforcement mechanism carry out such poli-
cies. We have the following goals for downgrading policies:
Expressiveness: The programmers should be able to spec-

ify a rich set of downgrading policies depending on their
highly-customized security requirement. Such policies are
fine-grained and describes security requirements for each
piece of data in the system. For example: some data is a
top secret and we do not allow any information to leak from
it; some secrets can be downgraded by encrypting them;
for some secret data we can safely reveal the lowest several
bits; root passwords can only be leaked by comparing them
to public data; etc.
Representability: The downgrading policies should be for-

mally specified in representable forms. It should be easy
for the programmer to write down their policies and such
policies are meant to be understood by both human and
machines. In this paper, we use a simple programming lan-
guage to express downgrading policies and treat these poli-
cies as security levels so that the programmer can use them
as type annotations.
Tractability: Such policies must be enforceable by some

mechanisms such as type systems or model checking. Since
we are extending the traditional language-based information-
flow security, it is desirable to use similar static approaches,
where the policies are enforced at compilation time rather
than at run time.
Extensional Guarantee: This is the main challenge we

face: if the policies are enforced by some mechanism, what
are the security guarantees they bring to the user? The
policies are fine-grained and the enforcement mechanisms
are usually intensional, yet we would like to have a formal,
system-wide, extensional security guarantee that looks sim-
ple, elegant, understandable and trustworthy. We also want
to formally prove the soundness of the enforcement mecha-
nism with respect to this security guarantee. In this paper,
we express such guarantees in a form of relaxed noninter-
ference, where the effects of downgrading policies can be
accurately characterized by program equivalences.

3.2 Downgrading Policies as Security Levels
The main idea of our framework is to treat downgrading

policies as security levels in traditional information flow sys-
tems. Instead of having only H and L in the security lattice,
we have a much richer lattice of security levels where each
point in the lattice corresponds to some downgrading pol-
icy, describing how the data can be downgraded from this
level. For example, the policy corresponding to H is that
the information cannot be leaked to public places by any
means, whereas the policy implied by L is that the data can
be freely leaked to the public places. In our policy language,
we express H using constant functions and express L using
identity functions.
The security levels in the middle of the lattice are more

interesting. We take the following program as an example,
where the security policy for secret is that “the secret can
only be leaked by comparing the lowest 64 bits of its hashed
value to some public data”, and input,output have security
level L.

Example 3.2.1 (Downgrading).

01 x := hash(secret);
02 y := x % 2^64;
03 if (y=input) then output:=1 else output:=0;
04 z := x % 3;

Downgrading happens when the secrets are involved in
some computation. In the first statement, we computed the
hash of the secret, so the downgrading policy for x should be
that “x can only be leaked by comparing its lowest 64 bits to
some public data”. After the second statement, the policy
for y should be that “y can only be leaked by comparing
it to some public data”. In the branching statement, the
policy for the conditional (y=input) should be L because y

is compared to input. Therefore, the information leak from
secret to output is safe with respect to the downgrading
policy of secret. However, in the last statement, we cannot
find a way to downgrade z while satisfying the policy for x
and secret. To be safe, the security level for z can only be
H: it cannot be downgraded by any means.
With the existence of downgrading, the ordering among

these security levels is more complicated than in the tradi-
tional security lattice. Briefly speaking, there are two kinds
of ordering here.

• Subtyping order. We can extend the traditional L � H
lattice with something in the middle: L � ls � H
where ls denotes the security level of secret. We can
see that it is always safe for information to flow from
lower levels to higher levels, because it is equivalent to
making the downgrading policy more restrictive. How-
ever, the security level lx for x has no such ordering
with ls because it does not make sense to give x the
same downgrading policy as secret — doing so will
violate the downgrading policy for secret.

• Downgrading order. Although we do not have lx � ls,
it is true that ls can be downgraded to lx via certain
computation, which we call an action. We use the no-
tation ls

a
❀ lx to specify the downgrading relation via

action a. This is similar to the approach of intran-
sitive noninterference, but the key difference is that,
the downgrading relation is determined by the seman-
tics of the security levels and the action a performed,
and this information is crucial for reasoning about the
global effects of downgrading.

3.3 The Road Map
Our framework consists of three parts: policy specification,

enforcement mechanism and the security guarantee. The
basis of our theory is a well-studied, security-typed language
λsec as shown in Figures 3, 4 and 6, where security levels from
the simplest security lattice LLH = {L,H} are used as type
annotations. A noninterference theorem can be proved for
languages like λsec.
The rest of this paper is organized in a step-by-step fash-

ion. We first set out to define a lattice of local downgrading
policies called Llocal in Section 4, where each policy describes
how the secret can be downgraded by interacting with con-
stants and low-level public information. Correspondingly,
we extend the language λsec to λ⇓

local in Section 5 with typing
rules for downgrading. We formalize the security guarantee
as a relaxed form of noninterference using program equiv-
alences and prove the soundness of our type system. In
Section 6 and 7, we extend Llocal to Lglobal with global down-
grading policies that describes how secrets can be leaked by
composing multiple secrets together, and patch the type sys-
tem to λ⇓

global with a similar relaxed noninterference theorem.
We discusses the application of this framework in Section 8
and conclude in Section 9.

160

4. LOCAL DOWNGRADING POLICIES

4.1 Label Definition

Definition 4.1.1 (The policy language). In Figure 1.

Types τ ::= int | τ → τ
Constants c ::= ci

Operators ⊕ ::= +,−,=, . . .
Terms m ::= λx :τ. m | m m | x | c | m ⊕ m
Policies n ::= λx : int. m
Labels l ::= {n1, . . . , nk} (k ≥ 1)

Figure 1: Llocal Label Syntax

The core of the policy language is a variant of the simply-
typed λ-calculus with a base type, binary operators and con-
stants. A downgrading policy is a λ-term that specifies
how an integer can be downgraded: when this λ-term is ap-
plied to the annotated integer, the result becomes public. A
label is a non-empty set of downgrading policies, specifying
all possible ways to downgrade the data. A label can be
an infinite set. Each label represents a security level and
can be used as type annotations. For example, if we have
x : int{m1} where m1 is defined as λy : int. y%4, then the
result of the application (m1 x) ≡ x%4 is considered a pub-
lic value. Take the password checking example, we can let
p : int{m2} where m2 is λx : int. λy : int. x = y, so that the
application (m2 p) ≡ λy : int. p = y is considered as a pub-
lic closure, assuring that the only way to leak information
about p is to use this closure and perform the comparison
with p.

Definition 4.1.2 (Label well-formedness).

1. A policy language term m is well-typed, iff � m : τ in
the simply-typed λ-calculus.

2. A label l is well-formed, iff ∀n ∈ l, n is well-typed.

3. Let Llocal be the set of all well-formed labels (both finite
and infinite).

Note. In the rest of the paper, we implicitly assume that
all the labels are well-formed in our discussion.

Definition 4.1.3 (Term equivalence). We use conven-
tional β−η equivalences for λ-calculus, as defined in Figure
2. We write m1 ≡ m2 as an abbreviation for � m1 ≡ m2 : τ .
We write Γ � m1 ≡ m2 as an abbreviation for Γ � m1 ≡
m2 : τ .

The rules in Figure 2 are call-by-name equivalences, which
may not preserve the termination behavior in a call-by-value
semantics. It is important that our policy language has no
fixpoints and programs never diverge.

Definition 4.1.4 (Term composition).
If � m1 : τ1 → τ3, � m2 : τ2 → τ1, then the composition of

m1 and m2 is defined as: m1 ◦ m2
�
= λx :τ2. m1 (m2 x).

4.2 Label Interpretation
Each label is syntactically represented as a set of down-

grading policies, but the semantics of the label includes more
than the specified policies. Generally speaking, if n ∈ l and
n′ ≡ m◦n, then n′ is also a valid downgrading policy implied

Γ � m :τ

Γ � m ≡ m : τ
Q-Refl

Γ � m1 ≡ m2 : τ

Γ � m2 ≡ m1 : τ
Q-Symm

Γ � m1 ≡ m2 : τ Γ � m2 ≡ m3 : τ

Γ � m1 ≡ m3 : τ
Q-Trans

Γ, x :τ1 � m1 ≡ m2 : τ2

Γ � λx :τ1. m1 ≡ λx :τ1. m2 : τ1 → τ2
Q-Abs

Γ � m1 ≡ m2 : τ1 → τ2

Γ � m3 ≡ m4 : τ1

Γ � m1 m3 ≡ m2 m4 : τ2
Q-App

Γ � m1 ≡ m2 : int
Γ � m3 ≡ m4 : int

Γ � m1 ⊕ m3 ≡ m2 ⊕ m4 : int
Q-BinOp

Γ, x :τ1 � m1 :τ2 Γ � m2 :τ1

Γ � (λx :τ1. m1) m2 ≡ m1{m2/x} : τ2
Q-Beta

¬free(x,m) Γ � m :τ1 → τ2

Γ � m ≡ λx :τ1. m x : τ1 → τ2
Q-Eta

Figure 2: Term Equivalences Γ � m1 ≡ m2 : τ

by l, because each time we apply n′ to the data x annotated
by l, it is equivalent to first applying n to x to get a public
result (n x), then applying m to the public result, so that
m (n x) ≡ n′ x can also be considered as public. There-
fore, a finite label implies infinite number of downgrading
policies and we need to define the interpretation of a label
l to represent all downgrading policies such that, when the
policy term is applied to the data annotated by l, the result
is considered public.

Definition 4.2.1 (Label interpretation).
Let S(l) denote the semantic interpretation of the label l:

S(l)
�
= {n′ | n′ ≡ m ◦ n, n ∈ l}

This label semantics enjoys the following properties:

Lemma 4.2.1 (Properties of S(l)).

1. l ⊆ S(l) = S(S(l)).

2. n ∈ S(l) iff ∃n′ ∈ l,∃m, n ≡ m ◦ n′.

3. l1 ⊆ S(l2) iff ∀n1 ∈ l1, ∃n2 ∈ l2,∃m, n1 ≡ m ◦ n2.

4. l1 ⊆ S(l2) iff S(l1) ⊆ S(l2).

We can now reason about the equivalence of labels with
respect to the label semantics. Two labels are considered as
structurally equivalent if they denote the same set of down-
grading policies:

161

Definition 4.2.2 (Structural equivalence of labels).
We define the structural equivalence ≡l on Llocal:

l1 ≡l l2 iff S(l1) = S(l2)

Corollary 4.2.1 (Properties of ≡l).

1. l ≡l S(l)

2. l1 ≡l l2 iff l1 ⊆ S(l2) and l2 ⊆ S(l1)

4.3 Label Ordering
To organize Llocal as a lattice, we need to introduce partial

ordering among the labels and to define joins and meets.

Definition 4.3.1 (Label ordering).
Let � be a binary relation on Llocal such that

l1 � l2 iff S(l2) ⊆ S(l1)

This definition relies on the set inclusion relation of label
interpretations. If l2 has fewer downgrading policies than
l1 has, then l2 denotes a higher security level. We can al-
low information to flow from l1 to l2 without changing its
content. If we use labels as type annotations, the ordering
of labels determines the subtyping relation: if l1 � l2, then
intl1 ≤ intl2 .

Corollary 4.3.1. � is a partial order on Llocal.

Corollary 4.3.2. l1 � l2 iff l2 ⊆ S(l1).

Definition 4.3.2 (Joins and meets).

• The upper bound for a set of labels X is a label l
such that x ∈ X implies x � l. The join or the least
upper bound for X is an upper bound l such that for
any other upper bound z of X, it is the case that l � z.

• The lower bound for a set of labels X is a label l such
that x ∈ X implies l � x. The meet or the greatest
lower bound for X is a lower bound l such that for
any other lower bound z of X, it is the case that z � l.

The notation �X and �X denote the join and the meet of
X. The notation l1 � l2 and l1 � l2 denote the join and the
meet of {l1, l2}.
Because we defined the partial ordering using subset rela-

tion, the joins and meets of labels share the same structure
as sets:

Corollary 4.3.3 (Interpreting joins and meets).

1. ∀X,∃l1,∃l2 such that l1 ≡l �X and l2 ≡l �X

2. S(�X) = ∩(S(X)), S(l1 � l2) = S(l1) ∩ S(l2)

3. S(�X) = ∪(S(X)), S(l1 � l2) = S(l1) ∪ S(l2)

It is inconvenient to use infinite interpretations to rep-
resent the result of join and meets. The following lemma
shows how to compute joins and meets directly.

Lemma 4.3.1 (Computing joins and meets).

1. l1 � l2 ≡l l1 ∪ l2.

2. l1 � l2 ≡l {n | ∃m1,∃m2,∃n1 ∈ l1,∃n2 ∈ l2,
n ≡ m1 ◦ n1 ≡ m2 ◦ n2}.

Definition 4.3.3 (Highest and lowest labels).

H
�
= �Llocal, L

�
= �Llocal

The following lemma shows the beauty of this lattice.
H corresponds to the most restrictive downgrading policy,
where the secret cannot be leaked by any means. To ex-
press such a policy in our policy language, we can use a
constant function λx : int. c as the only policy in the label.
The intuition is that this function is completely noninterfer-
ing, i.e. we can learn nothing about its input x by studying
its output c. On the other hand, L corresponds to the least
restrictive policy, where the data itself is already considered
as public. The simplest way to express this fact is to use
the identity function λx : int. x as the policy, meaning that
we can leak all information about this piece of data.

Lemma 4.3.2. H ≡l {λx : int. c}, L ≡l {λx : int. x}
Proof:

• For any well-formed label l, we can prove that (λx :
int. c) ∈ S(l): ∀n ∈ l, suppose � n : int → τ , we
construct the term λx : τ. c so that (λx : τ. c) ◦ n ≡l

λx : int. c, which implies (λx : int. c) ∈ S(l).

Therefore, (λx : int. c) ∈ S(H), {λx : int. c} ⊆ S(H)
and H � {λx : int. c}. By definition of H we also have
{λx : int. c} � H, so that H ≡l {λx : int. c}.

• ∀n ∈ L, n ≡ n ◦ (λx : int. x), so L ⊆ S({λx : int. x})
and {λx : int. x} � L. By definition of L, we also have
L � {λx : int. x}, therefore L ≡l {λx : int. x}

✷

We can further show that all the noninterfering functions are
in the interpretation of H. In this particular scenario, con-
stant functions and noninterfering functions have the same
meaning. We can also show that all the policy functions,
both interfering and noninterfering, are in the interpreta-
tion of L. For a label l between H and L, the policy terms
precisely define a set of permitted interfering functions.

Theorem 4.3.1 (Lattice completeness).
The pair 〈Llocal,�〉 is a complete lattice.
4.4 Label Downgrading
Downgrading happens when data is involved in some com-

putation. The security level of data changes depending on
the computation performed. We describe such computation
as an action and formalize downgrading as a ternary rela-
tion: l1

a
❀ l2.

Definition 4.4.1 (Multi-composition).
Suppose � m1 : int → τ , � m2 :τ1 → τ2 → . . . → τk → int,
the multi-composition of m1 and m2 is defined as:

m1 � m2
�
= λy1 :τ1. . . . λyk :τk. m1(m2 y1 . . . yk)

Definition 4.4.2 (Actions). We use the metavariable a
to range over actions. An action is a λ-term that has the
same syntax as a downgrading policy function. That is, the
metavariable a and n range over the same set of terms.

Definition 4.4.3 (Downgrading relation). We use the

notation l1
a
❀ l2 to denote that l1 can be downgraded to l2

via the action a. Given a well-typed action a,
a
❀ is a binary

relation on Llocal:

l1
a
❀ l2 iff ∀n2 ∈ S(l2), n2 � a ∈ S(l1)

162

Example 4.4.1 (Downgrading). Suppose we have an
integer u at security level l1, where l1 is defined as:

l1
�
= {n1}, n1

�
= λx : int. λy : int. λz : int. (x%y) = z

Suppose we have another integer v at security level L. What
is the security level for (u%v)? We can define an action that
describes this computation step:

a
�
= λx : int. λy : int. x%y

The result has a security level l2:

l2
�
= {n2}, n2

�
= λx : int. λz : int. x = z

It is easy to verify that l1
a
❀ l2, because n2 � a ≡ n1.

Lemma 4.4.1.

1. If l1
a
❀ l2 and l2 � l3 then l1

a
❀ l3.

2. If l1
a
❀ l2 and l3 � l1 then l3

a
❀ l2.

The above lemma shows very useful properties of down-
grading. It implies that if l1

a
❀ l2, then l1

a
❀ H, but it is not

very useful to use H as the result because it simply forbids
any further downgrading. We can see that downgrading is
not deterministic: given l1 and a, there are many targets l1
that can be downgraded to via a. The questions are: which
label is the most useful result, and how to find it?

Definition 4.4.4 (Lowest downgrading). Let ⇓ (l, a) be
the greatest lower bound of all possible labels that l can be
downgraded to via a:

⇓ (l, a)
�
= �{l′ | l

a
❀ l′}

Lemma 4.4.2.

1. l
a
❀⇓ (l, a)

2. If l
a
❀ l′ then ⇓ (l, a) � l′

The above lemma shows that ⇓ (l, a) is the most accurate
(lowest) label that l can be downgraded to via a. In fact,

given l and a, all the labels l′ that satisfy l
a
❀ l′ form a sub-

lattice of Llocal, where the bottom of the lattice is ⇓ (l, a)
and the top is H.

Lemma 4.4.3 (Computing downgrading results).

⇓ (l, a) ≡l {n | ∃n1 ∈ l,∃m,n � a ≡ m ◦ n1}
This lemma shows exactly what is inside ⇓ (l, a).

5. A TYPE SYSTEM FOR LOCAL
DOWNGRADING

5.1 The Language
In this section we present a security-typed programming

language λ⇓
local that supports downgrading. The language

syntax is presented in Figure 3. Compared to the policy
language we presented in the last section, we introduce con-
ditionals and fixpoints. Security labels are used as type
annotations. Furthermore, the inputs to the program are
explicitly written as variables: σ denotes a secret input and
ω denotes a public input.

Labeled s ::= tl

types t ::= int | (s → s)
Programs e ::= (λx :s. e)l | e e | x | c | σ | ω

| e ⊕ e | if e then e else e
| fixl r(x) = e | r

Secret inputs σ ::= σi

Public inputs ω ::= ωi

Figure 3: λsec, λ⇓
local Syntax

Definition 5.1.1 (Local Downgrading Policies).
Let Σ(σi) denote the security label for σi.

In this system, we aim for an end-to-end style security
guarantee. For each secret input σi of the program, the
user specifies a label Σ(σi) as its downgrading policy. For
example, the policy for the password may be:

Σ(σpwd) = {(λx : int. λy : int. x = y}
which only allows downgrading by comparing the password
to a value at security level L. The policy for the variable
secret in Example 3.2.1 can be written as:

Σ(σsecret) = {(λx : int. λy : int. (hash(x)%264) = y}
where the hash function is a function provided by the ex-
ternal library and it can be modeled as an operator in our
system.

5.2 The Type System

Definition 5.2.1 (Type stamping). tl1 � l2
�
= t(l1�l2).

Most common typing rules are in Figure 4 and we call
them λsec rules, because they are standard typing rules in
traditional security-typed languages. The downgrading rule
is in Figure 5. We only listed the DLocal-Left rule, and
omitted it symmetrical case, the DLocal-Right rule. The
subtyping rules are listed in Figure 6.
For simplicity, we require that all the fixpoint functions

have type (intl → intl)l. As a design choice, we do not
allow loop variables have security levels other than L and
H. The reason is that a loop variable changes its own values
during recursive calls. In our security lattice, the security
level of data downgrades during computation unless it is L
or H. Since all the policy terms are terminating programs,
the security level of data always becomes L or H after finite
steps of nontrivial computation.

5.3 The Security Goal
If we erase the type annotations, the unlabeled programs

in Figure 7 is a superset of our policy language in Figure 1,
so that we can use terms in our policy language to represent
fragments of unlabeled programs.

Definition 5.3.1 (Label erasure). E(e) erases all the la-
bel annotations in e and returns a simply-typed λ-term, as
defined in Figure 7.

Definition 5.3.2 (Term sanity). The predicate clean(f)
holds if and only if f syntactically contains no secret variable
σ.

Definition 5.3.3 (Program equivalences). All the rules
in Figure 2 are also used for program equivalences by sub-
stituting all metavariables m with f . Furthermore, we have
some new rules defined in Figure 8.

163

Γ � ci : intL TConst

Γ � ωi : intL TPublic

Γ � σi : intΣ(σi) TSecret

Γ(x) = s

Γ � x : s
TVar

Γ(r) = s

Γ � r : s
TRecVar

Γ, x : s1 � e : s2 x /∈ dom(Γ)

Γ � (λx :s1. e)l : (s1 → s2)l
TFun

Γ � e1 : (s1 → s3)l
Γ � e2 : s2 s2 ≤ s1 s3 � l ≤ s

Γ � e1 e2 : s
TApp

l ∈ {L,H} s ≤ intl

Γ, r : (intl → intl)l, x : intl � e : s

Γ � fixl r(x) = e : (intl → intl)l
TFix

Γ � e : intl Γ � e1 : s1

Γ � e2 : s2 s1 ≤ s s2 ≤ s

Γ � if e then e1 else e2 : s � H
TCond-H

Γ � e : intL Γ � e1 : s1

Γ � e2 : s2 s1 ≤ s s2 ≤ s

Γ � if e then e1 else e2 : s
TCond-L

Γ � e1 : intl1 Γ � e2 : intl2

Γ � e1 ⊕ e2 : intH
TOp-H

Γ � e1 : intL Γ � e2 : intL

Γ � e1 ⊕ e2 : intL
TOp-L

Figure 4: λsec Typing Rules: Γ � e : s

Γ � e1 : intl1 Γ � e2 : intL

a
�
= λx : int. λy : int. x ⊕ y l1

a
❀ l3

Γ � e1 ⊕ e2 : intl3

DLocal-L(R)

Figure 5: λ⇓
local Typing Rules: Γ � e : s

l1 � l2

� tl1 ≤ tl2

SLab

� t ≤ t SRefl

� t1 ≤ t2 � t2 ≤ t3

� t1 ≤ t3
STrans

� s1 ≤ s2 � s3 ≤ s4

� s2 → s3 ≤ s1 → s4
SFun

Figure 6: λsec, λ⇓
local Subtyping Rules: � s ≤ s � t ≤ t

Unlabeled Programs
f ::= λx :τ. f | f f | x | c | ω | σ

| f ⊕ f | if f then f else f
| fix r(x) = f | r

E : e → f
E(tl) = E(t)
E(int) = int
E(s → s) = E(s) → E(s)
E(Γ)(x) = E(Γ(x))
E((λx :s. e)l) = λx :E(s). E(e)
E(e1 e2) = E(e1) E(e2)
E(x | c | σ | ω | r) = x | c | σ | ω | r
E(e1 ⊕ e2) = E(e1)⊕ E(e2)
E(if e1 then e2 else e3) = if E(e1) then E(e2) else E(e3)
E(fixl r(x) = e) = fix r(x) = E(e)

Figure 7: Label Erasure

We formalize the security guarantee of our type system
using program equivalences. The following is the main the-
orem of this paper.

Theorem 5.3.1 (Relaxed noninterference).
If � e : intL, then E(e) ≡ f (n1σi1) . . . (nkσik)
where clean(f) and ∀j.nj ∈ Σ(σij).

The proof of this theorem is in Subsection 5.5. This the-
orem shows that a type-safe program can only leak secret
information in controlled ways, i.e. only through the spec-
ified downgrading functions. Take the password example
again, if we know that

E(e) ≡ f ((λx : int. λy : int. x = y) σpwd)

and clean(f), then the only way through which f can leak
information about σpwd is to use its argument, the closure
(λy : int. σpwd = y), which intuitively enforces the security
policy specified by the user in an end-to-end fashion. Note
that this policy still allows the full password be leaked by
the following program:

f
�
= λg : int → int. (fix r(x) = if g(x) then x else r(x + 1)) 0

Nevertheless, such an attack takes exponentially long time
to finish. We will discuss such programs more in Section 8.
We call this security guarantee relaxed noninterference,

because it generalizes traditional noninterference as shown
in the following corollary.

164

All the Γ � m1 ≡ m2 : τ rules become Γ � f1 ≡ f2 : τ , plus
the following rules:

Γ � f1 ≡ f2 : int
Γ � f3 ≡ f4 : τ Γ � f5 ≡ f6 : τ

Γ � if f1 then f3 else f5

≡ if f2 then f4 else f6 : τ

Q-If

Γ, x : int, r : int → int � f1 ≡ f2 : int

Γ � fix r(x) = f1 ≡ fix r(x) = f2 : int
Q-Fix

Γ � if f1 then f2 else f3 :τ1 → τ2

Γ � f4 :τ1

Γ � (if f1 then f2 else f3) f4

≡ if f1 then f2 f4 else f3 f4 : τ2

Q-EtaIf-App

Γ � if f1 then f2 else f3 : int
Γ � f4 : int

Γ � (if f1 then f2 else f3)⊕ f4

≡ if f1 then f2 ⊕ f4 else f3 ⊕ f4 : int

Q-EtaIf-Op-L(R)

Figure 8: Program Equivalences: Γ � f1 ≡ f2 : τ

Corollary 5.3.1 (Pure noninterference).
If � e : intL and ∀j.Σ(σj) = H, then E(e) ≡ f where
clean(f).

Obviously, when no downgrading policy is available, a
type-safe program is noninterfering because it is equivalent
to another program that contains no secret variable at all,
which implies that the program does not leak any informa-
tion about the secret variables.
It is important to understand the meaning of the equiva-

lence rules. We treat these rules as the static semantics of
the program. Rather than evaluating the program in a call-
by-value semantics, we transform the program statically in
a call-by-name fashion and formalize our security goal. In a
call-by-value setting, theQ-Beta andQ-Eta rules affect the
termination behavior of the program. The Q-EtaIf rules al-
low us to statically reason about different execution paths
without changing the termination behavior of the program.
If f1 ≡ f2 and both programs terminate in a call-by-value
semantics, they must evaluate to the same value. With such
equivalence rules, our relaxed noninterference theorem gives
us a notion of weak noninterference, where secrets can be
leaked by observing the termination behavior of program.

5.4 Making Typechecking Practical
During typechecking, we need tractable ways to work with

the security labels. The major label operations in the typ-
ing rules are: order testing, computing joins and computing
downgrading results. There are two challenges here. First,
some label operations involve higher-order unification prob-
lems that require searching and such problems are undecid-
able. Second, labels with infinite size are hard to deal with.
Although higher-order unification is generally undecid-

able, most such problems in typechecking are either trivial
or easily solvable. Take the label ordering as an example,
we can use the following corollary to test whether l1 � l2:

Corollary 5.4.1 (Label order testing).

1. If l1 ⊆ l2 then l2 � l1.

2. l2 � l1 iff ∀n1 ∈ l1, ∃n2 ∈ l2,∃m, n1 ≡ m ◦ n2

In typechecking, it is often the case that one of l1 and
l2 are either H or L, or l1 ⊆ l2. It is rarely the case that
we need to search for the unifier m, and if we need to do
so, the size of m is usually no larger than n1, because the
computation of n1 is being decomposed into two steps, and
each piece is likely to have fewer computation than n1 does.
If no unifier is found within the length of n1, the typechecker
could conservatively report that the label ordering cannot be
established, as doing so does not break type soundness.
We solve the finite representation problem by approximat-

ing intractable labels. Suppose we do not know how to rep-
resent l finitely and for some policies we cannot even decide
whether they are in S(l). But, if we can compute a finite
label l′ such that we know l′ ⊆ S(l), then we have l � l′

and l′ can be used as an approximation for l. To make such
approximations useful, l′ should be as close to l as possible.
The following shows how to approximate joins and down-

grading results for finite labels.

Lemma 5.4.1 (Approximating joins).

l1 � l2 � l where l
�
= {λx : int. c} ∪ {n | n ∈ l1 and n ∈

S(l2)} ∪ {n | n ∈ l2 and n ∈ S(l1)}
In most cases, we have either l1 � l2 or l2 � l1 and the

computation of joins can be short-circuited. In some rare
cases, the join of l1 and l2 can be approximated by using
the above lemma: for each policy n ∈ l1, test whether it is
implied by l2 and vice versa. The member test n ∈ S(l2)
uses Lemma 4.2.1 and unification can be handled as we just
did for label ordering.
The TApp and the TCond rules do not require the exact

join to be computed, so this approximation can always be
used.

Lemma 5.4.2 (Approximating downgrading results).
⇓ (l, a) � {n | ∃n1 ∈ l, n � a ≡ n1}
This lemma can be used to optimize the searching in

Lemma 4.4.3. The intuition is that, a is usually a minimal
step of computation in our type system and n1 is usually a
long sequence of computation that can be decomposed into
smaller steps.
Therefore, we have a practical procedure for finding the

approximation of ⇓ (l, a): for each n1 ∈ l, we search for n
such that n � a ≡ n1. Since g is usually a policy shorter
than n1, most sensible answers can be found by searching
for terms no larger than n1.
By Lemma 4.4.1, the approximated result can be safely

used in typechecking.

5.5 Proof of Theorem 5.3.1
This proof involves two stages. First, we transform the

program into a normal form defined in Definition 5.5.1. The
transformation takes finite steps and preserves program equiv-
alences. Then, we use induction to prove the theorem for
normalized programs.

Definition 5.5.1 (Normal forms). In Figure 9.

165

v ::= x | c | σ | ω | v ⊕ v | if v then v else v
| (fixl r(x) = v) v | r v

Figure 9: Normal forms

The key idea about normal forms is that the metavari-
able v always ranges over terms of the int type. To trans-
form a program into a normal form, we would like to use
β-reductions to get rid of all the λ-abstractions. The excep-
tion is that the left side of an application node may not be
a λ-abstraction: it can be a fixpoint, a variable or a branch.
In Definition 5.5.2, we also defined ηif -reduction. Lemma
5.5.2, Lemma 5.5.3 and Lemma 5.5.4 tell us that these two
reduction rules are sufficient to normalize a well-typed pro-
gram.

Definition 5.5.2 (β, ηif reductions). In Figure 10.

Lemma 5.5.1 (Equivalence preservation).
If e ⇒∗ e′, then E(e) ≡ E(e′).
Lemma 5.5.2 (Progress under β, ηif reductions).
If � e : intl, e is stuck under β, ηif reduction,
then e = v as in the normal form defined in Figure 9.

Lemma 5.5.3 (Preservation under β, ηif reductions).
If � e : s, e ⇒ e′, then � e′ : s′ where s′ ≤ s.

Lemma 5.5.4 (Normalization under β, ηif reductions).
If � e : intl, then ∃v such that e ⇒∗ v.

E ::= [] | E e | v E | E ⊕ e | v ⊕ E

| if E then e else e | if v then E else e
| if v then v else E | fixl r(x) = E

⇒β,ηif
: e → e

E[(λx :s. e1) e2] ⇒β E[e1{e2/x}]
E[(if e1 then e2 else e3) e4] ⇒ηif E[if e1 then e2 e4 else e3 e4]

Figure 10: β and ηif reduction rules

branch(FC , F) ::= (fi ∈ F, fcj ∈ FC)
fi | if fcj then branch(FC , F) else branch(FC , F)

Figure 11: Short hand notion for nested branches

Definition 5.5.3 (Branches). In Figure 11.

Definition 5.5.3 a short hand notion for representing nested
branching statements. It is easy to show that

Γ � branch(FC , F)⊕ f ≡ branch(FC , F ⊕ f)
and vice versa. The proof of our main lemma proceeds with
induction on the typing derivation of a normalized program.

Lemma 5.5.5 (Main lemma). Suppose Γ only contains
variables introduced by the TFix rule. That is, Γ � r :
(intl → intl), Γ � x : intl, l ∈ {L, H} for all r and x in Γ.

1. If Γ � v : intL,
then E(Γ) � E(v) ≡ f (n1σi1) . . . (nkσik)
where clean(f) and ∀j.nj ∈ Σ(σij).

2. If Γ � v : intl, l �= H, l �= L, then

(a) E(Γ) � E(v) ≡ branch(FC , F)
where FC = {E(v01), . . . , E(v0k)},

F = {(a1 σa1) E(v11) . . . E(v1k1),
.

(aj σaj) E(vj1) . . . E(vjkj)}
(b) Γ � vij : intL, and the typing derivation is smaller
than Γ � v : intl

(c) Σ(σai)
ai
❀ l for all i.

Proof: By induction on Γ � v : intl.

• Case TConst, TPublic : The type must be intL. Sim-
ply let f be v.

• Case TSecret : Choose the secret variable itself σi,
let a1 = λx : int. x.

• Case TFun,TRecVar : Cannot happen.

• Case TVar : By our assumption on Γ, x must have
type intL. Same as the TConst case.

• Case TApp : v is either (fixl r(x) = v1) v2 or r v2.
For the fix subcase, we must have l = L, otherwise v
will have type intH. For the r subcase, we know from
our assumption about Γ that r have type intL → intL.
By inversion we know that the type of v2 must be a
subtype of intL, which implies that v2 must have type
intL in the premises of TApp. So we can use IH(1) on
v2 and get E(Γ) � E(v2) ≡ f2....

For the fix subcase, we can extend Γ with r and x and
use our IH(1) to go into v1 and get E(Γ, r, x) � E(v1) ≡
f1.... Use the QFix Rule, we have E(Γ) � E(fixl r(x) =
v1) ≡ fix r(x) = f1... Then we can compose f1 and f2

to prove (1). The other subcase r v2 is similar.

• Case TFix, TOp-H, TCond-H : Cannot happen.

• Case TOp-L : Use IH(1) and equivalence rules.

• Case TCond-L : First we can use IH(1) on e. Then
we assert that both branches have int type.

If s = intL, then we know that both s1 and s2 are intL,
so that we can use IH(1) and simple equivalence rules
to prove this case.

If s �= intL, then we use IH(2) on e1 and e2 respectively,
then compose the result. The downgrading condition
in (2)(c) is preserved by some property of the down-
grading relation.

• Case DLocal-Left : If l1 is H then we can show that
it is impossible. If l1 = L and l3 = L then we can use
IH(1) to prove (1). If l1 = L and l3 �= L then we can
create a vacuous secret and put a constant function to
prove (2).

Consider the subcase when l1 �= L and l1 �= H. Use
IH(2) to prove (2a),(2b),(2c) ... and do a case analysis
on the resulting label l3. If l3 �= L then we proved (2),
otherwise use IH again to prove (1).

• Case DLocal-Right : Similar.
✷

Finally, we can easily compose Lemma 5.5.4, Lemma 5.5.1
and Lemma 5.5.5 to prove Theorem 5.3.1.

166

6. GLOBAL DOWNGRADING POLICIES

6.1 Motivation
In the last two sections we presented a system with local

downgrading, where each secret is assigned a security label
and secrets can be downgraded by interacting with public
inputs and constants. In practice, this framework is ca-
pable of expressing many useful downgrading policies, but
there are some important policies it cannot express. For
example, we may want to specify the policy “data must be
encrypted before sending it to the network”. Naively we
can use the policy λx : int. encrypt(x) and treat “encrypt”
as an operator in our framework. However, an encryption
algorithm usually requires a key as its input, so we may try
the policy λx : int. λy : int. encrypt(x, y) for the data and
λx : int. λy : int. encrypt(y, x) for the key. Unfortunately,
this does not work because the downgrading rule requires
the secrets interact with an intL type. Furthermore, these
policies allow the attacker to use its own key to downgrade
the secret: encrypt(x, fakekey).
Another interesting example is: we have two secrets σ1

and σ2 and we want to specify the policy “both σ1 and σ2 are
secrets, but their sum is considered as public”. Such policies
not only describe the computation required for downgrading,
but also specifies how multiple secrets should be composed
in order to downgrade.
We solve this problem by introducing the idea of global

downgrading policies. We identify all the secret inputs of the
system, and refer to these secrets in our policy language. In
this section we present Lglobal, a lattice of global downgrading
policies, and in the next section we correspondingly extend
the type system to support global downgrading.

6.2 Label Definition
The only thing we need to change in the policy language

is to allow secret variables to appear in the policy language,
as shown in Figure 12. For example, σ1 may have a down-
grading policy {λx : int. x + σ2}, and when we apply this
policy term to σ1, the resulting term σ1 + σ2 is considered
public. Similarly, σ2 can have the policy {λx : int. σ1 + x}.
We use Lglobal to denote the set of all well-formed labels.

Policy Terms m ::= ... | σ

Figure 12: Lglobal Label Syntax

6.3 Label Interpretation
The label interpretation is slightly different from Llocal.

The general idea remains the same. If n ∈ l, then m ◦ n is
implied by n. However, we must assure that m does not con-
tain other secrets, otherwise by applying m ◦ n to the data,
we may leak arbitrary secrets by deliberately choosing some
m. Therefore, we need to make a patch to our definition.

Definition 6.3.1 (Label Interpretation).
Let S(l) denote the semantic interpretation of the label l:

S(l) = {n′ | n′ ≡ m ◦ n, n ∈ l, clean(m)}

Lemma 4.2.1 requires a similar patch. Others parts re-
quire no change in Subsection 4.2.

6.4 Label Ordering
The definition of label ordering in Subsection 4.3 requires

no change. Lemma 4.3.1 requires a similar patch as above.
The interesting thing is that Lemma 4.3.2, which asserts
that the identity function is the bottom of the lattice, be-
comes broken. For backward compatibility, we change our
definition for the rest of the paper:

Definition 6.4.1. H
�
= {λx : int. c}, L

�
= {λx : int. x}

It is easy to verify that H ≡l �Lglobal still holds, but
�Lglobal is no longer structurally equivalent to L. The in-
tuition is that a constant function is still the most restric-
tive policy because it leaks no information. The identity
function is no longer the least restrictive policy: it can only
leak information about the data it annotates. But there are
plenty of policies that allow leakage of information besides
the annotated data itself. Take this policy as an example:
λx : int. λy : int. x ∗ (y = 0) + σ1 ∗ (y = 1), it is capable
of leaking the annotated data as well as another secret σ1.
Intuitively, we can try to quantify the information leakage of
policies: constant functions leak 0 unit of information, iden-
tity functions leak 1 unit, all policies in Llocal leak between
0 and 1, and some policies in Lglobal leak much more than 1.
It turns out that if we add tuples and projections in our

policy language and enrich the equivalence rules, we can
easily give a simple finite representation of �Lglobal, which
we call Bottom. Assuming the secret variables in the system
are σ1, ..., σk, then

Bottom
�
= �Lglobal ≡l {λx : int. 〈x, σ1, ..., σk〉}

Such a function is capable of leaking all possible secrets be-
sides the annotated data itself.
Although adding Bottom helps us understand the struc-

ture of Lglobal, we do not need it in practice. The security
level L still has important practical meaning: if x is anno-
tated with a label l and we have l � L, then x can still be
considered as public. It is only different when x has the
ability to interact with other secrets and downgrade them.

6.5 Downgrading
All the definitions in Subsection 4.4 require no modifi-

cation, except that we need the unifiers m to be clean in
Lemma 4.4.3. The actions now can contain secret variables.
For example, we have

{λx : int. (x + σ2)%4} a
❀ {λx : int. x%4}

where a
�
= λy : int. y + σ2. In fact, the secret variables are

handled just like constants.

7. A TYPE SYSTEM FOR GLOBAL
DOWNGRADING

7.1 Integrity Labels
In this section, we extend the Llocal language in order to

support global downgrading policies. As we add the secret
variables in the downgrading policy, there are some new is-
sues to solve. Consider the simplest case where we are going
to typecheck a term a+ b. Suppose we already know that a
has a security level {λx : int. x + σ2}. We define an action
λy : int. y+ b and attempt to downgrade a via this action so

167

that the result can have security level L. In order to do that,
it is necessary to establish that the term b must be equal to
σ2. More generally speaking, we need some integrity reason-
ing about the data, and it is the dual of the confidentiality
analysis we have done. The downgrading policies mainly
express confidentiality requirements: where the data can go
to and what kind of computation we must do before releas-
ing it to the public. To enforce such policies, we also need
integrity analysis of data: where the data comes from and
what computation has been done with them.
Since integrity and confidentiality are duals, it is natu-

ral to use a dual mechanism to reason about integrity. We
introduce an optional type annotation, called an integrity
label in our language. Such labels can be attached to the
base type in the form of int〈m〉 as in Figure 13, where m
tracks the interesting computations that happened to this
term. For example, a term of type int〈σ1〉l must be equiva-
lent to σ1 itself and this is just a singleton type; a term of
type int〈λx : int. x∗σ2〉l must be equivalent to y ∗σ2 where y
is another term of type intL. The integrity labels are essen-
tially the dual of our confidentiality labels. The difference
is that the integrity label is optional and it has exactly one
policy term in it.

Labeled Types s ::= tl

t ::= int | int〈m〉 | (s → s)
Global Policies Σ ::= {mi} ∪ {H}

Figure 13: λ⇓
global Syntax

7.2 Policy Splitting
If we directly specify the downgrading policy for each se-

cret input just as we did for λ⇓
local, we are likely to have

some inconsistencies among these policies. Take the exam-
ple of σ1 + σ2 again. If the downgrading policy for σ1 is
{λx : int. x + σ2} and the policy for σ2 is just H, can we
downgrade σ1 + σ2 to L? The policy of σ1 says yes and
the policy of σ2 says no. To be safe, we have to compute
the downgrading result from both sides, and take the up-
per bound of them. Doing so will produce a result of H,
which is absolutely safe but inconvenient. If the user actu-
ally wants such downgrading to be successful, he or she has
to write a symmetric policy for σ2. Such work is tedious and
error-prone when the policies become complicated.
To guarantee the consistency of such policies, we change

the method of policy specification. Instead of writing poli-
cies for individual secrets, the user simply writes a set Σ of
policy terms as shown in Figure 13. Each of these terms
in Σ denotes a way of downgrading secrets to public. For
example, we can have Σ = {m1,m2,m3,H} where

• m1
�
= (σ1%2), meaning that σ1 can be downgraded to

public by exposing its parity;

• m2
�
= (λx : int. σ2 = x), meaning that σ2 can only be

downgraded by comparing it to some data at security
level L.

• m3
�
= ((σ1 + σ2)%8), meaning that we can downgrade

the last three bits of the sum of σ1 and σ2.

With these global policies, we can automatically generate
the security policy for each individual secret in the following
way:

Definition 7.2.1 (Label generation).

Σ(σi)
�
= {λx : int. mj [x/σi] | mj ∈ Σ}

Take the example above, we have
Σ(σ1) = {λx : int. x%2, λx : int. (x + σ2)%8}
Σ(σ2) = {λy : int. λx : int. y = x, λx : int. (σ1 + x)%8}
Thus when we typecheck σ1 + σ2, we can downgrade from
either σ1 or σ2, and the results are consistent: λx : int. x%8.
This policy specification method not only simplifies the user’s
program annotation work but also make the formalization
of our security guarantee more concise.

7.3 The Type System
The type system is shown in Figure 14. Compared to

λ⇓
local, the DLocal-L(R) rule remains unchanged. Global

downgrading is supported by the DGlob-L(R) rule, which
exactly shows how the labels are computed for global down-
grading using information from the integrity label. All other
downgrading rules are used to keep track of the integrity la-
bels. The DTLocal and DTGlob rules are essentially the
same as DLocal and DGlob, except that we compute the
integrity label for the result. Integrity labels are introduced
by the TSecret rule.
The SIntLabel rule patches the subtyping relation. Since

our typing rules are mostly algorithmic and we do not have
subsumption rules, we can make the language more con-
venient by changing the TCond and TOp rules to ignore
integrity labels in their premises. We omitted them in this
paper because they do not affect the expressiveness of the
language.

� int〈m〉 ≤ int SIntLabel

Γ � σi : int〈σi〉Σ(σi) TSecret

Γ � e1 : intl1 Γ � e2 : intL

a
�
= λx : int. λy : int. x ⊕ y l1

a
❀ l3

Γ � e1 ⊕ e2 : intl3
DLocal-L(R)

Γ � e1 : int〈m1〉l1 Γ � e2 : intL

a
�
= λx : int. λy : int. x ⊕ y l1

a
❀ l3

Γ � e1 ⊕ e2 : int〈a � m1〉l3
DTLocal-L(R)

Γ � e1 : intl1 Γ � e2 : int〈m2〉l2
a

�
= λx : int.((λy : int.x ⊕ y)� m2)

l1
a
❀ l3

Γ � e1 ⊕ e2 : intl3
DGlob-L(R)

Γ�e1 : int〈m1〉l1 Γ�e2 : int〈m2〉l2
a

�
= λx : int. ((λy : int. x ⊕ y)� m2)

l1
a
❀ l3

Γ � e1 ⊕ e2 : int〈a � m1〉l3
DTGlob-L(R)

Figure 14: λ⇓
global Typing Rules

168

7.4 The Security Goal
The security guarantee of λ⇓

global is similar to λ⇓
local. The

major difference is that we changed our way of policy spec-
ification. In λ⇓

global, the policies are globally specified by the
user: Σ is just a set of policy terms. During typechecking, Σ
is split into local policies for each secret variable. Therefore,
we would like to express our security goal in terms of the
global policy Σ.

Theorem 7.4.1 (Relaxed Noninterference).
If � e : intL, then E(e) ≡ fm1 . . .mk

where clean(f) and ∀j.mj ∈ Σ.

Corollary 7.4.1 (Pure Noninterference).
If � e : intL and Σ = {H} then E(e) ≡ f where clean(f).

These security guarantees are similar to the ones in λ⇓
local.

They look even more intuitive: a safe program can only leak
secrets in permitted ways, and these permissions are directly
characterized by the global downgrading policy.
The proof of Theorem 7.4.1 is similar to the proof of The-

orem 5.3.1. The only major difference is the reasoning about
integrity labels. Lemma 7.4.1 shows the exact meaning of
these integrity labels. With the help this lemma, we can go
through the cases for additional downgrading rules.

Lemma 7.4.1 (Integrity guarantee).
If Γ � v : int〈m〉l, then E(Γ) � E(v) ≡ branch(FC , F)
where FC = {E(v01), . . . , E(v0i)},

F = {m E(v11) . . . E(v1k),
.
m E(vj1) . . . E(vjk)}

and for each vxy, Γ � vxy : intL for a smaller derivation.

Typechecking for λ⇓
global is not fundamentally harder. Han-

dling integrity labels is algorithmic and requires no search-
ing. The only subtle point is that the label ordering is
changed in Lglobal, so we must be careful that L is not used
as the lowest label in comparing labels and computing joins.

8. EVALUATION AND FUTURE WORK

Strengths and Limitations

We have presented an end-to-end style framework for down-
grading policies. On one end, it provides a policy specifica-
tion language expressive enough to represent a wide variety
of downgrading policies useful in practice. On the other end,
it formally describes a global security goal determined by the
user’s downgrading policy. To guarantee that a program sat-
isfies the security goal, i.e. the program is safe with respect
to the downgrading policies, we only need a proof showing
that the program is equivalent to a specific form, by using
program equivalence rules.
We also presented type systems as enforcement mecha-

nisms. The soundness theorem of the type system ensures
that, if a program is well-typed, then there exists a proof
of the security goal for the program. Thus, we reduced the
problem of proof searching to the problem of typechecking,
which is a syntax-directed process. The programmer can
explicitly write down the types as security proofs, or we can
use type inference to search for proofs automatically.
It is necessary to point out that a type system is not

the only possible enforcement mechanism for our framework.
Type systems typically have limitations that prevent them

from enforcing some kinds of downgrading policies. For ex-
ample, consider the policy λx : int. λp : int. (x + p) ∗ p: it
cannot be enforced by our type system because typecheck-
ing is not syntax-directed. At each step, all the information
is locally synthesized from adjacent nodes. For the program
(x + y) ∗ y where x has the policy above, we cannot down-
grade the syntax node (x+y), therefore (x+y) cannot have
a downgradable type annotation. To reason about such poli-
cies, we need more powerful mechanisms that involve more
global data-flow analysis. Nevertheless, many useful policies
are not in these forms and are easily enforceable by our type
system.

Understanding the Policies

The security guarantee in our framework only assures that
the program respects the user’s security policies, but it does
not verify anything about the policies themselves. It is im-
portant to study how to evaluate the effects of these down-
grading policies, especially when the program is not trusted.
Both informal and formal reasoning can be used. For exam-
ple, given the policy {σ1%2}, it is apparently true that only
the parity of σ1 can be leaked to public. Given the policy
for the password: {λy : int. σpwd = y}, we can use the same
reasoning technique in relative secrecy [18] and assure that
any program satisfying this policy must take exponentially
long expected time to crack the password. Our framework
has the ability to minimize the scope of security analysis: in-
stead of analyzing the whole program, we need to examine
only the security policies for these programs, and such poli-
cies are usually several orders of magnitudes smaller than
the program.

Understanding the Equivalence Relation

The equivalence rules are crucial in the definition of relaxed
noninterference. Extending these rules can make the frame-
work more expressive. For example, if we have a policy
stating that x%4 is safe and the equivalence relation can es-
tablish that x%2 ≡ (x%4)%2, then x%2 is also safe with
respect to our policy. However, the equivalence relation
must provide a useful notion of security guarantee. Take
the password example again: if we use the usual definition
of observational equivalence to define relaxed noninterfer-
ence, it would make the following two terms equivalent:

σpwd ≡ (fix r(x) = if (σpwd=x) then x else r(x + 1)) 0
The consequence would be that any single occurence of the
variable σpwd can be considered as a public value of type
intL because it satisfies the definition of relaxed noninter-
ference. This is apparently not a good security guarantee.
Therefore, it is interesting to explore what equivalance rela-
tions are good for our purposes and how to formalize such
criteria.

Practical Application

Our framework can be practically adapted into existing
security-typed languages such as Jif. In our policy language,
some run-time library calls and API interfaces can be mod-
eled as operators and constants, such as encryption, pri-
mality testing and hash functions. The program annotation
work mainly involves marking secret and public variables;
the downgrading policies can be globally specified outside
the program. In ideal cases, most type annotations can
be automatically inferred during typechecking and the pro-
grammers do not need to write the downgrading policies for
each piece of data in the program. To achieve this goal,

169

more work needs to be done on type inference algorithms in
our framework.

Integrating with DLM

The decentralized label model (DLM) expresses policies like
“who can downgrade the data” and it is orthogonal to our
work. Since our security policies are also formalized as a lat-
tice of security levels, it is tempting to integrate our frame-
work with the decentralized label model so that we can ex-
press policies like “who can downgrade the data in which
ways” and achieve a better integration of access control and
information flow. There has been work on combining secu-
rity policies with owner information [2] in the style of DLM.
This is a promising research direction we are planning to
pursue in the future.

Proof Carrying Code and Information Flow

Our framework also facilitates the use of proof-carrying code
for information-flow security. The downgrading policies can
be specified as interfaces for untrusted software modules.
The untrusted code must come with a proof showing that
it respects our interfaces — in our framework, such a proof
even needs not to be a typing derivation; it is sufficient to
give a proof using program equivalence rules because our
security goal is expressed in this way. The trusted comput-
ing base is very small: we need not trust the soundness of
any type system; the correctness of our equivalence rules is
almost indubitable; the proof checker is easy to implement
correctly. Even without downgrading, our framework can
still be very valuable in this aspect. Since we are not re-
stricted to the use of type systems, the programmer could
use more expensive proof searching techniques so that more
expressive downgrading policies can be enforced.

9. CONCLUSION
In this paper, we studied the challenges of downgrading

in language-based information-flow security and presented a
generalized framework of downgrading policies. Such poli-
cies are treated as security levels for information flow con-
trol, specified in a simple, expressive, tractable and exten-
sible policy language, and enforced by a type system. The
security guarantee is then formalized as a concise and exten-
sional property called relaxed noninterference using program
equivalences, which generalizes traditional noninterference
properties and accurately describes the effects of downgrad-
ing. Alternative enforcement mechanisms can also be used.
Our framework now enables untrusted code to safely declas-
sify secrets and we can guarantee that information is only
leaked in permitted ways.

Acknowledgements
We would like to thank Stephen Chong, Stephen Tse, Ge-
offrey Washburn and the POPL reviewers for their valuable
feedbacks and extensive proofreading of the original draft.

References
[1] Anindya Banerjee and David A. Naumann. Secure

information flow and pointer confinement in a java-like
language. In Proc. of the 15th IEEE Computer Security
Foundations Workshop, 2002.

[2] Hubie Chen and Stephen Chong. Owned policies for
information security. In Proc. of the IEEE Computer
Security Foundations Workshop, 2004.

[3] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation.
In Proc. 31st ACM Symp. on Principles of Programming
Languages (POPL), pages 186–197, January 2004.

[4] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proc. IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society Press,
April 1982.

[5] James W. Gray, III. Towards a mathematical foundation
for information flow security. In Proc. IEEE Symposium on
Security and Privacy, pages 21–34. IEEE Computer Society
Press, 1991.

[6] Gavin Lowe. Quantifying information flow. In Proc. of the
IEEE Computer Security Foundations Workshop, pages
18–31. IEEE Computer Society Press, 2002.

[7] Heiko Mantel and David Sands. Controlled declassification
based on intransitive noninterference. In Proceedings of The
Second Asian Symposium on Programming Languages and
Systems, volume 3302 of LNCS. Springer, 2004.

[8] John McLean. Security models and information flow. In
Proc. IEEE Symposium on Security and Privacy, pages
180–187. IEEE Computer Society Press, 1990.

[9] Andrew C. Myers. JFlow: Practical mostly-static
information flow control. In Proc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages
228–241, San Antonio, TX, January 1999.

[10] Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442, 2000.

[11] Andrew C Myers, Andrei Sabelfeld, and Steve Zdancewic.
Enforcing robust declassification. In Proc. of the 17th IEEE
Computer Security Foundations Workshop, pages 172–186.
IEEE Computer Society Press, June 2004.

[12] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky.
Approximate non-interference. In Proc. of the IEEE
Computer Security Foundations Workshop, pages 1–17.
IEEE Computer Society Press, 2002.

[13] François Pottier and Sylvain Conchon. Information flow
inference for free. In Proc. 5th ACM SIGPLAN
International Conference on Functional Programming
(ICFP), pages 46–57, September 2000.

[14] François Pottier and Vincent Simonet. Information flow
inference for ML. In Proc. 29th ACM Symp. on Principles
of Programming Languages (POPL), Portland, Oregon,
January 2002.

[15] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? In Proc. of the 12th IEEE Computer
Security Foundations Workshop, 1999.

[16] Andrei Sabelfeld and Andrew Myers. A model for delimited
information release. In Proceedings of the International
Symposium on Software Security (ISSS’03), 2004.

[17] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1):5–19, January 2003.

[18] Dennis Volpano and Geoffrey Smith. Verifying secrets and
relative secrecy. In Proc. 27th ACM Symp. on Principles of
Programming Languages (POPL), pages 268–276. ACM
Press, January 2000.

[19] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A
sound type system for secure flow analysis. Journal of
Computer Security, 4(3):167–187, 1996.

[20] Steve Zdancewic and Andrew C. Myers. Robust
declassification. In Proc. of 14th IEEE Computer Security
Foundations Workshop, Cape Breton, Canada, June 2001.
IEEE Computer Society Press.

170

