
Formal Certification of a Compiler Back-end
or: Programming a Compiler with a Proof Assistant

Xavier Leroy
INRIA Rocquencourt
Xavier.Leroy@inria.fr

Abstract
This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about
programs—Mechanical verification.; D.2.4 [Software engi-
neering]: Software/program verification—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages]:
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

1. Introduction
Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers – and espe-
cially optimizing compilers – are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof, etc). What is formally verified
using formal methods is almost universally the source code; bugs
in the compiler used to turn this verified source into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming
paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
executable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.

Besides proclaiming “we have done it!”, the purpose of this pa-
per is to put our proof development in more general perspectives
(within the page limits of a conference paper). One such perspec-
tive is to revisit classic compiler technology from the semanticist’s
eye, in particular by distinguishing clearly between the correctness-
relevant and the performance-relevant aspects of compilation al-
gorithms, which are inextricably mixed in compiler literature. The
other perspective is on the suitability of a proof assistant such as
Coq not only for proving compiler-like symbolic computations, but
even for programming them.

2. Certified, certifying, verified compilation
General setting The formal verification of a compiler consists of
establishing a given correctness property Prop(S, C) between a
source program S and its compiled code C. Examples of correct-
ness properties include:

1. “S and C are observationally equivalent”;
2. “if S has well-defined semantics (does not go wrong), then S

and C are observationally equivalent”;
3. “if S has well-defined semantics and satisfies the functional

specification Spec, then C satisfies Spec”;
4. “if S is type- and memory-safe, then so is C”;
5. “C is type- and memory-safe”.

The correctness property we will use in the remainder of this paper
is of the form (2). Full observational equivalence (property 1) is
generally too strong: it requires the compiled code to go wrong
whenever the source program does according to its semantics. In
practice, compilers are free to generate arbitrary code for a source
program that has undefined behavior. Preservation of a specification
(property 3) is implied by property 2 if the specification Spec
depends only on the observable behavior of the program, which
is often the case. Therefore, establishing property 2 once and for
all spares us from establishing property 3 for many specifications
of interest. Property 4 is typical of a type-preserving compiler,
and is an instance of property 3.Finally, property 5 is an example
where the source code S plays no role in the property; it is typical
of a compiler that either establishes the property of interest (type
safety) directly on the compiled code, or establishes it on the source
program and preserves it during compilation.

In our general setting, a compiler Comp is a total function from
source programs to either compiled code (written Comp(S) =
Some(C)) or an error (written Comp(S) = None). The error case
must be taken into account, since compilers can fail to produce
compiled code, for instance if the source program is incorrect
(syntax error, type error, etc), but also if it exceeds the capacities
of the compiler (see section 4.6 for an example).

Certified compilers Using the definitions above, a certified com-
piler is any compiler Comp accompanied with a formal proof of the
following theorem:

∀S, C, Comp(S) = Some(C)⇒ Prop(S, C) (i)

In other terms, either the compiler reports an error or produces code
that satisfies the desired correctness property. Notice that the trivial
compiler Comp(S) = None for all S is indeed certified, though
useless. Whether the compiler succeeds to compile the source pro-
grams of interest is not a correctness issue, but a quality of imple-
mentation issue, which is addressed by non-formal methods such as
testing. The important feature, from a formal methods standpoint,
is that the compiler never silently produces incorrect code.

Proof-carrying code Proof-carrying code [23] and credible com-
pilation [30] make use of a certifying compiler, which is a func-
tion CComp that either fails (CComp(S) = None) or returns both

a compiled code C and a proof π of the property Prop(S, C)
(CComp(S) = Some(C, π)). The proof π can be checked inde-
pendently by the code user; there is no need to trust the code pro-
ducer, nor to formally verify the compiler itself. Of course, the cer-
tifying compiler can produce incorrect “proofs” π that do not estab-
lish Prop(S, C). This is again a quality of implementation issue:
wrong code C will not be silently accepted as long as the code user
checks the proof.

Translation validation In the translation validation approach [28,
24, 35, 31], the standard compiler Comp is complemented by a
verifier: a boolean-valued function Verif (S, C) that verifies the
property Prop(S, C) by static analysis of S and C. To obtain
formal guarantees, the verifier must be itself certified. That is, we
must prove that

∀S, C, Verif (S, C) = true⇒ Prop(S, C)

However, no formal verification of the compiler is needed. There
are no guarantees that the code generated by the compiler will
always pass the verifier: this is, again, a quality of implementation
issue, not a correctness issue.

Unifying PCC and translation validation In practical uses of
proof-carrying code, the certifying compiler is not required to gen-
erate a full proof term π of Prop(S, C): it is sufficient to generate
enough hints so that such a full proof can be reconstructed cheaply
on the client side by a specialized prover [25]. Symmetrically, prac-
tical uses of translation validation can take advantage of annota-
tions produced by the compiler (such as debugging information) to
help building a correspondence between S and C. A typical mid-
dle ground between proof-carrying code and translation validation
is type-checking of compiled code, as in Java bytecode verification
[32] or typed assembly language [22]: the compiler annotates the
code with enough type declarations that a full typing derivation can
be reconstructed easily at the client side.

To account for these mixed approaches, we consider that a cer-
tifying compiler CComp(S) returns either None or Some(C, A),
where A is an annotation (also called a certificate) that is passed
to the verifier, in addition to S and C, and helps it establish the
desired property. The correctness theorem for the verifier becomes

∀S, A, C, Verif (S, C, A) = true⇒ Prop(S, C) (ii)

In the case of pure proof-carrying code, A is a proof term and Verif
a general proof-checker; in the case of pure translation validation,
A is empty; finally, in the case of bytecode verification and typed
assembly language, A is a set of type annotations and Verif per-
forms type-checking with partial type inference.

Bridging certified and certifying compilers With this reformula-
tion, we can bridge formally the certified compiler approach and
the certifying/verified compiler approach. If CComp is a certify-
ing compiler and Verif a correct verifier, the following function is a
certified compiler:

Comp(S) =
match CComp(S) with
| None→ None
| Some(C, A)→ if Verif (S, C, A) then Some(C) else None

Theorem (i) follows immediately from theorem (ii).
Symmetrically, let Comp be a certified compiler and Π be a Coq

proof term for theorem (i). Via the Curry-Howard isomorphism, Π
is a function that takes S, C and a proof of Comp(S) = Some(C)
and returns a proof of Prop(S, C). A certifying compiler can be
defined as follows:

CComp(S) =
match Comp(S) with
| None→ None
| Some(C)→ Some(C, Π S C πeq)

(Here, πeq is a proof term for the proposition Comp(S) =
Some(C), which trivially holds in the context of the match above.
Actually building this proof term in Coq requires additional
baggage in the definition above that we omitted for simplicity.)
The accompanying verifier is the Coq proof checker, as in the
pure proof-carrying code approach. While the annotation produced
by CComp looks huge (it contains the proof of correctness for
the compilation of all source programs, not just for S), it can
conceivably be specialized for S and C using partial evaluation
techniques.

Compositionality Compilers are generally decomposed into sev-
eral passes that communicate through intermediate languages. It is
fortunate that both certified and certifying compilers can also be
decomposed in this manner. If Comp1 and Comp2 are certified
compilers from languages L1 to L2 and L2 to L3, respectively,
their (monadic) composition

Comp(S) =
match Comp1(S) with
| None→ None
| Some(I)→ Comp2(I)

is a certified compiler from L1 to L3, provided that the prop-
erty Prop is transitive, that is Prop(S, I) and Prop(I, C) imply
Prop(S, C). This is the case for the five examples of Prop we gave
earlier.

Similarly, if CComp1 and CComp2 are certifying compilers
from languages L1 to L2 and L2 to L3, and Verif 1, Verif 2 the
accompanying verifiers, a certifying compiler cum verifier from L1

to L3 can be constructed as follows:
CComp(S) =
match CComp1(S) with
| None→ None
| Some(I, A1)→
match CComp2(I) with
| None→ None
| Some(C, A2)→ Some(C, (A1, I, A2))

Verif (S, C, (A1, I, A2)) =
Verif 1(S, I, A1) ∧Verif 2(I, C, A2)

Summary The conclusions of this discussion are simple and de-
fine the methodology we have followed to certify our compiler
back-end. First, a certified compiler can be structured as a com-
position of compilation passes, as usual; each pass can be proved
correct independently. Second, for each pass, we have a choice be-
tween proving the code that implements this pass or performing the
transformation via untrusted code, then verifying its results using
a certified verifier. The latter can reduce the amount of code that
needs to be proved. Finally, provided the proof of theorem (i) is
carried out in a prover such as Coq that supports proof terms and
follows the Curry-Howard isomorphism, a certified compiler can at
least theoretically be used in a context of proof-carrying code.

3. The languages
3.1 The source language: Cminor
The input language of our back-end is called Cminor. It is a simple,
low-level imperative language inspired from C and C-- [26].

Syntax The language is classically structured in expressions,
statements, functions and programs.

Expressions:
a ::= id local variable
| id = a variable assignment
| op(~a) constants and arithmetic
| load(chunk , a) memory load
| store(chunk , a1, a2) memory store
| call(sig , a,~a) function call
| a1 && a2 sequential boolean “and”
| a1 || a2 sequential boolean “or”
| a1 ? a2 : a3 conditional expression
| let a1 in a2 local binding
| n reference to let-bound variable

Operators in expressions include all the arithmetic, logical and
comparison operations of the C language. Unlike in C, there is no
operator overloading nor implicit conversions: distinct arithmetic
operations are provided over 32-bit integers and 64-bit floats, as
well as operators for float/integer conversions and integer zero- and
sign-extensions. Loads and stores are given a memory address, ex-
plicitly computed using address arithmetic (byte-addressed mem-
ory), and a “memory chunk” indicating the kind, size and signed-
ness of the memory datum being accessed, e.g. “64-bit float” or “8-
bit sign-extended integer”. The let construct, written in de Bruijn
notation, enables sharing the evaluation of sub-expressions.

Statements:
s ::= a; expression evaluation
| if a {~s1} else {~s2} conditional
| loop {~s } infinite loop
| block {~s } delimited block
| exit n; block exit
| return; | return a; function return

The exit n statement terminates prematurely the n enclosing
block constructs. Combined with infinite loops and if-else state-
ments, blocks and exits suffice to express efficiently all reducible
control-flow graphs, notably those arising from C loops. No gen-
eral goto statement is provided.

Functions: fn ::= fun(~id) : sig { stack n; vars ~id ;~s }
Programs: prog ::= functions . . . id = fn . . . ;

vars . . . id [n] . . . ;
main id

In addition to parameters, local variable declarations and a func-
tion body (a list of statements), a function definition comprises a
type signature sig (see “Static typing” below) and a declaration
of how many bytes of stack-allocated space it needs. Variables in
Cminor do not reside in memory and their address cannot be taken.
However, the Cminor producer can explicitly stack-allocate some
data (such as, in C, arrays and scalar variables whose addresses are
taken). The stackaddrn nullary operator returns a pointer within
the stack block at byte offset n.

Programs are composed of a set of named function definitions,
a set of global variables along with their sizes, and a distinguished
function name representing the program entry point (main func-
tion). Addresses of functions and global variables can be taken us-
ing the addrsymbol(id) nullary operator.

Dynamic semantics The dynamic semantics of Cminor is given
in big-step, structured operational semantics. The semantics is
completely deterministic and imposes a left-to-right evaluation
order. The following judgments are defined using Coq inductive
predicates (inference rules):

G, sp, L ` a, E, M ⇒ v, E′, M ′ (expressions)
G, sp, L ` ~a, E, M ⇒ ~v, E′, M ′ (expression lists)

G, sp ` s, E, M ⇒ out, E′, M ′ (statements)
G, sp ` ~s, E, M ⇒ out, E′, M ′ (statement lists)

G ` fn(~v), M ⇒ v, M ′ (function calls)
` prog ⇒ v (whole programs)

Expressions evaluate to values v, which range over the discrim-
inated union of 32-bit integers, 64-bit floats, pointers (pairs of a
memory block reference and a byte offset), and undef (represent-
ing e.g. the value of an uninitialized variable). sp is the reference
to the stack block for the current function. The global environment
G maps symbols (function or global variable name) to values, and
function pointers to function definitions. We therefore have func-
tion pointers as first-class values, but in a “Harvard” model where
functions and data reside in different memory spaces. E is the local
environment, mapping local variables to values. L gives values to
let-bound variables inside expressions. For statement evaluations,
out (the “outcome” of the evaluation) expresses how the statement
terminated: either normally by falling through the next statement or
prematurely through an exit or return statement.

The only non-obvious components of the evaluation rules are
the initial and final memory states, M and M ′. Memory states map
block references to memory blocks, consisting of lower and up-
per bounds (fixed at allocation-time) plus a mapping from byte
offsets to their current contents. A full description of the mem-
ory model is given in [4] and goes beyond the scope of this pa-
per. The same memory model is used for all languages in our
compiler. To give the flavor of this model, the memory opera-
tions provided are alloc, free, load and store. load and store re-
turn an error if the accessed block was freed or the memory ac-
cess is outside the bounds of this block. They satisfy the follow-
ing “good variable” properties: if load(M, chunk , b, δ) = v and
store(M, chunk ′, b′, δ′) = M ′ and the addresses do not over-
lap (b 6= b′ or δ + |chunk | ≤ δ′ or δ′ + |chunk ′| ≤ δ), then
load(M ′, chunk , b, δ) = v; and if store(M, chunk , b, δ) = M ′

and chunk agrees with chunk ′ in kind and size (but may differ
in signedness), then load(M ′, chunk ′, b, δ) = cast(v, chunk ′).
Here, cast represents the zero- or sign-extension of integers or the
rounding of 64-bit floats to 32-bit floats possibly prescribed by
chunk ′. In all other cases of store followed by load (partial overlap
of the memory ranges; disagreement over the chunks), the result
of the load is undef. Thus, the memory model abstracts over the
byte-level representation of integers and floats.

Static typing Cminor is equipped with a trivial type system hav-
ing only two types: int and float. (Memory addresses have static
type int.) In addition, function definitions and function calls are
annotated with signatures sig giving the number and types of ar-
guments, and an optional type for the result. All operators are
monomorphic; therefore, the types of local variables can be in-
ferred from their uses and are not declared. The primary purpose
of this trivial type system is to facilitate later transformations (see
sections 4.4 and 4.6): by itself, the type system is too weak to give
type soundness properties (absence of run-time type errors). In par-
ticular, applying an operator to values of the wrong type, using an
undef value in any way, or calling a function whose signature dif-
fers from that given at the call site cause the program to get stuck:
its semantics are not defined and the compiler can (and does) gen-
erate incorrect code for this program. It is the responsibility of the
Cminor producer to avoid these situations, e.g. by using a richer
type system.

External Cminor vs. internal Cminor The language we have de-
scribed so far is the processor-independent interface offered to the
front-end. Internally, the back-end works over a slightly different

Cminor language that includes processor-specific constructs. The
conversion from external to internal Cminor is performed on the
fly via optimizing “smart constructors” described in section 4.1.
The internal Cminor constructs that differ from those of external
Cminor are the following:

Expressions:
a ::= opppc(~a) constants and arithmetic
| load(chunk ,mode,~a) memory load
| store(chunk ,mode, ~a1, a2) memory store
| c1 ? a2 : a3 conditional expression

Conditional expressions:
c ::= true | false always true, always false
| cond(cond ,~a) test cond over ~a
| c1 ? c2 : c3 nested conditional

Statements:
s ::= if c {~s1} else {~s2} conditional

The set of operators opppc for internal Cminor includes combined
operators that reflect what the target processor can do in one in-
struction. In the case of the PowerPC, internal operators include
integer operations with one immediate operand, as well as com-
bined operations (rotate-and-mask, multiply-add). Similarly, load
and store expressions in internal Cminor compute the memory
address from the value of several sub-expressions ~a combined us-
ing one of the processor’s addressing modes mode . Finally, a syn-
tactic class of conditional expressions (those expressions that are
evaluated for their truth value) is introduced, along with a specific
evaluation judgment G, sp, L ` c, E, M ⇒ b, E′, M ′ where b is
true or false.

3.2 Intermediate languages: RTL and variants
RTL Following a long-established tradition, the intermediate lan-
guages of our compiler are of the “register transfer language” kind,
also known as “3-address code”. The first intermediate language,
called RTL, represents functions as a control-flow graph (CFG) of
abstract instructions operating over pseudo-registers (temporaries).
Every function has an unlimited supply of pseudo-registers, and
their values are preserved across function call. In the following,
r ranges over pseudo-registers and l over labels of CFG nodes.

RTL instructions:
i ::= nop(l) no operation (go to l)
| op(opppc , ~r, r, l) arithmetic operation
| load(chunk ,mode, ~r, r, l) memory load
| store(chunk ,mode, ~r, r, l) memory store
| call(sig , (r | id), ~r, r, l) function call
| cond(cond , ~r, ltrue , lfalse) conditional branch
| return | return(r) function return

RTL control-flow graph:
g ::= l 7→ i finite map

RTL functions:
fn ::= fun(~r) : sig

{ stack n; start l; graph g }
Each instruction takes its arguments in a list of pseudo-registers ~r

and stores its result, if any, in a pseudo-register. Additionally, it
carries the set of its possible successors. We use instructions rather
than basic blocks as nodes of the control-flow graph because this
simplifies the semantics and reasoning over static analyses, without
significantly slowing compilation [16].

RTL and its variants are statically typed using the same trivial
type system as Cminor. Each register can be assigned a type int
or float based on the signature of the function and its uses within
the function.

The dynamic semantics of RTL is an original (to the best of
our knowledge) combination of small-step and big-step semantics,
expressed by three inductive predicates:

G, g, sp ` l, R, M → l′, R′, M ′ (one instruction)
G, g, sp ` l, R, M

∗→ l′, R′, M ′ (several instructions)
G ` fn(~v), M ⇒ v, M ′ (function call)

Here, R ranges over mappings from pseudo-registers to values.
Each instruction is executed as one transition over the triple (cur-
rent label, current values of registers, current memory state). How-
ever, function calls (the call instruction) are also executed as one
transition, thus hiding the sequence of transitions performed by the
called function. The following selected evaluation rules should give
the flavor of the semantics.

g(l) = op(op, ~r, rd, l′) v = eval op(op, R(~r))

G, g, sp ` l, R, M → l′, R{rd ← v}, M
g(l) = call(sig , rf , ~r, rd, l′) G(R(rf)) = fn

fn.sig = sig G ` fn(R(~r)), M ⇒ v, M ′

G, g, sp ` l, R, M → l′, R{rd ← v}, M ′

alloc(M, 0, fn.stack) = (sp, M1) R = {fn.params← ~v}
G, fn.graph, sp ` fn.start, R, M1

∗→ l′, R′, M2

fn.graph(l′) = return(r) R′(r) = v M ′ = free(M2, sp)

G ` fn(~v), M ⇒ v, M ′

This “mostly small-steps” semantics is perfectly suited to reasoning
over intra-procedural analyses and transformations. An induction
over a derivation of an evaluation produces exactly the expected
proof obligations: one for each single-instruction transition, one
for the sequential composition of two transitions, and one for the
execution of a function body. Unlike in pure small-step semantics,
the call stack does not need to be exposed in the semantics nor in
the proofs.

LTL Several variants of RTL are used as intermediate steps to-
wards PowerPC assembly code. These variants progressively re-
fine the notion of pseudo-register (eventually mapped to hardware
registers and stack slots in the activation record), as depicted in fig-
ure 1, as well as the representation of control (eventually mapped to
a linear list of instructions with explicit labels and branches). The
first such variant is LTL (Location Transfer Language). Control is
still represented as a flow graph, but the nodes are now basic blocks
instead of individual instructions. (The transformation from RTL to
LTL inserts reload and spill instructions; such insertions are easier
to perform on basic blocks.) More importantly, the pseudo-registers
are replaced by locations, which are either hardware processor reg-
isters r (taken from a fixed, finite set of integer and float registers)
or stack slots s.

LTL basic blocks:
b ::= setstack(r, s) :: b register to slot move
| getstack(s, r) :: b slot to register move
| op(op, ~r, r) :: b arithmetic operation
| load(chunk ,mode, ~r, r) :: b memory load
| store(chunk ,mode, ~r, r) :: b memory store
| call(sig , (r | id)) :: b function call
| goto(l) unconditional branch
| cond(cond , ~r, ltrue , lfalse) conditional branch
| return function return

LTL control-flow graph:
g ::= l 7→ b finite map

LTL functions:
fn ::= fun() : sig

{ stack n; start l; graph g }
Stack slots:

s ::= Local(τ, δ) local variables
| Incoming(τ, δ) incoming parameters
| Outgoing(τ, δ) outgoing arguments

In stack slots, τ is the intended type of the slot (int or float) and
δ an integer intended as a word offset in the corresponding area of
the activation record.

Note that functions as well as call and return instructions
no longer list the registers where arguments, parameters and return
values reside. Instead, arguments and return values are passed in
fixed registers and stack slots determined by the calling conventions
of the processor.

Stack slots are not yet mapped to memory locations in the
activation record: their values, like those of processor registers, is
found in a mapping L of locations to values that plays the same
role as the mapping R of pseudo-registers to values in the RTL
semantics. However, the behavior of location maps L reflects what
will happen when stack slots are later mapped to memory. This is
especially apparent in the transition rule for function calls in LTL:

G(L(rf)) = fn fn.sig = sig
G ` fn, entryfun(L), M ⇒ v, L′, M ′

G, g, sp ` call(sig , rf) :: b, L, M → b, exitfun(L, L′), M ′

alloc(M, 0, fn.stack) = (sp, M1)

G, fn.graph, sp ` g(fn.start), L, M1
∗→ return, L′, M2

M ′ = free(M2, sp)

G ` fn, L, M ⇒ v, L′, M ′

The entryfun and exitfun functions capture the behavior of
locations across function calls: processor registers are global but
some are preserved by the callee, Local and Incoming slots of the
caller are preserved, and the Incoming slots of the callee are the
Outgoing slots of the caller.

Location l entryfun(L)(l) exitfun(L, L′)(l)
r L(r) L(r) if r is callee-save

L′(r) if r is caller-save
Local(τ, δ) undef L(Local(τ, δ))
Incoming(τ, δ) L(Outgoing(τ, δ)) L(Incoming(τ, δ))
Outgoing(τ, δ) undef L′(Incoming(τ, δ))

Another peculiarity of locations is that distinct stack slots may
overlap, that is, they will be later mapped to overlapping mem-
ory areas. For instance, Outgoing(float, 0) overlaps with
Outgoing(int, 0) and Outgoing(int, 1): a write to the former
invalidates the values of the latter, and conversely. This is re-
flected in the weak “good variable” property for location maps:
(L{loc1 ← v})(loc2) = L(loc2) only if loc1 and loc2 do not
overlap; it does not suffice that loc1 6= loc2.

Linear The next intermediate language in our series is Linear,
a variant of LTL where the control-flow graph and the basic
blocks are replaced by a list of instructions with explicit labels and
branches. (Non-branch instructions continue at the next instruction
in the list.)

Linear instructions:
i ::= setstack(r, s) register to slot move
| getstack(s, r) slot to register move
| op(op, ~r, r) arithmetic operation
| load(chunk ,mode, ~r, r) memory load
| store(chunk ,mode, ~r, r) memory store
| call(sig , (r | id)) function call
| label(l) branch target label

Saved regs
& ret. addr.
Stack-allocd

locals
Outgoing
arguments
Reserved

Reserved

Outgoing
arguments

Hardware
registers

Cminor
stack data

Stack
Local
Stack

Outgoing
Stack

Incoming
Allocatable

registers
Temporary

registers

Cminor
stack data

Pseudo-
registers

Cminor
stack data

Back link

Back link

Hardware
registers

M(sp) M(sp) M(sp)

R

L

S (Callee)

P (Caller)

M(sp) (Callee)

(Caller)

R R

RTL LTL & Linear Mach, intermediate semantics Mach, final semantics
M

em
or

y
E

nv
ir

on
m

en
ts

Figure 1. Overview of register allocation and introduction of activation records. For each intermediate language, the placement of function-
local data is outlined, either in the memory-allocated activation record (top part) or in non memory-resident execution environments (bottom
part).

| goto(l) unconditional branch
| cond(cond , ~r, ltrue) conditional branch
| return function return

Linear functions:
fn ::= fun() : sig

{ stack n; start l; code~ı }
The dynamic semantics of Linear, like those of RTL and LTL, is
“mostly small-steps”: each instruction is a transition in the seman-
tics, but a call instruction transitions directly to the state at func-
tion return.

Mach The last intermediate language in our gentle descent to-
wards PowerPC assembly is called Mach. It is a variant of Lin-
ear where the three infinite supplies of stack slots (local, incoming
and outgoing) are mapped to actual memory locations in the stack
frames of the callee (for local and outgoing slots) or the caller (for
incoming slots).

Mach instructions:
i ::= setstack(r, τ, δ) register to stack move
| getstack(τ, δ, r) stack to register move
| getparent(τ, δ, r) caller’s stack to register move
| . . . as in Linear

In the three new move instructions, τ is the type of the data moved
and δ its word offset in the corresponding activation record. The
semantics of call is also modified so that all hardware registers
are global and shared between caller and callee: there is no auto-
matic restoration of callee-save registers at function return; instead,
the Mach code producer must produce appropriate setstack and
getstack instructions to save and restore used callee-save regis-
ters at function prologues and epilogues.

The semantics for Mach is of the form G, fn, sp ` ~ı, R, M →
~ı ′, R′, M ′, where R is a mapping from hardware registers to val-
ues, and setstack, getstack and getparent are interpreted as

sp-relative memory accesses. An alternate semantics, described in
section 4.6, is also used as an intermediate step in one proof.

3.3 The target language: PowerPC macro-assembler
The target language for our compiler is abstract syntax for a subset
of the PowerPC assembly language (90 instructions of the 200+
offered by the processor). The semantics is purely small-step and
defines a transition over the state of registers and memory for every
instruction. The registers modeled are: all general-purpose integer
and float registers, the PC, LR and CTR special registers, and bits 0
to 3 of the condition register.

The semantics is (to the best of our knowledge) faithful to
the actual behavior of PowerPC instructions, with one exception:
the fmadd and fmsub instructions (combined multiply-add and
multiply-sub over floats) are treated as producing the same results
as a normal multiply followed by a normal addition or subtraction,
ignoring the fact that fmadd and fmsub skip a rounding step on the
result of the multiply. Depending on how the certification of the
source program treats floating-point numbers (e.g. as IEEE floats
or as intervals of real numbers), this infidelity can be semantically
correct or not. It is however trivial to turn off the generation of
fmadd and fmsub instructions in case exact results at the bit level
are required.

Our PowerPC assembly language features a handful of macro-
instructions that expand to canned sequences of actual instruction
during pretty-printing of the abstract syntax to concrete assembly
syntax. These macro-instructions include allocation and dealloca-
tion of the stack frame (mapped to arithmetic on the stack pointer
register), integer to float conversions (mapped to complicated bit-
level manipulations of IEEE floats), and loading of a floating-point
literal (mapped to a load from a memory-allocated constant). The
reason for treating these operations as basic instructions is that it
was deemed too difficult and not worthwhile to certify the correct-
ness of the corresponding canned sequences. For instance, proving

the integer to float conversions necessitates a full bit-level formal-
ization of IEEE float arithmetic, which we have not done (we sim-
ply axiomatize float operations and their arithmetic properties). We
estimate that, just like conversion from assembly language to ma-
chine code, the expansion of these macro-instructions can realisti-
cally be certified by rigorous testing: the need for a formal proof is
lower than for the rest of the compiler.

4. Compiler passes and their correctness proofs
4.1 Instruction selection and reassociation
The first pass of the compiler is a translation from external Cmi-
nor to internal Cminor that recognizes the combined operations and
addressing modes provided by the target processor. It also encodes
the external Cminor operators that do not correspond to a proces-
sor instruction, e.g. binary not is expressed using not-or. Addition-
ally, algebraic reassociation is performed for integer addition and
multiplication, and for shifts and logical “and”. About 50 rewriting
rules are applied to Cminor expressions. Representative examples
of rules are:

add(e, intconst(n)) → addin(e)

add(addin(e1), addim(e2)) → addin+m(add(e1, e2))

add(e1, addin(e2)) → addin(add(e1, e2))

mulim(addin(e)) → addim×n(mulim(e))

shl(e, intconst(n)) → rolmn,(−1)¿n(e)

shru(e, intconst(n)) → rolm32−n,(−1)Àn(e)

and(e, intconst(n)) → rolm0,n(e)

rolmn1,m1(rolmn2,m2(e)) → rolmn1+n2,m(e)

with m = rol(m1, n2) ∧m2

or(rolmn,m1(e), rolmn,m2(e)) → rolmn,m1∨m2(e)

if e has no side-effects

(rolmn,m is a left rotation by n bits followed by a logical “and”
with m.) While innocuous-looking, these rules are powerful
enough to e.g. recognize a rolm3,−1 instruction for the common
C idiom (x << 3) | (x >> 29).

These rewriting rules are applied in one bottom-up pass and en-
capsulated as “smart constructor” functions invoked by the Cminor
producer. For instance, the make_add constructor takes two nor-
malized internal Cminor expressions e1, e2 and returns a normal-
ized expression semantically equivalent to add(e1, e2). Normal-
ized internal Cminor expressions therefore play the role of abstract
syntax for external Cminor expressions.

Proving the correctness of these transformations amounts to
showing that the external Cminor evaluation rule for, say, add ex-
pressions is admissible in internal Cminor if the add operator is
interpreted by its smart constructor make_add. Routine case anal-
ysis and inversion on the evaluation derivations of sub-expressions
reduces this proof to showing that the rewriting rules above are
valid when interpreted as equalities over values. To this end, we
had to develop a fairly large and difficult formalization of N -bit
machine integers and of the algebraic properties of their arithmetic
and logical operations.

4.2 RTL generation
The translation from internal Cminor to RTL is conceptually sim-
ple: the structured control is encoded as a flow graph; expres-
sions are decomposed into sequences of RTL instructions; pseudo-
registers are generated to hold the values of Cminor variables and
intermediate results of expression evaluations. The decomposition
of expressions is made trivial by the prior conversion to internal
Cminor: every operation becomes exactly one Iop instruction.

A first difficulty is that we need to generate fresh pseudo-
registers and fresh CFG nodes, and incrementally enrich the CFG
with new instructions. Additionally, the translation can fail, e.g. in
case of a reference to an undeclared local variable. This would
cause no programming difficulties in a language featuring muta-
tion and exceptions, but these luxuries are not available in Coq,
which is a pure functional language. We therefore use a monadic
programming style using the state-and-error monad: every trans-
lation that computes a result of type α becomes a function with
return type mon α = state → (OK(state × α) | Error). The
state type comprises the current state of the CFG, an infinite sup-
ply of fresh graph nodes, and an infinite supply of fresh registers.
For instance, the translation function for expressions is of the form
transl expr map mut a rd nd : mon node, where a is a Cminor
expression, map a translation environment mapping local variables
and let-variables to pseudo-registers, and mut the set of Cminor
variables assigned to in a. If successful, the translation adds to the
flow graphs the instructions that compute the value of a, leave its
value in register rd, and branch to graph node nd. The return value
is the first node of this instruction sequence. Similar functions exist
for expression lists, conditional expressions (with two continuation
nodes ntrue and nfalse), and statements (with n + 2 continuation
nodes for normal continuation, return continuation, and n exit
continuations corresponding to the n blocks in scope). The follow-
ing excerpt from transl_expr should give the flavor of the trans-
lation:

match a with
| Eop op al =>

do rl <- alloc_regs map mut al;
do no <- add_instr (Iop op rl rd nd);

transl_exprlist map mut al rl no

Inspired by Haskell, do x <- a; b is a user-defined Coq notation
standing for bind a (λx.b).

A crucial property of these monadic translation functions is that
the state evolves in a monotone fashion: if s is the input state and s′

the output state, all nodes and registers fresh in s′ are also fresh
in s, and all node to instruction mappings present in s are present
identically in s′. This ensures in particular that all RTL executions
valid in the CFG of s also hold in the CFG of s′. A large part of
the correctness proof is devoted to establishing and exploiting this
monotonicity property.

The correctness of the translation follows from a simulation
argument between the executions of the Cminor source and the
RTL translation, proved by induction on the Cminor evaluation
derivation. In the case of expressions, the simulation property is
summarized by the following diagram:

sp, L, a, E, M
I ∧ P

sp, ns, R, M

sp, L, v, E′, M ′

ww

.......................
I ∧Q

sp, nd, R′, M ′
∗?

......

where transl expr map mut a rd nd s = OK(s′, ns), the
left column is the Cminor evaluation, and the right column is
the execution of several RTL instructions in the CFG of state s′.
Full lines stand for hypotheses, dotted lines for conclusions. The
invariant I expresses that the values of Cminor local variables and
let variables given by E and L are equal to the values of the
corresponding registers (according to map) in R. The precondition
P says that rd is either the register associated to the variable that
a refers to, or a non-fresh register not mapped with any variable
otherwise. The postcondition Q says that R′(rd) = v and R′(r) =
R(r) for all registers r distinct from rd, not mapped with any
variable, and not fresh in the initial state s. In other terms, the

generated instruction sequence stores value v in register rd and
preserves the values of temporary registers generated earlier to hold
the results of other sub-expressions.

35 such diagrams are proved, one for each Cminor evaluation
rule. An easy induction on the evaluation derivation in Cminor then
shows the main correctness theorem: if a Cminor program p evalu-
ates to value v and successfully translates to the RTL program p′,
then p′ evaluates to value v.

4.3 Optimizations at the RTL level
The next passes in our compiler are optimizations based on
dataflow analysis performed on the RTL intermediate language.
Two such optimizations are currently implemented: constant
propagation and common subexpression elimination. (A detailed
description of an earlier development of these optimizations can
be found in [3].) Both optimizations make use of generic solvers
for forward dataflow inequations of the form

A(s) ≥ T (l, A(l)) if s is a successor of l

A(l) ≥ A0(l) for all l

where T is a transfer function and the unknowns A(l) range over
an ordered type of abstract values (compile-time approximations).
Two such solvers are provided as modules (functors) parameterized
over the structureA of abstract values. The first is Kidall’s worklist
algorithm, applicable if A has a least upper bound operation. The
second performs simple propagation over extended basic blocks,
setting A(l) = > in the solution for all program points l that have
several predecessors.

In the case of constant propagation, the abstract values are
functions from pseudo-registers to value approximations > | ⊥ |
int(i) | float(f) | addrglobal(id + δ), and the transfer
function T is the obvious abstract interpretation of the semantics
of RTL instructions over these abstract values. Kildall’s algorithm
is used to solve the dataflow inequations.

The code transformation exploiting the results of this analysis is
straightforward: Iop instructions become “load constant” instruc-
tions if the values of all argument registers are statically known,
or are turned into cheaper immediate forms of the instructions if
some argument values are known; Icond instructions where the
condition can be statically evaluated are turned into Inop to the
appropriate successor. The structure of the control-flow graph is
preserved (no nodes are inserted), making this transformation easy
to express.

The correctness proof is, as usual, a simulation argument per-
formed by induction on the RTL evaluation of the input code. The
simulation diagrams are of the following form:

l, R, M
R : A(l)

l, R, M

s, R′, M ′
?

..............................
R′ : A(s)

s, R′, M ′
?

......

where the left column is one step of execution in the input code and
the right column is one step of execution in the optimized code.
The R : A(l) condition expresses agreement between the actual
register values and the results of the static analysis: if the analysis
predicts that a register has a known value, it must have this value at
run-time (in R).

Common subexpression elimination is performed by value
numbering over extended basic blocks. The abstract values are
pairs of a value numbering (a mapping from registers to value
numbers) and a set of equations between value numbers. The
dataflow inequations are solved with the extended basic block
solver, sparing us from computing l.u.b. of these abstractions
(which would be too expensive). In the simulation arguments, the

agreement relation R : A(l) is defined as equation satisfiability:
there must exist a mapping from abstract value numbers to concrete
values that satisfies the equations between value numbers stated in
A(l).

4.4 Register allocation
The next and most involved pass is a translation from RTL to LTL
that performs register allocation, insertion of spills and reloads,
and explicitation of calling conventions. The register allocator is
based on coloring of an interference graph, in the style of Chaitin
[7], using the George-Appel [12] heuristic for graph coloring and
coalescing. The notable feature of our implementation is that the
George-Appel coloring procedure is not certified, but the colorings
it returns are verified correct a posteriori by a certified verifier.
Graph coloring is a paradigmatic example of a computation where
verifying the results is much simpler than certifying the algorithm
itself.

Register allocation starts with a standard liveness analysis per-
formed by backward dataflow analysis. We reuse our generic im-
plementation of Kildall’s algorithm after inverting the edges of the
control-flow graph. An interference graph is then built following
Chaitin’s rules and proved to contain all the necessary interference
edges. Interferences are of the form “these two pseudo-registers
interfere” or “this pseudo-register and this hardware register in-
terfere”, the latter being used to ensure that pseudo-registers live
across a function call are not allocated to caller-save registers. Pref-
erence edges (“these two pseudo-registers should preferably be al-
located the same location” or “this pseudo-register should prefer-
ably be allocated this location”) are also recorded, although they
do not affect correctness of the register allocation, just its quality.
Finally, type reconstruction is performed on the RTL input code,
associating an int or float type to every pseudo-register. This
enables the graph coloring to choose hardware registers and stack
slots of the appropriate class.

Coloring of the interference graph is then performed by an
implementation of the George-Appel algorithm written directly
in Caml and not certified. It returns a mapping σ from pseudo-
registers to locations. The correctness conditions for this mapping
are:

1. σ(r) 6= σ(r′) if r and r′ interfere;
2. σ(r) 6= l if r and l interfere;
3. σ(r) is a hardware non-temporary register or a Local stack slot

of the same type as r, for all r.

These conditions are checked by boolean-valued functions written
in Coq and proved to be decision procedures for the three condi-
tions. Compilation is aborted if the checks fail, which denotes a
bug in the external graph coloring routine.

The translation from RTL to LTL replaces references to pseudo-
register r by references to σ(r) if the latter is a hardware register.
If σ(r) is a stack slot, reload or spill instructions between
σ(r) and temporary hardware registers are inserted around the
instruction, and the temporary register is used instead of r.1 Dead
instructions (side-effect-free instructions whose result is not live)
are eliminated, as well as move r, r′ instructions where σ(r) =
σ(r′).

In parallel, calling conventions are enforced: moves are intro-
duced between the function parameters and arguments and results
of function calls, on the one hand, and fixed locations prescribed

1 We designate 2 integer registers and 3 float registers as temporaries, not
used by register allocation. This does not follow compiler textbooks, which
prescribe re-running register allocation to assign registers to reload and spill
temporaries. However, this practice is hard to prove correct, if only w.r.t.
termination of register allocation.

by the PowerPC calling conventions (as functions of the type sig-
natures of the functions and calls) on the other hand. These moves
are of the “parallel move” kind, since some locations can be both
sources and destinations. It is folklore that such parallel moves can
be translated to sequences of individual moves using at most one
temporary register of each type. Showing the correctness of the
parallel move compilation algorithm is one of the most difficult
proofs in this project; the proof was kindly contributed by Rideau
and Serpette [29].

The correctness of this translation is proved using simulation
diagrams of the following form:

l, R, M
l ` R ≈ L

l, L, M

s, R′, M ′
?

....................................
s ` R′ ≈ L′

s, L′, M ′
∗ ?

......

putting in correspondence the execution of one RTL source instruc-
tion (left) with that of zero, one or several LTL transformed instruc-
tions (right). The invariant l ` R ≈ L is defined as

R(r) = L(σ(r)) for all pseudo-registers r live at point l

This property – that we have never seen spelled explicitly in com-
piler literature – captures concisely and precisely the essence of
register allocation: allocation preserves the values of all registers,
with the exception of dead registers whose values are irrelevant.
Simple properties of the invariant above, combined with those of
the interference graph, provide most of the proofs for the diagrams.
The proofs are however marred by lots of administrative work to
enforce non-overlapping hypotheses between the various kinds of
locations, especially between allocatable and temporary hardware
registers.

4.5 Linearization
The next compilation step is a translation from LTL to Linear that
linearizes the control-flow graph. Discussions of linearization in
textbooks focus on trace picking heuristics that reduce the num-
ber of jumps introduced, but consider the actual production of lin-
earized code trivial. Our first attempts at proving directly the cor-
rectness of a trace picking algorithm that builds linearized code and
shortens branches to branches on the fly showed that this is not so
trivial.

A better approach is to decompose linearization in a way that
clearly separates the heuristic parts from the correctness-critical
parts. First, branches to branches are eliminated by rewriting the
CFG (tunneling). Second, an enumeration of the reachable nodes
of the CFG is produced as an ordered list. Third, the CFG instruc-
tions are put in a list according to this order. Every instruction is
unconditionally followed by a goto to the label of its successor in
the CFG. Fourth, gotos that branch to an immediately following
label are eliminated.

The correctness of the tunneling and final goto elimina-
tion transformations is trivial to prove. More interestingly, the
actual linearization according to a pre-computed enumeration
can be proved correct under surprisingly weak hypotheses: any
enumeration where every CFG reachable node appears exactly
once produces Linear code semantically equivalent to the input
LTL code. For the naive enumeration function we used, this
property can be proved easily on the function itself. However,
more advanced trace picking heuristics can also be used as “black
boxes” and their results validated a posteriori, like we did for graph
coloring.

4.6 Laying out the stack frame
The next translation step, from Linear to Mach, makes explicit the
layout of the stack frame for each function. This is another example
of a compiler pass that is considered obvious in compiler literature,
yet surprisingly hard to prove correct – in particular because this is
the first and only pass that changes the memory layout.

Our stack frames are standard, comprising Cminor stack data,
Local and Outgoing stack slots, an area to save callee-save regis-
ters and the return address register, and a back pointer to the frame
of the caller. Since our memory model does not ensure that our
frame is allocated just below that of our caller, the back pointer is
necessary to access our Incoming stack slots (stack-allocated pa-
rameters), which reside in the Outgoing part of the caller’s frame.
The compiler determines the size and layout of the stack frame af-
ter scanning the Linear code to compute how many slots of each
kind and how many callee-save registers are used. It then translates
references to stack slots into actual sp-relative loads and stores. It
also adds function prologues and epilogues that save and restore
the values of used callee-save registers.

This simple code transformation is surprisingly difficult to
prove correct – so much so that we broke the proof in two
sub-proofs, using two different semantics for Mach code. (See
figure 1 again for intuitions.) The first semantics is of the form
G, fn, sp ` ~ı, R, S, P, M → ~ı ′, R′, S′, P ′, M ′. Here, the stack
block M(sp) is the same as in Linear and contains only Cminor
stack data; the other components of the stack frame are stored in
the S environment, which has the same structure as a memory
block contents, but resides outside the heap (and therefore cannot
be aliased with other memory blocks). P is similar to S, but
represents the caller’s frame. The Mach instructions getstack,
setstack and getparent are interpreted as accesses inside S
and P . Equipped with this semantics, we show simulation
diagrams of the form

~ı, L, M
L ≈ R, S, P

T (~ı), R, S, P, M

~ı ′, L′, M ′
?

....................................
L′ ≈ R′, S′, P ′

T (~ı ′), R′, S′, P ′, M ′
?
......

The L ≈ R, S, P invariant expresses agreement between the
location-to-value mapping L and the register-to-mapping R plus
the frame contents S and P : for all registers, L(r) = R(r), and for
all valid stack slots s, L(s) = load(B, chunk , δ) where chunk
and δ are the memory chunk and offset appropriate for s, and B is
S, S or P respectively for local, outgoing, and incoming slots s.

The main difficulty of the proof, apart from exploiting the ab-
sence of overlap between the different areas of the stack frame,
is type-related. Linear environments L are untyped, meaning that
(L{l ← v})(l) = v even if the type of v does not match that of
location l. However, this does not hold for memory block contents
such as S: storing a float value in an integer memory chunk and
reading it back returns undef, not the float value. To show the com-
mutation of the diagram in the case of the setstack operation, we
therefore add the hypothesis that the Linear code~ı is well typed in
the same trivial, int-or-float type system that we used for Cmi-
nor. This type system is weakly sound, in the following sense: if
the program does not get stuck at run-time, locations of type int
always contain integer, pointer or undef values (which are pre-
served by an int store followed by an int load), and locations of
type float always contain float or undef values (preserved by a
float store followed by a float load).

The well-typedness of the input Mach code could be established
by prior type reconstruction. However, we already performed type
reconstruction on the RTL code for the purposes of register alloca-

Code Code Specifi- Theorems Proofs Other Total
(in Coq) (in Caml) cations

Data structures, proof auxiliaries 268 70 - 514 933 489 2274
Integers, floats, memory model, values 221 18 851 1159 2872 449 5570
Cminor semantics - - 257 - - 21 278
Instruction recognition, reassociation 693 - - 186 462 99 1440
RTL semantics and type reconstruction 194 - 196 253 673 94 1410
RTL generation 279 - - 858 1626 224 2987
Optimizations over RTL 1235 - - 633 1447 325 3640
LTL semantics - - 354 61 151 56 622
Register allocation 800 521 - 1907 4897 375 8500
Linear semantics - - 238 20 34 48 340
Linearization 133 - - 412 749 129 1423
Mach semantics - - 494 366 710 96 1666
Layout of activation records 116 - - 469 987 156 1728
PPC semantics - - 479 6 9 33 527
PPC generation 407 - - 700 1705 127 2939
Compiler driver, Cminor parser, PPC printer 32 704 - 43 98 61 938
Total 4378 1313 2869 7587 17353 2782 36282

Figure 2. Size of the development (in non-blank lines of code)

tion, so we chose instead to prove that the subsequent transforma-
tions (to LTL, then to Linear, then to Mach) are type-preserving.

We are not done yet: it remains to show semantic preservation
for the “real” semantics of Mach code G, fn, sp ` ~ı, R, M →
~ı ′, R′, M ′ where the whole of the activation record is stored in
memory (in block M(sp)), the S and P state components disap-
pears, and getstack and setstack instructions are interpreted as
sp-relative memory loads and stores. To this end, we show that the
two Mach semantics are equivalent for the Mach code produced in
this pass:

~ı, R, S, P, M
M ≤M1 ∧ S, P ≈ sp/M1

~ı, R, M1

~ı ′, R′, S′, P ′, M ′
?

...
M ′ ≤M ′

1 ∧ S′, P ′ ≈ sp/M ′
1

~ı ′, R′, M ′
1

?

......

Here, M ≤M1 means that all memory blocks in M1 are at least as
big as in M and have the same contents on offsets that are valid in
M . Also, S, P ≈ sp/M1 means that the contents of S and P agree
with those of the first two memory blocks in the chained frame
list starting at sp in M1. The proof of this semantic equivalence
is difficult, involving non-trivial reasoning on memory operations
and on the fact that stack blocks for all simultaneously active
function activations are pairwise distinct. A required hypothesis,
which came as a complete surprise to us, is that the size of every
activation record must be less than 232 bytes, otherwise some stack
slots cannot be accessed using 32-bit offsets from sp. The compiler
therefore checks the size of activation records and fails if this bound
is exceeded.

4.7 Generation of PowerPC assembly code
The final pass of the compiler translates from Mach code to ab-
stract syntax for PowerPC assembly language. The translation is a
straightforward expansion of Mach instructions, operators and ad-
dressing modes to canned PowerPC instruction sequences. The cor-
rectness proof is large because many cases have to be considered,
but presents no difficulties.

5. Experimental evaluation
Size of the development The size of the development can be es-
timated from the line counts given in figure 2. The whole develop-

ment, which took one man-year, represents approximately 35000
lines of Coq, plus 1500 lines of code directly written in Caml. The
Coq function definitions that represent the compiler itself accounts
for 13% of the Coq source. In other terms, the certification is about
8 times bigger than the code it proves. The remaining 87% com-
prise 8% of specifications (mostly, operational semantics for the
various languages), 22% of statements of theorems and lemmas
and supporting definitions, 50% of proof scripts and 7% of direc-
tives and custom tactics. Concerning the sizes of individual passes,
the largest by far is register allocation, which is not surprising given
that it is the most sophisticated part of the compiler. Some passes
involving large definitions and proofs by case (optimizations over
RTL, PPC generation) also have high line counts but are much sim-
pler to prove correct.

Performance of generated code The C to Cminor front-end is not
operational at the time of this writing; therefore, the compiler was
benchmarked only on small programs hand-translated to Cminor.
Figure 3 compares the execution times of these programs compiled
by our certified back-end with those of equivalent C programs
compiled by gcc at various optimization levels.

The test suite is too small to draw definitive conclusions. Yet, it
seems that the certified compiler delivers performance only slightly
inferior to gcc at optimization level 1, and much better than gcc
at optimization level 0. Therefore, the original performance goal
– being competitive with the non-optimizing compilers used for
critical embedded software – appears met. The figures for gcc -O3
suggest that 20–30% performance gains are possible if we certify a
few more optimizations, notably loop optimizations.

Compilation times are entirely acceptable: between 50% and
200% of the compilation times for gcc -O1.

6. Lessons learned, limitations, and perspectives
On the choice of semantics We used big-step semantics for the
source language, “mixed-step” semantics for the intermediate lan-
guages, and small-step semantics for the target language. A con-
sequence of this choice is that our semantic preservation theorems
hold only for terminating source programs: they all have premises
of the form “if the source program evaluates to result r”, which
do not hold for non-terminating programs. This is unfortunate for
the application area targeted: critical embedded software are gener-
ally reactive programs that never terminate. . . Equally disappoint-

Test Certified gcc -O0 gcc -O1 gcc -O3
program compiler
AES 1.26s (94%) 4.02s (29%) 1.18s (100%) 0.88s (134%)
Almabench 5.35s (99%) 6.09s (86%) 5.28s (100%) 5.20s (101%)
FFT 1.32s (97%) 1.58s (81%) 1.28s (100%) 1.27s (101%)
Fibonacci 0.71s (96%) 1.64s (41%) 0.68s (100%) 0.55s (124%)
Integral 0.47s (53%) 1.10s (22%) 0.25s (100%) 0.18s (139%)
Quicksort 1.04s (103%) 2.15s (50%) 1.08s (100%) 0.96s (112%)
SHA1 4.42s (93%) 13.77s (29%) 4.10s (100%) 3.43s (119%)

Figure 3. Performance of generated PowerPC code. Times are in seconds on a 500 MHz G3 processor (Apple Cube). In parentheses,
performance relative to that of gcc -O1 (higher percentages are better)

ing is the fact that our proofs, read between the lines, actually show
much stronger results: function calls and returns, as well as reads
and writes to global variables, are in one-to-one correspondence
between the source and compiled code. However, actually prov-
ing such correspondences necessitates a shift away from big-step
semantics and towards small-step (transition) semantics, which ac-
count both for terminating and diverging executions as finite or in-
finite transition sequences, respectively.

For the intermediate languages, it should not be too difficult to
replace the “mixed-step” semantics by pure small-step (transition)
semantics, at some cost in the clarity of the proofs (e.g. the call
stack needs to be manipulated explicitly). For Cminor, a small-step
semantics is more difficult. Reduction semantics (where expres-
sions are rewritten at each execution step) do not commute with
compiler transformations such as RTL generation, which compli-
cates tremendously the correctness proof of the latter. Transition
semantics using explicit program points [9] appear more amenable
to proving the correctness of RTL generation, but require restricting
the Cminor language, prohibiting function calls within expressions.

On memory consumption Our memory model assumes an infi-
nite memory: allocation requests always succeed. This conflicts
with the intended applications to embedded software, where pre-
cise memory bounds is a must-have. It would be trivial to bound the
total memory size in the memory model and modify the semantics
so that they report failure if this bound is exceeded. The problem
is that compilation can increase the memory needs of a program:
stack allocation of spilled pseudo-registers increases arbitrarily the
size of activation records. Therefore, the semantic preservation the-
orem would no longer hold. In other terms, it is hopeless to prove
a stack memory bound on the source program and expect this re-
source certification to carry out to compiled code: stack consump-
tion, like execution time, is a program property that is not preserved
by compilation. The correct alternative is to establish the mem-
ory bound directly on the compiled code. If recursion and function
pointers are not used, which is generally the case for critical em-
bedded software, a simple, certified static analysis over Mach code
that approximates the call graph can provide the required memory
bounds.

On the choice of intermediate languages The RTL language and
its variants that we used as intermediate languages have several
advantages: they are simple, very well understood in compiler folk
lore, and easy to give formal semantics for. However, they do not
lend themselves to the efficient implementation of static analyses
and optimizations such as global CSE. We considered using SSA in
intermediate languages to enable efficient static analysis algorithms
such as global value numbering, but encountered two problems:
formal dynamic semantics for SSA are not obvious (but see [5]
for a recent exploration), and it is difficult for proofs to (locally)
exploit the (global) SSA property. Functional representations such
as A-normal forms could offer some of the benefits of SSA with

clearer semantics. The alternative that looks most promising is to
keep the RTL language unchanged, but perform static analyses in
untrusted Caml code that could internally convert to SSA and back
for efficiency reasons, then verify the correctness of the results of
the analysis. This way, only the verifier needs to be certified, but
not the analyses.

On programming in Coq At the beginning of this project, it was
not clear that the functional subset of the Coq specification lan-
guage was a powerful enough programming language for writing
a compiler. It turns out that it is, and being forced to program in
a purely functional style was actually a pleasant experience for
a long-time ML programmer such as the author. Three difficul-
ties were encountered, however. The first is the paucity of effi-
cient purely functional data structures in the Coq standard library.
We had to develop and prove correct some of our own data struc-
tures, but in the end were able to implement everything on top
of only three data structures: finite sets, finite maps and a func-
tional “union-find”, all implemented as binary trees with reason-
able O(log n) efficiency.

The second difficulty is the way complex pattern-matchings are
represented internally in Coq. For instance, the matching against
C1, C1 => a | _, _ => b of two terms of a 10-constructor
data type C1 | ... | C10 is represented internally as the
complete matching having 10 × 10 cases, 99 of which being b.
This causes much duplication in proofs and explosion of the size
of the extracted code. Various workarounds were needed, such as
the recourse to auxiliary classification functions.

The last difficulty is the treatment of general recursion in Coq.
The logic underlying Coq only supports structural recursion over
tree-shaped structures, generalizing primitive recursion. General
terminating recursion is provided by a library as Noetherian in-
duction over well-founded ordered types [2, chap.15]. Noetherian
induction is turned into structural induction over a proof that no
infinite decreasing sequences exist, which is an amazing feat of
logic, but is very hard to utilize when writing and proving pro-
grams. We therefore avoided general recursion as much as possible.
For instance, the formalizations of Kildall’s algorithm presented in
[1, 15, 3, 8] require that the semi-lattice of approximations is well
founded in order to guarantee termination. It is however painful
to ensure well-foundedness for approximations that are mappings
from pseudo-registers to abstract values: the number of registers
must be bounded, either a priori or by the set of registers actually
mentioned in the current function, which significantly complicates
proofs. We cut corners here in a major way by simply bounding a
priori the number of iterations performed by Kildall’s algorithm,
and turning off the corresponding optimization if a fixpoint is not
reached within that number of iterations (which can be chosen suit-
ably huge).

Certified transformation vs. certified verification In the current
state of our compiler, there is only one algorithm (the George-

Appel graph coloring) that is not proved correct in Coq, but whose
results are checked a posteriori by a verifier certified in Coq. In
retrospect, we should have followed this verification approach
for other algorithms, notably Kildall’s dataflow inequation solver
(whose results can be checked easily, avoiding the problem with
general recursion described above), RTL type reconstruction
(checking a register type assignment is easier than inferring it), and
the “parallel move” algorithm (whose results can also be checked
easily by symbolic interpretation of the sequence of elementary
moves produced). In every case, proving the correctness of the
verifier is significantly easier than proving that of the algorithm.

Going further, whole transformation passes could be performed
by untrusted code, then checked for semantic equivalence using
Hoare logic and symbolic evaluation as in [24]. However, it is not
clear yet how difficult it is to prove mechanically the correctness
of those semantic equivalence checkers. Still, this is a direction
worth investigating before embarking in the certification of com-
plex transformation algorithms.

On program extraction Automatic extraction of Caml code from
Coq specifications is another feature of the Coq environment on
which we depended crucially and which turned out to work satis-
factorily. The major difficulty for extraction is dealing with spec-
ifications that use dependent types intensively: the resulting Caml
code is not necessarily typeable in Caml, and it can contain large,
costly proof computations that do not contribute to the final result
and are eliminated by techniques akin to slicing [19]. However, our
functional specifications of the compiler were written without de-
pendent types, in pedestrian ML style. The delicate aspects of ex-
traction were therefore not exercised. The only difficulties encoun-
tered were with the compile-time reductions that the extraction tool
performs to produce cleaner, more efficient Caml code. It some-
times goes too far with β-reductions and η-expansions, resulting
in expensive computations such as graph coloring being performed
too many times. Our first extraction of the compiler was therefore
correct, but ran very slowly. Manual patching of the extracted Caml
code was necessary to undo this “optimization”.

On proving in Coq Coq proofs are developed interactively us-
ing a number of tactics as elementary proof steps. The sequence
of tactics used constitutes the proof script. Building such scripts
is surprisingly addictive, in a videogame kind of way, but read-
ing and reusing them when specifications change is difficult. Our
proofs make good use of the limited proof automation facilities
provided by Coq, mostly eauto (Prolog-style resolution), omega
(Presburger arithmetic) and congruence (equational reasoning).
However, these tactics do not combine automatically and signifi-
cant manual massaging of the goals is necessary before they apply.

Coq also provides a dedicated language for users to define their
own tactics. We used this facility occasionally, for instance to define
a “monadic inversion” tactic that recursively simplifies hypotheses
of the form (do x <- a; b) s = OK(s′, r) into s1; x; a s =
OK(s1, x); b s1 = OK(s′, r). There is no doubt that a Coq expert
could have found more opportunities for domain-specific tactics
and could have improved our proof scripts.

On the usability of Cminor as an intermediate language Cminor
was designed to allow relatively direct translation of a large subset
of C: everything except goto, unstructured switch, un-prototyped
functions, variable-argument functions, long long arithmetic,
setjmp/longjmp, and malloc/free. None of these features are
crucial for embedded critical software, except possibly goto.
Dynamic allocation (malloc and free) are easy to add to Cminor
since the memory model does not require that uses of alloc and
free follow a stack discipline. Another planned easy extension of
Cminor is a multi-way branch enabling more efficient compilation
of structured switch statements. The big unknown is whether

goto is needed, in which case a complete rework of Cminor
semantics is in order. The remainder of the compiler (RTL and
down) would be unaffected, however, since nowhere we assume
that the CFG is reducible.

The usability of Cminor for compiling higher-level source lan-
guages is unclear. Function pointers are supported, enabling the
compilation of object-oriented and functional languages. However,
Java, C++ and ML would also require primitive support for excep-
tions, which demands a major rework of the compiler. Tail-call op-
timization also requires significant work, as it is delicate to perform
when some function arguments are stack-allocated.

7. Related work
We have already discussed the relations between certified compil-
ers and other approaches to trusted compilation in section 2. In
this section, we focus the discussion on proofs of correctness for
compilers. A great many on-paper proofs for program analyses and
compiler transformations have been published – too many to survey
here, but see Dave’s bibliography [10]. In the following, we restrict
ourselves to discussing correctness proofs that involve on-machine
verification.

As is often the case in the area of machine-assisted proofs,
Moore was one of the first to mechanically verify semantic preser-
vation for a compiler [20, 21], although for a custom language and
a custom processor that are not commonly used.

The Verifix project [13] had goals broadly similar to ours: the
construction of mathematically correct compilers. The only part
that led to a machine-checked proof was the formal verification in
PVS of a compiler for a subset of Common Lisp to Transputer code
[11], neither of which are used for critical embedded systems.

Strecker [33] and Klein and Nipkow [15] certified non-
optimizing byte-code compilers from a subset of Java to a subset
of the Java Virtual Machine using Isabelle/HOL. They did not
address compiler optimizations nor generation of actual machine
code. Another certification of a byte-code compiler is that of
Grégoire [14], for a functional language.

In the context of the German Verisoft initiative, Leinenbach et
al [17] and Strecker [34] formally verified a compiler for a C-
like language called C0 down to DLX assembly code using the
Isabelle/HOL proof assistant. This compiler appears to work in a
single pass and to generate unoptimized code.

Rhodium [18] is a domain-specific language to describe pro-
gram analyses and transformations. From a Rhodium specification,
both executable code and an automatically-verified proof of se-
mantic preservation are generated. Rhodium is impressive by the
degree of automation it achieves, but applies only to the optimiza-
tion phases of a compiler and not to the non-optimizing translations
from one language to another, lower-level language.

Another project that concentrates on optimizations is the certi-
fied framework for abstract interpretation and dataflow analysis of
Cachera et al [6] and Pichardie [27]. Like us, they use the Coq proof
assistant for their certification.

8. Conclusions
The certified back-end presented in this paper is a first step, and
much work remains to be done to meet the initial goal of certifying
a compiler that is practically usable in the context of industrial for-
mal methods. However, the present work provides strong evidence
that this objective can eventually be met. We hope that this work
also contributes to renew scientific interest in the semantic under-
standing of compiler technology, in operational semantics “on ma-
chine”, and in integrated environments for programming and prov-
ing.

Acknowledgments
E. Ledinot made us aware of the need for a certified C compiler
in the aerospace industry. Several of the techniques presented here
were discussed and prototyped with members of the Concert IN-
RIA coordinated research action, especially Y. Bertot, S. Blazy,
B. Grégoire and L. Rideau. Our formalization of dataflow analyses
and constant propagation builds on that of B. Grégoire. L. Rideau
and B. Serpette contributed the hairy correctness proof for parallel
moves. D. Doligez proved properties of finite maps and type re-
construction for RTL. G. Necula argued convincingly in favor of a
posteriori verification of static analyses and optimizations.

References
[1] G. Barthe, P. Courtieu, G. Dufay, and S. M. de Sousa. Tool-

Assisted Specification and Verification of the JavaCard Platform.
In Proceedings of AMAST’02, volume 2422 of LNCS, pages 41–59.
Springer-Verlag, 2002.

[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development – Coq’Art: The Calculus of Inductive Constructions.
EATCS Texts in Theoretical Computer Science. Springer-Verlag,
2004.

[3] Y. Bertot, B. Grégoire, and X. Leroy. A structured approach to
proving compiler optimizations based on dataflow analysis. In Types
for Proofs and Programs, Workshop TYPES 2004, LNCS. Springer-
Verlag, 2005.

[4] S. Blazy and X. Leroy. Formal verification of a memory model for
C-like imperative languages. In International Conference on Formal
Engineering Methods (ICFEM 2005), volume 3785 of LNCS, pages
280–299. Springer-Verlag, 2005.

[5] J. O. Blech, S. Glesner, J. Leitner, and S. Mülling. Optimizing
code generation from SSA form: A comparison between two formal
correctness proofs in Isabelle/HOL. In Proc. COCV Workshop
(Compiler Optimization meets Compiler Verification), 2005.

[6] D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a
data flow analyser in constructive logic. In European Symposium on
Programming 2004, volume 2986 of LNCS, pages 385–400. Springer-
Verlag, 2004. Extended version to appear in Theor. Comp. Sci.

[7] G. J. Chaitin. Register allocation and spilling via graph coloring. In
Symp. Compiler Construction, volume 17(6) of SIGPLAN Notices,
pages 98–105. ACM Press, 1982.

[8] S. Coupet-Grimal and W. Delobel. A Uniform and Certified Approach
for Two Static Analyses. Research report 24-2005, Laboratoire
d’Informatique Fondamentale, Marseille, France, April 2005.

[9] P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

[10] M. A. Dave. Compiler verification: a bibliography. SIGSOFT Softw.
Eng. Notes, 28(6):2–2, 2003.

[11] A. Dold and V. Vialard. A mechanically verified compiling
specification for a Lisp compiler. In Proc. FST TCS 2001, volume
2245 of LNCS, pages 144–155. Springer-Verlag, 2001.

[12] L. George and A. W. Appel. Iterated register coalescing. ACM Trans.
Prog. Lang. Syst., 18(3):300–324, 1996.

[13] G. Goos and W. Zimmermann. Verification of compilers. In Correct
System Design, Recent Insight and Advances, volume 1710 of LNCS,
pages 201–230. Springer-Verlag, 1999.

[14] B. Grégoire. Compilation des termes de preuves: un (nouveau)
mariage entre Coq et Ocaml. PhD thesis, University Paris 7, 2003.

[15] G. Klein and T. Nipkow. A machine-checked model for a Java-
like language, virtual machine and compiler. Technical Report
0400001T.1, National ICT Australia, Mar. 2004. To appear in ACM
TOPLAS.

[16] J. Knoop, D. Koschützki, and B. Steffen. Basic-block graphs: Living
dinosaurs? In Proc. Compiler Construction ’98, volume 1383 of
LNCS, pages 65–79. Springer-Verlag, 1998.

[17] D. Leinenbach, W. Paul, and E. Petrova. Towards the formal

verification of a C0 compiler: Code generation and implementation
correctness. In Int. Conf. on Software Engineering and Formal
Methods (SEFM 2005), pages 2–11. IEEE Computer Society Press,
2005.

[18] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated
soundness proofs for dataflow analyses and transformations via local
rules. In 32nd symp. Principles of Progr. Lang, pages 364–377. ACM
Press, 2005.

[19] P. Letouzey. A new extraction for Coq. In Types for Proofs and
Programs, Workshop TYPES 2002, volume 2646 of LNCS, pages
200–219. Springer-Verlag, 2003.

[20] J. S. Moore. A mechanically verified language implementation.
Journal of Automated Reasoning, 5(4):461–492, 1989.

[21] J. S. Moore. Piton: a mechanically verified assembly-language.
Kluwer, 1996.

[22] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. ACM Trans. Prog. Lang. Syst., 21(3):528–
569, 1999.

[23] G. C. Necula. Proof-carrying code. In 24th symp. Principles of Progr.
Lang, pages 106–119. ACM Press, 1997.

[24] G. C. Necula. Translation validation for an optimizing compiler. In
Prog. Lang. Design and Impl. 2000, pages 83–95. ACM Press, 2000.

[25] G. C. Necula and S. P. Rahul. Oracle-based checking of untrusted
software. In 28th symp. Principles of Progr. Lang, pages 142–154.
ACM Press, 2001.

[26] S. L. Peyton Jones, N. Ramsey, and F. Reig. C--: a portable assembly
language that supports garbage collection. In PPDP’99: International
Conference on Principles and Practice of Declarative Programming,
volume 1702 of LNCS, pages 1–28. Springer-Verlag, 1999.

[27] D. Pichardie. Interprétation abstraite en logique intuitionniste:
extraction d’analyseurs Java certifiés. PhD thesis, University Rennes
1, Dec. 2005.

[28] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’98, volume 1384 of LNCS, pages 151–166. Springer-Verlag,
1998.

[29] L. Rideau and B. P. Serpette. Coq à la conquête des moulins. In
Journées françaises des langages applicatifs (JFLA 2005), pages
169–180. INRIA, 2005.

[30] M. Rinard and D. Marinov. Credible compilation with pointers. In
Proc. FLoC Workshop on Run-Time Result Verification, 1999.

[31] X. Rival. Symbolic transfer function-based approaches to certified
compilation. In 31st symp. Principles of Progr. Lang, pages 1–13.
ACM Press, 2004.

[32] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual
Machine. Springer-Verlag, 2001.

[33] M. Strecker. Formal verification of a Java compiler in Isabelle. In
Proc. Conference on Automated Deduction (CADE), volume 2392 of
LNCS, pages 63–77. Springer-Verlag, 2002.

[34] M. Strecker. Compiler verification for C0. Technical report,
Université Paul Sabatier, Toulouse, April 2005.

[35] L. D. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A translation
validator for optimizing compilers. Electr. Notes Theor. Comput. Sci.,
65(2), 2002.

