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This paper defines exception conditions, discusses 
the requirements exception handling language features 
must satisfy, and proposes some new language features 
for dealing with exceptions in an orderly and reliable 
way. The proposed language features serve to highlight 
exception handling issues by showing how deficiencies 
in current approaches can be remedied. 
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1. The Nature  of Exception Conditions 

Of  the cond i t ions  detected while a t t empt ing  to per- 
form some opera t ion ,  exception conditions are those 
b rough t  to the a t ten t ion  o f  the ope ra t ion ' s  invoker .  
The invoker  is then permi t ted  (or required)  to r e spond  
to the condi t ion .  Bringing an except ion cond i t ion  to 
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an invoker's attention is called raising an exception. 
The invoker's response is called handling the exception. 
Some properties of exception conditions relevant to 
language features for raising and handling them are: 

(a) an exception's full significance is known only 
outside the detecting operation; the operation is not 
permitted to determine unilaterally what is to be done 
after an exception is raised; 

(b) the invoker may be permitted to terminate the 
operation at the point of the exception's detection; the 
operation may specify that its termination is required; 

(c) the invoker controls whether or not a default 
response to the exception is to be activated; defaults 
are defined within the operation raising the exception 
and are executed unless the invoker prevents their 
execution. 

In essence, exceptions permit the user of an opera- 
tion to extend an operation's domain (the set of inputs 
for which effects are defined) or its range (the effects 
obtained when certain inputs are processed). Exceptions 
permit a user to tailor an operation's results or effects 
to his particular purpose in using the operation. In 
short, exceptions serve to generalize operations, making 
them usable in a wider variety of contexts than would 
otherwise be the case. Specifically, exceptions are used: 

(a) to permit dealing with an operation's impending 
or actual failure. Two types of failure are of interest: 
range failure, and domain failure; 

(b) to indicate the significance of a valid result or 
the circumstances under which it was obtained. 

(c) to permit an invoker to monitor an operation, 
e.g. to measure computational progress or to provide 
additional information and guidance should certain 
conditions arise. 

The value of making this classification of exception 
uses is the insight it gives into the need for various excep- 
tion-handling language capabilities. Although it may 
sometimes be difficult to decide precisely how to classify 
a given exception, this ambiguity is not crucial for the 
purposes of this paper. 

Range failure occurs when an operation either finds 
it is unable to satisfy its output assertion (i.e. its cri- 
terion for determining when it has produced a valid 
result), or decides it may not ever be able to satisfy its 
output assertion. For  example, a read operation does 
not satisfy its output assertion when it finds an end-of- 
file mark instead of a record to be read; this is a range 
failure of the first kind. The second type of failure is 
exemplified by encountering a parity error when at- 
tempting to read a record, since in this case, it is uncer- 
tain whether repeated attempts to read will or will not 
eventually be successful. For  a numerical algorithm, 
evidence of divergence is a range failure of the first 
kind; failure to converge after a certain amount  of 
effort has been expended would be a failure of the 
second kind. 

In general, to deal with range failures, the following 
capabilities are needed: 

684 

(a) The invoker needs the ability to abort the opera- 
tion; the operation also needs the ability to say it cannot 
do any more-- terminat ion is required. Sometimes as a 
side-effect of terminating the operation, it is necessary 
to undo all effects of attempting the operation. 

(b) The ability to tell the operation to try again is 
also required, since this may be a reasonable response 
in some circumstances (e.g. in the case of reading the 
bad tape record). 

(c) The ability to terminate the operation, returning 
partial results to the invoker, perhaps together with 
additional information needed to make sense of the 
results, is also required. For  example, in the case of the 
bad tape record, the invoker may be able to perform 
some independent check of the record's validity or he 
may be able to compensate for any errors found. In 
short, he may want to modify partial results to make 
them valid for his purposes. This capability is of obvious 
utility in increasing the generality of an operation, since 
the appropriate "fixup" actions (or even the possibility 
of fixing up the partial results) will vary from one use of 
the operation to the next. 

In short, range failure requires the ability to termi- 
nate an operation prematurely (with or without produc- 
tion of partial results and with or without the "undoing" 
of intermediate results). Range failure also requires the 
ability to resume the operation when further attempts 
at completion are deemed reasonable. 

Domain failure is a somewhat different type of fail- 
ure. It occurs when an operation's inputs fail to pass 
certain tests of acceptability, e.g. the appearance of a 
letter in a string of digits or the inability to find enough 
space to satisfy a storage allocation requirement. Do- 
main failure is distinguished from range failure in that 
domain failure occurs when some input assertion is 
tested and not satisfied, whereas range failure occurs 
when an output assertion cannot be satisfied. 

To deal with domain failures, an invoker must be 
given enough information about the failure so he can 
modify the input to satisfy the input criterion if he 
wishes. If  the invoker is unable to fix the problem, he 
must be permitted to terminate the operation, with or 
without the operation undoing any "setup" actions 
taken before the domain failure was detected. The 
capability an invoker may require to deal with this type 
of failure is the ability to access the operands of the 
operation as well as additional information provided 
from within the operation. The invoker needs this in- 
formation to help pinpoint in what way the operands 
are in error. 

Exceptions may also be raised to classify the result 
of an operation. In this ease, the operation's result 
satisfies its output assertion, but the invoker needs 
additional information describing the result before he 
can give it an appropriate interpretation. For  example, 
addition overflow on many computers produces a valid 
result as long as the bits of the result are interpreted ap- 
propriately. Or an operation processing a list of items 
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(or reading a file) may return the last item in the list 
(or file) with an indication that it is the last item so the 
invoker will not attempt to find more items. Note that 
exceptions of this type are different from range failures 
because the operation's output assertion is satisfied. 
Since the output assertion may be satisfied in several 
ways, however, the invoker needs to know which way it 
was satisfied so he can use the result appropriately. 

Result classification is a type of exception that leads 
naturally to the use of status variables or return codes 
(i.e. output parameters whose value designates the type 
of result produced); there is no need to resume the oper- 
ation because a valid result has been produced already. 

Monitoring is the last class of exception conditions. 
In this case, the invoker wants to be notified when some 
condition occurs. This is not because the condition indi- 
tion indicates a failure or the type of result being pro- 
duced. Rather it is because he simply wants to keep track 
of the computation's progress, or the operation may 
need additional information at certain points and it is 
too expensive to calculate this information every time 
the operation is invoked, since the conditions under 
which it is needed occur only rarely. When a monitoring 
type of exception is raised, an invoker may wish to 
terminate an operation; more frequently, the invoker 
may be required to resume the operation because it is 
not possible or economical to terminate the operation 
cleanly at every monitoring point. One example of a 
desirable use of monitoring is in conjunction with an 
operation for searching through a data structure. Each 
time an item is found, an exception is raised with an 
argument identifying the item. The invoker can then 
decide whether or not he wishes to get the next 
item. If  so, he resumes the operation. If  not, he termi- 
nates it. Resuming the operation is particularly eco- 
nomical if the operation's state has been preserved by 
the exception handling mechanism. Then, the search 
algorithm, e.g. for searching a binary tree, can be writ- 
ten recursively and intermediate results can be made 
available without unwinding the recursion. 

In short, exceptions and exception handling mecha- 
nisms are not needed just to deal with errors. They are 
needed, in general, as a means of conveniently inter- 
leaving actions belonging to different levels of abstrac- 
tion [2-7]. They are not necessarily rarely activated. For  
example, in their use in dealing with result classification, 
they might be activated on every invocation of an opera- 
tion. In their use in monitoring operations and receiving 
intermediate results, an exception might occur many 
times for a single invocation of the operation. Exception 
handling notations that imply a fixed implementation 
technique are therefore not suited for dealing with the 
complete range of exception requirements. In this 
paper I propose a notation that is neutral with respect 
to its implementation, so that exceptions raised by 
different operations can potentially be implemented 
differently, depending on their expected frequency and 
type of use. 

2. Previous Exception Handling Techniques 

A variety of techniques have been used and sug- 
gested for dealing with exception conditions. They all 
have serious drawbacks of one kind or another, but to 
place the paper in perspective, it is useful to review other 
exception handling approaches briefly. 

The most well-known and commonly used approach 
is to supply subroutine calls with extra parameters for 
dealing with exceptions. Three types of parameters are 
commonly used. 

(a) Subroutines. An exception handler is coded as a 
subroutine and its name is passed as a parameter of a 
call. This method has been advocated by Parnas [8, 9]. 

(b) Labels. In this case, the handler begins at the 
statement whose label is passed as a parameter. Control 
is transferred to the label parameter when an exception 
is detected. 

(c) Status variables. An integer valued parameter is 
assigned a value before returning from a subroutine 
call; the assigned value indicates whether an exception 
has occurred, and if so, which one. As a variant of this 
method, the subroutine may be coded as a function 
whose returned value indicates whether and what excep- 
tion has occurred. 

Hill [10] has previously analyzed the relative virtues 
of these methods. 

Another set of techniques in effect associates implicit 
subroutine, label, or status parameters with operations. 
These techniques are: 

(a) Object-oriented exception handlers. In this case, 
a handler subroutine (or label) is associated with an 
object, and subsequently, control is transferred to the 
handler when the object is used with certain operations 
and certain conditions arise. For  example, the AED 
Free Storage Package [11] permits a programmer to 
establish different areas of storage, called zones. When a 
zone is created, the programmer may specify a sub- 
routine to be called if an allocation request for that zone 
cannot subsequently be satisfied. Such a subroutine 
serves as an implicit exception parameter of the storage 
allocation operator. 

(b) Handler setup calls. In this ease, there exists an 
operation for associating a handler with an exception 
that can be raised subsequently by some operation. For  
example, in a package for formatting program output 
[12], a subroutine NEW.END can be specified to be 
called in place of a default subroutine when a line is too 
long to be 'printed. The association between the line 
overflow exception condition and NEW.END is estab- 
lished by executing the call SETEND(NEW.END) .  
NEW.END will now be called when a line overflow is 
detected by a print operation. 

(c) PL/I  ON conditions. The properties of PL/I ON 
conditions [13] are complex, but in essence they provide 
a means of  associating a programmer-defined sub- 
routine with an exception condition. 

A third set of techniques has been proposed pri- 
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marily for dealing with range failures. These techniques 
are based on the idea that recovery from a range failure 
is impossible; the only sensible action is to try some 
alternative operation that may succeed in obtaining the 
desired effect. This leads to a "checkpoint retry" ap- 
proach in which, when failure is reported, an alternative 
operation is performed. Specific techniques following 
this approach are the "backtracking" technique [14] and 
the recursive cache [15], a proposed hardware concept 
for making more efficient the activity of restoring an 
environment after failure has been reported. Hoare has 
suggested a similar concept [16], written as: 

Q1 otherwise Q2 

meaning that if Q1 fails, then Q2 should be performed. 
Hence, Q2 acts as an exception handler for the failure 
of Q1. In Hoare's  proposal, the failure of Q1 does not 
imply the effects of QI are undone before Q2 is invoked. 

We will not discuss any of these techniques further. 
Keeping them in mind, however, may be useful in 
understanding the wide range of circumstances under 
which exception conditions are useful. Moreover, we 
will argue later that any of these techniques could be 
used in implementing our proposed exception handling 
notation. 

3. Exception Handling Requirements and Issues 

The remainder of the paper discusses in detail a 
proposed notation for dealing with exceptions. The 
topics to be addressed fall into the following classes. 

(a) Association of  handlers with invocations of 
operations. Since exceptions occur when attempting to 
perform some operation, one basic issue is how to asso- 
ciate the proper handler with the invocation of a given 
operation. 

(b) Control flow issues. These issues concern how 
to ensure the user and the implementer of an operation 
agree on whether termination or resumption of an 
operation is permitted when a particular exception is 
raised, and how a programmer expresses which of these 
possibilities is being chosen. 

(c) Default exception handling. It is useful to pro- 
vide default handlers for exceptions raised by an opera- 
tion but not handled by an invoker of the operation. 
Default exception handling capabilities must be pro- 
vided in a uniform manner for both language-defined 
and programmer-defined exceptions. 

(d) Hierarchies of  operations and their exceptions. 
Exception handling issues that arise from the interaction 
between an exception raising operation and its imme- 
diate invoker are somewhat different from those that 
arise when an exception is disposed of by an indirect 
invoker. These issues are sufficiently different to deserve 
special attention. 

One issue not discussed in this paper, but critically 
important nonetheless, is methods for associating 

parameters with exceptions. Analysis of this issue has 
not been completed. 

3.1 Associating Exception Handlers With Operations 
In discussing the various methods for associating 

handlers with exceptions raised by operations, the 
differences between an operation, its invocation, and its 
points of  activation need to be kept in mind. An opera- 
tion is either a subroutine or a language-defined operator 
like addition. An invocation is an attempt to execute the 
operation. An activation point is the place from which 
an operation is invoked. For  example, the loop 

DO I = I TO N; 
CALL F (I.I.I); 
END; 

specifies N invocations of the operation F and 2N invo- 
cations of . .  However, there is only one activation point 
for F and there are two for , .  

Handlers associated with exceptions are of two 
kinds: default and invoker-defined. One distinction be- 
tween these handler types is that invoker-defined 
handlers can be different for different operation invoca- 
tions, but default handlers are the same for every invo- 
cation. Another distinction is that default handlers are 
executed only if a programmer decides not to override 
them. Examples of default handlers are those defined 
for certain language-defined exceptions in PL/I, e.g. 
OVERFLOW. When the OVERFLOW exception is 
raised, there is a system-defined action that will be per- 
formed by default unless some invoker-defined over- 
riding action has been specified. We will discuss default 
exception handling issues in a separate section. In this 
section, we are primarily concerned with how invoker- 
defined handlers are associated with exceptions. 

In devising language features for exception handling, 
a key consideration is that the notation help prevent 
and detect programmer errors [23]. There are at least 
three kinds of errors to be guarded against. 

(I) Forgetting that an operation can raise a par- 
ticular exception, and so not giving the exception due 
consideration. 

(2) Associating a handler with the wrong activation 
point. 

(3) Associating a handler with the wrong exception 
(this is possible only when an operation can raise more 
than one exception). 

The proper way to deal with these error possibilities 
is to devise a notation that makes compile time detection 
of errors possible. Therefore, it is reasonable to require: 

(a) explicit declaration of what exceptions an opera- 
tion can raise. For  example, if F and G are subroutines 
able to raise exception X, they should be declared as 
follows: 

DCL F ENTRY (FIXED) RETURNS (FIXED)IX:... ]; 
DCL G ENTRY (FIXED)IX:. :. ]; 

(b) static association of exception handlers with 
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activation Points (i.e. associations defined at compile 
time rather than at run time). 

To satisfy the requirement for static association, 
handlers are attached to syntactic units containing 
activation points (see Figure 1). In particular, handlers 
can be attached to procedure calls: 

CALL G (A); [X: handler .action] 

or to expressions containing operators, e.g. 

(A q- B) [OVERFLOW:... ] 

More than one handler can be attached to a syntactic 
unit, e.g. 

(A/F(B)) [OVERFLOW:... 
ZERODIVIDE:... 
X : . . . ]  

Handlers may be associated with statements, e.g. 

H = A q- B; [SIZE:... ] 

where SIZE is the exception raised when the value of 
A q- B is too large to be represented exactly as the 
value of H. SIZE is an exception raised by the assign- 
ment  operator? Handlers may also be attached to 
groups of statements, e.g. loops: 

DO WHILE ( . . . ) ;  
• . . / * l o o p  body contains READ operations*/ 
END; [ENDFILE:... ] 

The notation for associating handlers with loops and 
subroutine calls is similar to that proposed by Boch- 
mann  [20] and Zahn [26]. 

Handlers may also be attached to procedure defini- 
tions, in which case it is useful to define the scope of the 
procedure to include any handlers attached to it. 

A handler is invoked if the exception for which it is 
defined is raised by an activation point within the 
handler 's  reach. The reach of a handler is the syntactic 
unit to which it is attached (see Figure 1), excluding any 
contained syntactic units having a handler definition 
for the same exception. This is similar to the usual 
block structure name scope rule, except that here the 
"blocks"  are parenthesized expressions, simple state- 
ments, statement groups, loops, and subroutine bodies• 
Note that the statements comprising a handler definition 
are not themselves within the reach of the handler; 
they are within the reach of handlers attached to some 
containing syntactic unit. For  example, in 

(A • (B --t- C) [OVERFLOW:••. ]) [OVERFLOW:•.• ] 

the reach of the first O V E R F L O W  handler is the ex- 
pression (B -F C), whereas the reach of the second 
handler is the total expression, excluding the syntactic 
units for which an O V E R F L O W  handler is already 

1 In PL/I, the SIZE exception is not checked for unless the pro- 
grammer enables it. In my notation, providing an override handler 
for an exception is equivalent to enabling it. If the default handler 
for SIZE ignores the exception, then invoking the default handier 
(see Section 3.3) could be interpreted as disabling the exception. 

Fig. 1. Syntax describing how exception handlers are associated 
with syntactic units. Syntactic forms enclosed in large square 
brackets are optional; a tilde signifies one or more repetitions of the 
preceding syntactic form; braces enclose alternatives (listed 
vertically), of which one must be chosen• 

<assigr.naent> ::- <variable> = <expresalon> ; [[<handler group>]~ 

<quantity> 11:  <variable> 
~unction call 

. . . . . . . .  i . . . . . .  J ~ : ~  rn:~:i>o n >? . . . . . . . . . . . . . . . .  {::U:rn:~Yi>on>] t 

<subroutine definition> ::: <label> : PROCEDURE ~<parameter name list>~ 
?> < 

defined (i.e. (B + C) and any such units contained 
within the first O V E R F L O W  handler's definition)• 

The definition of a handler 's  reach makes it possible 
to associate a handler with more than one activation 
point. This makes programs more readable than if a 
handler could be associated with only one activation 
point• For  example, writing 

(A • (B + C)) [OVERFLOW:..• ] 

is the appropriate way to say that overflow is to be 
handled the same way whether raised by the add or 
multiply operator• When several activation points are 
to have the same handler, it is useful to be able to sub- 
stitute a single handler definition for repeated identical 
definitions. The proposed notation permits this con- 
solidation of unchanging information. 

The ability to associate a handler with several acti- 
vation points is useful, but it does make it possible to 
inadvertently associate the wrong handler with an 
activation point. For  example, consider the following 
statements: 

H = F(A) -I- F(B) IX:. . .  ]; 
I = (F(C) + F(B)) I X : . . .  ]; 

In the statement assigning to H, no handler is given for 
exception X raised by F(A).  Even if the statement 
assigning to H is nested in a context that provides a 
handler for X, e.g. 

DO; 
H = F(A) d- F(B) IX:. . .  ]; 
I = (F(C) -I- F(B)) IX:. . .  ]; 

END;IX: . . . ]  

there is no way to check the real intent of the pro- 
grammer  ! Did he really mean to write the first statement, 
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or did he mean to write 

H = (F(A) -t- F(B)) [X:.. .  l; 

The advantage of being able to associate a single 
handler with several activation points probably more 
than offsets the possibility of making this sort of error. 

Exceptions raised by a subroutine call or language- 
defined operator are called implicitly raised exceptions. 
I f  an activation point for an implicitly raised exception 
does not lie within the reach of a handler for that excep- 
tion, the program is in error unless the exception is a 
default exception (see Section 3.3), in which case the 
exception's default handler is automatically invoked. 
Note that in contrast to PL/I, exceptions raised implic- 
itly within a subroutine are not automatically passed 
to the subroutine's invoker; if they are to be passed one 
level higher, then they must be raised explicitly, using 
one of the commands given in the next section. 

Static associational methods, together with declara- 
tions of what exceptions programmer-defined opera- 
tions can raise, make it possible for a compiler to detect 
failure to deal with every exception an operation can 
raise. Such compile-time checks for errors are not, in 
general, possible with run-time associational methods 
like PL/I ON conditions. Of course, run-time methods 
permit different handlers to be associated with the same 
activation point, but this increased power is not particu- 
larly useful (an example is given in [I ]); whatever effects 
can be achieved with run-time association can be 
achieved by the proposed static method with equal con- 
venience and with increased reliability. 

It is important that methods for associating handlers 
with exceptions should help prevent and detect errors. 
It is also important to deal uniformly with exceptions 
raised by language-defined operations (e.g. addition) 
and programmer-defined operations (i.e. subroutines). 
The proposed method obviously is uniform in this re- 
spect, unlike the use of subroutines, labels, or status 
variables passed as parameters. 

Another important  requirement is the efficiency 
with which exceptions can be handled. It has been 
argued [17, 18] that the cost of setting up an exception 
handler association should be low relative to the cost of 
activating the handler, since exceptions occur only 
rarely. This argument equates exceptions with operation 
failures, and I have explicitly taken a broader view. 
Sometimes it is reasonable to raise an exception every 
time an operation is invoked, and perhaps, several times 
per invocation. None of the existing exception handling 
methods mentioned earlier is optimally efficient for 
dealing with every type of exception condition. Al- 
though arguments can be made about the relative effi- 
ciency of the various techniques for setting up and 
handling an exception (see [1]), the key advantage of 
the method proposed in this paper is that any of  the 
various implementation techniques can be used, and in a 
properly supported system, a programmer will be able 
to specify with a compiler directive what method of im- 

plementation will be used for particular exceptions. In 
this way, a programmer can control implementation 
efficiency without having to rewrite his program. The 
implementation neutrality 2 of the proposed notation is 
one of its most attractive properties, although admit- 
tedly, there are few or no systems in existence that 
would permit this property to be exploited. Nonetheless, 
the notation presents an opportunity that is foreclosed 
by the other methods. 

3.2 Control Flow Issues 
There are basically two types of control flow issues: 
(a) issues relevant to raising an exception and 

activating a handler for it; 
(b) issues relevant to leaving an exception handler, 

so the "normal"  flow of control can be continued. 

ESCAPE, SIGNAL, and NOTIFY. The various 
situations in which exceptions are useful present differ- 
ent possibilities for resuming or terminating an opera- 
tion. To guard against error, each exception should 
have its resumption or termination constraints specified 
explicitly and in a way that permits violations of these 
constraints to be detected at compile time. For  this 
reason we divide exceptions into three types: 

(a) ESCAPE exceptions, which require termination 
of the operation raising the exception; 

(b) NOTIFY exceptions, which forbid termination 
of the operation raising the exception and require its 
resumption after the handler has completed its actions; 
and 

(c) SIGNAL exceptions, which permit the opera- 
tion raising the exception to be either terminated or re- 
sumed at the handler's discretion. 

Every exception must be declared to be one of these 
types, and it is an error if a declared exception is not 
treated in accordance with its type declaration. The re- 
sult of distinguishing these control flow possibilities in 
the actual text of a program is greater clarity in dealing 
with exceptions and in understanding programs. 

All existing exception handling techniques are defi- 
cient either in not making control flow constraints suffi- 
ciently explicit or in not being able to handle the entire 
spectrum of control flow possibilities inherent in the 
different reasons for raising an exception. For  example, 
t'L/I permits an invoker to resume or terminate any 
operation raising an exception, but it does not permit 
expressing constraints about whether termination or 
resumption is permitted or required. Other standard 
methods are explicit about their control flow options, 
but they are not flexible enough to handle all the possi- 
bilities. For  example, status variables are appropriate 
for dealing with result classification exceptions, but 
since the status value methods require terminating an 
operation before the status value can be processed, this 
technique is not suitable for notifying or signaling. 

2 The concept of an implementation-neutral notation is the 
essence of what has been called elsewhere [24, 25] the uniform re- 
ferent concept. 
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Passing exception handling subroutines as parameters 
is really suitable only for the N O T I F Y  control flow 
discipline. (Note that the value of distinguishing 
N O T I F Y  exceptions is that if an operation is guaranteed 
to be resumed after an exception is handled, the imple- 
mentor of the operation need not spend any effort or 
space to take care of the possibility of being terminated.) 

The exception handling method being proposed in 
this paper permits an invoker to terminate or resume 
operations and it makes control flow constraints explicit. 
For example, with the proposed method, a subroutine 
F taking a single argument and raising exceptions X and 
Y must be declared as follows if X is an ESCAPE excep- 
tion (i.e. if the operation of F cannot be continued after 
X is raised) and if Y is a S IGNAL exception (i.e. if F 's  
operation can be terminated or resumed by the handler 
for Y) : 

DCL F ENTRY(FIXED) [X: ESCAPE, Y: SIGNAL]; 

The definition of F is similarly required to specify what 
exceptions can be raised and their type: 

F: PROCEDURE(AA) [X: ESCAPE, Y: SIGNAL]; 
DCL AA FIXED; 

To raise the exceptions X or Y from within F, a pro- 
grammer must write either ESCAPE X or S IGNAL Y, 
e.g. 

DO WHILE "exception Y should be raised"; 
SIGNAL Y; 
END; 

IF "exception X should be raised"; 
THEN ESCAPE X; 

Writing ESCAPE Y or S IGNAL X is an error. A com- 
piler can verify that the handler for X does not attempt to 
resume F, and that the implementer of F does not make 
incorrect assumptions about whether F can or cannot be 
resumed after raising exceptions X or Y. N O T I F Y  excep- 
tions are defined and raised similarly, and the N O T I F Y  
control flow constraints can similarly be enforced by a 
compiler. 

Exceptions raised by an ESCAPE, SIGNAL,  or 
N O T I F Y  command are called explicitly raised exceptions. 
I f  an exception raised by an ESCAPE, SIGNAL,  or 
N O T I F Y  command lies within the reach of a handler 
for that exception, then that handler is executed. I f  these 
commands do not lie within the reach of such a handler 
and if the subroutine containing the commands is per- 
mitted to raise this exception, the exception is raised 
within the subroutine's invoker• It  is an error to ex- 
plicitly raise an exception that either does not lie within 
the reach of a handler for it or cannot be passed to a 
subroutine's invoker. 

Exceptions can be raised by operations executed 
within handlers, since otherwise the actions permitted 
within handlers would be too restricted. For example, 
it is convenient to be able to write: 

CALL F; [X: CALL G; [Y:.. .  ESCAPE Z; ] . . .  ] 

meaning that if X is raised, G will be called, and if G 
fails by raising Y, then the handler for X (and Y) will be 
exited by raising the exception Z. Note that since the 
reach of a handler does not include the statements com- 
prising the handler, it is possible to substitute ESCAPE 
X for ESCAPE Z without recursively invoking the 
handler for X. Similarly, if Z were a handler associated 
with the invocation of F, e.g. 

CALL F; [X: CALL G; [Y:.. .  ESCAPE Z;] . . .  
Z : . . . I  

the handler for Z is not invoked by the ESCAPE Z 
statement, since the reach of Z's handler does not include 
the handler for X or Y. Hence ESCAPE Z must invoke 
some other handler for Z. 

The ability to pass exceptions up to an enclosing con- 
text is convenient because it is quite natural to deal with 
an exception first locally and then more globally [19]. For  
example, it is often convenient to write something like 
this: 

H: PROCEDURE [X: ESCAPE]; 

B = F(A); IX:. . .  ESCAPEX;] 
, . •  

END; D(:. . .  ESCAPE X;] 

meaning that the exception X is first dealt with locally, 
and when either no fixup is deemed possible or no further 
action using local context is useful, the exception is 
passed on up to the next handler, in this case one at- 
tached to the procedure body. When this more global 
action is completed, the exception is passed up to the 
procedure's invoker. This is often quite natural and is 
more convenient than having to invent different excep- 
tion names just to prevent naming conflicts. 

The ESCAPE statement serves naturally as a multi- 
level loop exiting method, e.g. 

DO WHILE ( . . . ) ;  
DO WHILE ( . . . ) ;  

I F . . .  
THEN ESCAPE X; 
ELSE...  

END; 
E N D ; I X : . . . ]  

When X is raised, both the inner and outer loops will be 
terminated. Similarly, exceptions raised by operation 
invocations within a loop (instead of with an ESCAPE 
statement) can cause exiting from the loop, e.g. if F is 
able to raise the ESCAPE exception X, then we could 
write: 

DO WHILE ( . . . ) ;  

B = F(A); [X: ESCAPE X;] 
• • ,  

C = F(A); [X: ESCAPE X;] 
• , . 

END; IX:. . .  ] 

The ESCAPE X statement written with each invocation 
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of F shows explicitly that X is not handled within the 
loop, but instead is passed to a containing context. It  
would certainly be possible to permit F to be invoked 
without explicitly attaching a handler to F(A), but for 
clarity, it seems more reasonable to explicitly declare 
disinterest in dealing with X locally. This should make 
the program more understandable to readers, who will 
be reminded thereby that the exception X is raised by F 
and not by other operations invoked in the loop. 

The EXIT Command. In the exception handling ap- 
proach being proposed in this paper, the last executed 
statement in a handler must explicitly state whether the 
operation raising the exception is to be terminated or 
resumed. Termination of an operation raising an ex- 
ception is expressed by having the flow of control per- 
manently leave a handler, either by raising an ESCAPE 
type exception, by executing an EXIT statement, or by 
executing a R E T U R N  statement (which causes not only 
the handler to be exited, but returns control from the 
subroutine containing the handler). 

The EXIT statement has a valued and nonvalued 
form. The valued form, EXIT  (value), is used to specify 
a value for an expression, function call, or function sub-. 
routine to which the handler being EXITed is attached 
For  example, suppose a programmer desires to check 
whether the sum of A and B exceeds C; note that if A 
and B are known to be nonnegative in value and if their 
sum overflows, the sum does exceed C. Using the pro- 
posed notation, the programmer could write: 

IF (A q- B > C) [OVERFLOW: EXIT(TRUE);] 
THEN. . .  

Similarly, --1 will be assigned to D if the multipli- 
cation or the addition overflows in the following 
expression: 

D = (A • (B + C)) [OVERFLOW: EXIT (-1);]; 

This example shows that EXIT terminates the whole syn- 
tactic unit to which the handler is attached as well as the 
operation raising the exception. 

When a valued EXIT statement terminates a handler 
attached to a function body, the effect is the same as a 
normal return, e.g. 

F: PROCEDURE(... ) RETURNS(FIXED); 

END F; [OVERFLOW: EXIT (-1);] 

F returns the value -- 1 if this OVERFLOW handler is 
executed. It  would be equally valid to write R E T U R N -  
( -  1) in place of EXIT( - -  1). 

The nonvalued form of EXIT statement terminates 
execution of the s ta tement  containing the exception- 
raising operation. For example, in the statement assign- 
ing to D, above, if EXIT(- -1)  were replaced by EXIT, 
no assignment to D would be performed if OVERFLOW 
is raised; the next statement executed would be the one 
following the example statement. Similarly, in the follow- 
ing program fragment, if exception A is raised, the next 

statement executed will be the one following the entire 
conditional statement: 

IF Q[A: EXIT;] 
THEN. . .  
ELSE...  

An EXIT from a handler attached to a procedure body 
is equivalent to a normal return from the procedure. 

In my original paper [I], I defined a third variant of 
the EXIT statement in which a programmer could specify 
the name of the operation being terminated when a 
handler is exited. But this additional EXIT command 
complexity provides no new expressive power, and only 
makes the EXIT statement more complex to implement 
and understand. The valued and nonvalued EXIT state- 
ment forms are sufficient. 

The RESUME Command. The R E S U M E  command 
(also proposed in [18]) is used to return control to a sub- 
routine or language-defined operation raising an excep- 
tion. RESUME returns control to the statement following 
the S I G N A L  or N O T I F Y  command raising the excep- 
tion. R E S U M E  must be used to leave a handler for a 
N O T I F Y  type of exception, and may be used to leave a 
handler for a S I G N A L E D  exception. 8 

To illustrate the use of RESUME,  consider a sub- 
routine SCAN(P, V) that takes a pointer P to a data 
structure, SIGNALing the exception VALUE once for 
each item in the data structure. The value of the item is 
stored in V when VALUE is raised? To find the sum of all 
elements in the structure, one could write: 

SUM = 0; 
CALL SCAN(P, V); [VALUE: SUM = SUM d- V; 

RESUME;] 

SCAN returns when all values have been found. I f  P is 
assumed to point to an array of positive values, with a 
negative value indicating the last value, SCAN might be 
implemented as follows: 

SCAN: PROCEDURE(P, V) [VALUE: SIGNAL]; 
DCL A (100) BASED (P) FIXED; 
DCL V FIXED; 
DCL I FIXED; 

DO I = 1 TO 100 WHILE (A(1) > 0); 
V = A(I); 
SIGNAL VALUE; 
EN D; 

END SCAN; 

Note that control will return to the statement following 
S I G N A L  VALUE when the invoker of SCAN executes 
RESUME.  

The ENDED Exception. I f  SCAN is used to search 
for a value, X, where X is to be inserted into the scanned 
structure if it is not already present, the following state- 

a A.I. Wasserman [private communication] has suggested that 
a handler sometimes should re-initiate the exception-raising opera- 
tion rather than RESUME it. The ability to retry an operation is 
not conveniently supported by my proposed notation. 

4 The manner in which VALUE is supplied with a parameter is 
not satisfactory in several ways, but it suffices for the purposes of 
this section and the next. 
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ments could be written: 

DO; 
CALL SCAN(P, V); 
CALL INSERT(P, X); /*X not found*/ 

END; [VALUE: IF V = X 
THEN EXIT; /*X found*/ 
ELSE RESUME;] /*keep looking*/ 

A rather elaborate control structure is needed just to in- 
sure INSERT(P,  X) is invoked only under the appropri- 
ate circumstances. To avoid such circumlocutions, it is 
useful to assume that an exception called E N D E D  is 
raised whenever an operation terminates normally [20] 
(see Figure 2). By taking advantage of this exception, we 
can write in place of the previous program: 

CALL SCAN(P, V); [VALUE: IF V = X 
THEN EXIT; 
ELSE RESUME; 

ENDED: CALL INSERT(P, X); 
EXIT;[ 

E N D E D  is an ESCAPE exception, i.e. it is an error 
to attempt to RESUME the operation raising ENDED.  
The E N D E D  exception is raised when execution of a 
syntactic unit having an E N D E D  handler is completed 
normally. E N D E D  cannot be raised explicitly with the 
ESCAPE statement and is not raised if evaluation of a 
syntactic unit is terminated because some other excep- 
tion has been raised. 

E N D E D  can usefully be attached to loops as well as 
to subroutine calls. For example, consider a program 
that searches an array, A, containing M distinct values 
in order to find where a given value X occurs; i f X  is not 
present in A, it is to be inserted. In addition, there is 
another array B, where B(I) is to equal the number of 
times the value A(1) has been searched for. This program 
can be written as follows (cf. [21, pp. 266, 267, 277 and 
26, p. 283]): 

DO I = 1 TO M; 
IF A(1) = X 

THEN ESCAPE FOUND; 
END; [FOUND: B(I) = B(1) -1- 1; 

EXIT; 
ENDED: M = M q- 1; 

A(M) = X; 
B(M) = 1; 
EXIT; ] 

The exception E N D E D  is, in this case, raised if and only 
if F O U N D  is not raised. 

The CLEANUP Exception• When an operation is not 
RESUMEd from a SIGNALed exception handler, it 
may be necessary first to release certain areas of storage, 
close files, restore data structures to a consistent state, 
etc. [17]. Since such "cleanup" actions are only required 
for SIGNALed exceptions, it is natural to treat CLEAN- 
UP as an exception associated with the S IGNA L opera- 
tion, viz.: 

SIGNAL Y; [CLEANUP:... ] 

For  reasons to be explained later, C L E A N U P  cannot be 

Fig. 2. The need for ENDED• Before processing can resume 
independently of whether F raised any exceptions or terminated 
normally, it may be necessary to perform some actions necessary 
only when the operation terminates normally. 

ESCAPEX / ~ CALL F~ 

x] I~o~,-,o= ~I [Normall I-{andler '°rlReturn~ 

-f 

attached to any syntactic unit other than a S IG N A L  
statement• Moreover, a C L E A N U P  exception can only 
be raised implicitly; it is an error to write ESCAPE 
CLEANUP,  S I G N A L  CLEANUP,  or N O T I F Y  
CLEANUP.  

C L E A N U P  handlers are executed beginning with the 
handler (if any) attached to the least recently executed 
S IGNAL statement in a chain of S IGNAL statements. 
Note that the most recently executed S I G N A L  state- 
ment in this chain is the one whose handler is causing 
operations to be terminated. To see the sequence of 
C L E A N U P  handler executions, consider the following 
program: 

G: PROCEDURE ]LAST: SIGNAL, Z: ESCAPE]; 
DCL H ENTRY [FIRST: SIGNAL]; 

CALL H; [FIRST: SIGNAL SEC; [CLEANUP:... ] 
RESUME;] 

END G; [SEC: SIGNAL LAST; [CLEANUP:... ] 
RESUME;] 

Note that if H raises the exception FIRST, SEC will be 
raised within G, and then LAST will be SIGNALed to 
G 's  invoker. I f  G 's  invoker decides to terminate G, the 
C L E A N U P  handlers attached to S IGNAL FIRST (in 
H), S IGNAL SEC, and S IGNAL LAST will be executed 
in the order FIRST, SEC, LAST. This sequence of 
C L E A N U P  executions would be the same, of  course, 
even if exceptions FIRST, SEC, and LAST all had the 
same name. 

Note that if the statement ESCAPE Z were executed 
within G, no cleanup handlers would be invoked because 
cleanup handlers are only associated with S I G N A L  
statements. Note also that if EXIT is written in place of  
the RESUME following S IGNAL LAST, then if G's  
caller RESUMEs G when LAST is raised, the handler 
for SEC will be exited. This implies termination of the 
S IGNAL SEC statement and termination of H. Once H is 
terminated, the S IGNAL SEC cleanup handler will be 
executed, but the cleanup handler for S I G N A L  LAST 
will not be invoked, since the handler for LAST (in G 's  
invoker) resumed execution of G. 
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The specified process of working from the lowest level 
(innermost) CLEANUP handler to the highest (outer- 
most) is the most natural way of cleaning up a prema- 
turely terminated operation. A CLEANUP handler must 
be attached only to SIGNAL statements because the se- 
quence of CLEANUP invocations is so closely tied to 
the sequence of SIGNAL statement executions. 

To keep control flow simple, a CLEANUP handler 
must not raise any exceptions passed outside the handler. 
(For example, consider the potential complexity if 
SIGNAL SEC's CLEANUP handler were permitted to 
raise G's exception Z.) Note that a compiler can deter- 
mine whether or not any exceptions raised within a 
CLEANUP handler will be fully processed within the 
handler, and this constraint is not difficult to enforce. 

Statements within a CLEANUP handler are executed 
in the normal sequence. When there are no more state- 
ments to execute, control passes to the next CLEANUP 
handler to be executed. Note: the EXIT statement is not 
used to leave a CLEANUP handler, since leaving a 
CLEANUP handler means execute the next CLEANUP 
handler and/or  terminate an operation, whereas EXITing 
a normal handler means execute the next statement in 
the normal control flow. 

A shorthand notation involving CLEANUP handlers 
will be introduced in Section 3.4. 

Summary of Control Flow Issues. The issues discussed 
in this section may be summarized as follows: 

(I) Prevention~detection of programming errors. The 
need to classify exceptions according to their control 
flow constraints (ESCAPE, NOTIFY, SIGNAL);  

(2) Readability~simplicity~uniformity. The use of ES- 
CAPE-type exceptions to support multilevel loop exits in 
GOTO-free programming (ESCAPE to handlers associ- 
ated with loops or statement groups); 

(3) Exception handling requirements. 
(a) The ability to avoid explicit GOTOs to terminate 

an operation raising an exception: the need to express 
that a handler is being exited (the nonvalued EXIT state- 
ment), and the need to provide a value for a function or 
expression when exiting a handler (the valued EXIT state- 
ment, e.g. EXIT (6)); 

(b) the need to deal with an exception first locally 
and then more globally (e.g. ESCAPE X from within a 
handler for X); 

(c) the need to clean up before terminating an opera- 
tion (the CLEANUP optional exception associated with 
SIGNAL) ; 

(d) the ability to define an exception handler for 
normal termination of an operation (ENDED).  

3.3 Default Exception Handling 

Up to now, our discussion has concentrated on in- 
voker-defined exception handlers. It is very convenient, 
however, to define default handlers for some exceptions. 
These handlers are executed unless specifically over- 
ridden. 

Exceptions having default handlers will be called de- 
fault exceptions. Failure to provide a handler for a de- 
fault exception is not an error; to the contrary, it is a way 
of specifying that the default handler is to be executed. 

Most exception handling methods do not satisfy re- 
quirements for default exceptions very well. These re- 
quirements are: 

(1) Declaration of default exceptions. To help prevent 
and detect mistakes in using exceptions, exceptions 
having default handlers should be declared to have them. 
Only if the existence of a default handler is made known 
to a compiler can exception handling errors be detected. 
For example, failure to provide an invoker-defined 
handler is an error only for nondefault exceptions. 

(2) Programmer-defined deJault handlers. It should 
be possible to establish default exceptions and handlers 
for programmer-defined subroutine packages; the con- 
cept of a default exception should not be limited to sys- 
tem-defined operations (addition, I/O, etc.) 

(3) Uniformity. The methods for overriding or in- 
voking default exception handlers should be the same for 
both system-defined and programmer-defined default 
exceptions. 

(4) Explicit invocation of default handlers. A pro- 
grammer must be able to specify explicitly as well as im- 
plicitly whether a default handler is to be invoked or 
overridden, or whether the decision is to be made by a 
higher level handler. 

Default exceptions are notationally essential. They 
make operation invocations more concise and readable, 
and make programming more convenient. 

Methods for invoking default handlers are provided 
in standard PL/I only for language-defined exceptions 
like OVERFLOW. For such exceptions, a programmer 
can insure that a default handler will be invoked at cer- 
tain activation points by writing 

ON condition-name SYSTEM; 

A corresponding mechanism is not provided for pro- 
grammer-defined exceptions. MULTICS supports a more 
elaborate set of facilities for defining and invoking default 
handlers (see [1] for a brief discussion). But neither 
standard PL/I nor MULTICS PL/I provide completely suit- 
able default exception facilities. 

In extending the proposed exception handling nota- 
tion to deal with defaults, the first issue is to distinguish 
those exceptions for which default handlers exist [re- 
quirement (1) above]. Then a compiler can enforce the 
rule that absence of a handler is an error unless the ex- 
ception has a default handler. I propose that default ex- 
ceptions be distinguished by declaring them to have the 
attribute "OPTIONAL",  since it is optional for the pro- 
grammer to provide a handler for these exceptions. For  
example, 

DCL FIX: ESCAPE, Z: SIGNAL OPTIONAL]; 

means a handler is required for X but not for Z. Note that 
ESCAPE exceptions cannot, by their very nature, have 
default handlers. 
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Fig. 3. Program showing how programmer-defined and language-defined default exceptions are treated uniformly. 

G: P R O C E D U R E  ( . . . )  [X: OVERFLOW: O P T I O N A L  SIGNAL];  
DCL F ENTRY [X: O P T I O N A L  SIGNAL];  

C A L L  F; [X: ... 

EXIT ;] 
CALL F; 
CALL F; [X: RESUME(DEFAULT);] 

A = B + C; [OVERFLOW: ... 

EXIT;]  
A = B + C; 
A = B + C; [OVERFLOW: R E S U M E ( D E F A U L T ) ; ]  

END G; 

/* defaul t  h an d l e r  o v e r r i d d e  n; F is t e r m i n a t e d  */  
/~ defaul t  hand ie r  invoked i m p l i c i t l y  */ 
/*  defaul t  h an d l e r  invoked  exp l i c i t ly  */  

/':' de fau l t  h an d l e r  o v e r r i d d e n ;  a s s i g n m e n t  not p e r f o r m e d  */  
/*  o v e r f l o w  defau l t  h an d l e r  invoked  i m p l i c i t l y  */  

/,~ o v e r f l o w  defau l t  h a n d l e r  invoked  exp l i c i t l y  */  

In calling F, the default handler for Z will be invoked 
if the call does not lie in the reach of any handler for Z. 
For example, 

CALLF;[X: . . . ]  

will cause the default handler for Z to be invoked if there 
is no handler for Z attached to a syntactic unit contain- 
ing this call statement. Note that in contrast to PL/I, the 
search for a default handler does not automatically ex- 
tend beyond the subroutine in which the exception is 
raised implicitly. This is consistent with the principle of 
being explicit about important connections between 
modules. Something as important as an exception con- 
dition should not be passed across subroutine boundaries 
except by explicit command. 

An invoker should be permitted to invoke a default 
handler explicitly as well as implicitly. (It is always dan- 
gerous to provide only implicit ways of invoking some 
capability.) To permit this, we add an option to the 
RESUME statement. By writing RESUME(DEFAULT)  
instead of RESUME, a programmer specifies that the 
default handler for an exception is to be invoked. For 
example, the call to F could be written: 

CALL F; [X:... 
Z: RESUME(DEFAULT) ;] 

to show explicitly that Z's default handler is to be in- 
voked. RESUME(DEFAULT)  is analogous to ESCAPE 
except that it directs control flow downward to a default 
handler instead of upward to an invoker-defined handler. 
RESUME(DEFAULT)  may be written only within a 
handler for a default exception. 

Fig. 4. An example of multiple default handlers. 

ENDPAGE ENDPAGE 
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The proposed notation for giving an exception a 
default handler is illustrated below. This is what the 
implementer of subroutine F would write to define the 
default handler for Z: 

SIGNAL Z; [DEFAULT:.../*the default handler */ 
CLEANUP:... 
ENDED:... ] /*invoked if default is overridden */ 

In short, DEFAULT is an exception condition associated 
with the SIGNAL command. This exception is raised if 
no overriding handler exists for Z or if a handier for Z 
executes the statement RESUME(DEFAULT) .  The 
CLEANUP actions will, of course, be executed only if a 
handler for Z is exited. The actions associated with 
E N D E D  will be executed just in case the default handler 
for Z is not executed and F is RESUMEd. Note that 
this is the normal definition of E N D E D  as applied to the 
SIGNAL operation. D EF A U LT exception handlers can 
be associated with NOTIFY as well as the SIGNAL 
operations. 

A D E F A U L T  handler must be associated with every 
SIGNAL or NOTIFY command used to raise a default 
exception, e.g. within subroutine F above, it would he an 
error to write SIGNAL Z without associating a DE- 
F A U LT handler with the SIGNAL Z command. DE- 
FAULT,  like ENDED,  is also an exception that can only 
be raised implicitly. It is an error to write ESCAPE 
DEFAULT.  

The default exception handling capability described 
here is not necessarily difficult to implement. In essence 
RESUME(DEFAULT)  is just a GOTO statement refer- 
encing a label implicitly associated with a SIGNAL 
statement. 

The  proposed default exception handling notation 
permits programmer-defined and system-defined excep- 
tions to be dealt with uniformly. For  example, consider 
the subroutine in Figure 3. Note that even though G is 
able to raise exception X and the OVERFLOW excep- 
tion, these exceptions are not raised explicitly within G. 
Therefore, they must be disposed of entirely within G; 
they cannot be passed implicitly to G's invoker. 

The RESUME(DEFAULT)  command gives higher 
level programs the ability to substitute default handlers 
for lower level default handlers. This can be quite useful 
as is illustrated in Figure 4. The figure shows an applica- 
tion program, P R O G R A M  D, that makes use of two 
program packages, A and B, each of which prints m a -  
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Fig. 5. Substituting a default handler. 

C A L L  P R I N T ;  [ E N D P A G E :  S I G N A L  E N D P A G E ;  
[ D E F A U L T :  • • .  ; / *  o v e r r i d e s  P R I N T  d e f a u l t ;  s e r v e s  a s  */  

EXIT; /* default for Package A or B */ 

ENDED: . . . ; /~ executed if PROGRAM D provided an */ 

EXIT;]/* overriding handler */ 

RESUME;] /~:, control returns to PRINT * /  

terial using a PRINT utility subroutine. The PRINT 
utility is assumed to raise the exception ENDPAGE at 
appropriate points. Instead of having Package A and 
Package B override the PRINT default handler, they 
need to signal D to see if D wants to deal with the END- 
PAGE exception. If not, A and B will deal with the excep- 
tion in an appropriate way. As far as D is concerned, the 
default response for ENDPAGE when using Package A 
can be different from the default response for Package B. 
In effect, Package A and B provide their own default re- 
sponse for the E N D P A G E  exception if their calls to 
PRINT are written as shown in Figure 5. Note that the 
EXIT from the DEFAULT handler in Figure 5 terminates 
the SIGNAL ENDPAGE operation; it does not termi- 
nate the PRINT operation. 

The default handler provided by A or B will be exe- 
cuted only if P ROGRAM D does not override it. Pre- 
sumably, the A and B default handlers are different from 
the PRINT default handler. 

It is useful and natural to permit Package A (for ex- 
ample) to resume the PRINT program by invoking 
PRINT's  default handler for ENDPAGE if Program D 
has invoked A's ENDPAGE default handler. The natural 
way to express this effect is to write: 

CALL PRINT; 
[ENDPAGE: SIGNAL ENDPAGE; 

[DEFAULT:. . .  RESUME(DEFAULT); 
ENDED: . . .  EXIT;] 

RESUME;] 

The problem is that RESUME and RESUME(DE-  
FAULT)  are commands for resuming the operation 
with which a handler is associated, and in this case, the 
D E F A U L T  handler is associated with the SIGNAL 
E N D P A G E  statement. Resuming the SIGNAL opera- 
tion does not make sense. The desired effect can be 
achieved, but hardly in a stylish manner: 

CALL PRINT; 
[ENDPAGE: DO; 

SIGNAL ENDPAGE; 
[DEFAULT:. . .  EXIT; 
ENDED: . . .  ESCAPE DONE;] 

RESUME(DEFAULT); 
/*invoke PRINT's default handler for 
ENDPAGE */ 

END; [DONE: EXIT;] 
RESUME;]/*resume PRINT operation */ 

Instead of forcing programmers to write the above 
sort of program, it is more reasonable to provide an 
interpretation for RESUME and RESUME(DE-  
FAULT)  when they appear in the body of a D E F A U L T  
handler. Specifically, when RESUME and RESUME- 

694 

(DEFAULT)  are used as a means of leaving a DE- 
F A U LT handler, such statements will be interpreted as 
though an EXIT statement were executed and then the 
next statement executed were the RES U ME or RE- 
SUME(DEFAULT)  statements, i.e. the RESUME or 
R E S U M E ( D E F A U L T )  commands are interpreted 
with respect to the context containing the D E F A U L T  
handler, not with respect to the D E F A U L T  handler 
itself. 

The system of programs in Figure 4 shows an im- 
portant distinction between default and nondefault  
handlers, namely, whether lower- or higher-level pro- 
grams have the power to pre-empt the handlers at a 
given level. If  a higher-level handler can prevent execu- 
tion of a lower-level handler, then the lower-level 
handler is a default handler. If  a lower-level handler can 
prevent execution of a higher-level handler, then the 
lower-level handler is not a default handler; it is an 
override handler. The proposed exception handling 
method gives programmers the ability to permit either 
a lower- or higher-level program to have the final say 
in how an exception should be disposed of. Moreover, 
exception handling actions can percolate up from an 
operation raising an exception until some invoker is 
found who is able to deal with the exception, or once 
the exception has reached the highest level, default 
handlers can be invoked successively from higher to 
lower levels until a default handier has successfully 
dealt with the exception (cf. [22, pp. 189-198]). 

The proposed method of dealing with defaults satis- 
fies all default exception handling requirements by 
extending the previously developed exception handling 
notation in a uniform way. I assume that language- 
defined exceptions like OVERFLOW will be defined as 
default exceptions so a programmer does not have to 
provide an explicit handler for every operation able to 
raise such exceptions. 

3.4 Exception Handling Hierarchies 
Until now, discussion has concentrated mostly on 

exception handling requirements arising from the rela- 
tion between an operation raising an exception and its 
immediate invoker. In this section, some system-wide 
consequences of the exception handling approach 
advocated in this paper will be briefly examined. 

One set of issues arises from the fact that a sub- 
routine often only mediates between an operation rais- 
ing an exception and the operation disposing of the 
exception. For  example, suppose operation B is called 
by operation A. A expects B to raise exceptions X, Y, 
and Z under certain conditions, but these conditions 
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Fig. 6. Explanation of the PASS shorthand notation• PASS 
written without a CLEANUP handler is equivalent to PASS with 
an empty CLEANUP handler, i.e. [X: PASS;] is equivalent to 
IX: PASS; [CLEANUP:;]] 

T y p e  of e x c e p t i o n  X T r a n s l a t i o n  of X: PASS;  
[CLEANUP: .... ]; 

ESCAPE X: ....... ESCAPE X ; 

SIGNAL X: . . . SIGNAL X; [CLEANUP: .... ] 
I~ESUME ; 

OPTIONAL SIGNAL X: . .. SIGNAL X: [CLEANUP: 
DEFAULT: 

RESUME(DEFAULT);] 
RESUME; 

NOTIFY X: ... NOTIFY X; 
RESUME; 

OPTIONAL NOTIFY X: NOTIFY X; 
[DEFAULT: RESUME(DEFAULT); 

RESUME; 

occur only when B invokes operation C, so C is the 
routine that actually has responsibility for detecting the 
exception. B acts merely as a conduit, transmitting 
exceptions detected by C to A. B could be implemented 
as follows: 

B: PROCEDURE [X: SIGNAL, 
Y: OPTIONAL SIGNAL, 
Z: ESCAPE]; 

DCL C ENTRY IX: SIGNAL 
Y: OPTIONAL SIGNAL, 
Z: ESCAPE]; 

DO WHILE ( . . . ) ;  
CALL C; 

END; 
. . ,  

END B; [X: SIGNAL X; 
RESUME; 

Y: SIGNAL Y; 
[DEFAULT: RESUME(DEFAULT) ;] 

RESUME; 
Z: ESCAPE Z;] 

Note that the handlers for X, Y, and Z do nothing 
except pass these exceptions to B's invoker; there are 
not even any C L E A N U P  actions to be performed when 
B is terminated. Although the basic notation is adequate 
to express what is to happen, the notation is rather 
cumbersome, especially if there are many exceptions 
being passed through to an invoker. It  is even more 
cumbersome if the same cleanup actions are to be per- 
formed when C raises any of its exceptions, and B's 
operation is terminated• For  example, we would then 
have to write: 

END B; [X: SIGNAL X; [CLEANUP:... ] 
RESUME; 

Y: SIGNAL Y; [CLEANUP: . . .  
DEFAULT:RESUME(DEFAULT) ;] 

RESUME; 
Z : . . .  ESCAPE Z;] 

The three dots in all cases represent the same set of  
cleanup actions• Obviously there is a need for a short- 
hand notation to cover this situation, which is not at all 
uncommon• Before suggesting a shorthand notation, 
however, note that actions common to several excep- 
tions are not limited to cleanup actions; if X, Y, and Z 
are all related, a common (possibly null) action in 
response to them might be required within B, but only 
B's invoker cares about  the finer distinctions implied by 
X, Y, and Z. Therefore, to deal with actions common to 
several exceptions, we propose the following notation: 

END B; [X:Y:Z: . .. PASS; [CLEANUP: . . .  ]] 

where the three dots preceding PASS represent actions 
to be performed when C raises X, Y, or Z, and the three 
dots after C L E A N U P  represent actions to be performed 
before the operation of B is terminated as a result of  
passing an exception to B's invoker• The semantics of  
PASS are specified as follows: for each exception in- 
voking the handler containing PASS (i.e. for excep- 
tions X, Y, and Z in the above case), the handler body 
is replicated and associated with only one exception; for 
example, [X :Y:  Z : . . . P A S S ;  [ C L E A N U P : • • . ] ]  is 
replaced by: 

[X: . . .  PASS; [CLEANUP: . . .  ] 
Y: . . .  PASS; [CLEANUP: . . .  ] 
Z: . . .  PASS; [CLEANUP: . .. ]] 

Each instance of PASS is then replaced with an appro- 
priate set of commands  for passing the exception up to 
the next handler, according to the type of exception 
PASS is used with (see Figure 6). 

Although the motivation for PASS was the need to 
pass exceptions to invokers of subroutines, the defini- 
tion permits use of PASS within a subroutine as well, 
e.g. 

B: PROCEDURE..• 

CALL C; [Z: . . .  PASS;] 

END B; IX: Y: Z: . . .  PASS;] 

This code implies that when C raises Z, some action will 
be performed in the context of  the call to C. Then action 
common to X, Y, and Z will be performed before the 
exception C raised is passed to B's invoker• 

In short, the ability to treat groups of exceptions 
identically before passing the exceptions to other 
handlers is important  for notational conciseness, and 
the need to do so arises naturally when higher level 
programs need a more detailed breakdown of exceptions 
than intervening programs• 

The insistence that no exceptions be propagated 
automatically to invokers may seem too burdensome to 
some, because the automatic propagat ion of exceptions 
upwards has at least two apparent advantages: 

(a) It  makes it easier to add an exception to a sys- 
tem of programs• 

(b) Exceptions automatically passed upward are 
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ultimately passed to the main p rogram ' s  environment ,  
which may  be a debugging system or the system's user 
at an interactive terminal. Considerable flexibility in 
dealing with exceptions can thereby be provided.  

These seeming advantages are more  apparent  than 
real. I f  a p rog rammer  adds an exception to a subrou- 
tine, and the exception is only disposed of  by a sub- 
rout ine several levels higher in the calling hierarchy, 
the proposed  nota t ion does require that  all intervening 
programs  be modified to explicitly pass the new excep- 
t ion through.  Al though  this certainly increases the work 
of  p rog ram modification,  it is not  entirely wasted effort. 
There are definite advantages  in having to examine all 
intervening p rograms  to see how they are affected by 
the new exception, and the proposed  nota t ion forces 
such an examinat ion to be carried out. 

As for the second requirement,  the ability to pass an 
exception to a main p rogram ' s  environment ,  it is per- 
fectly reasonable to provide a c o m m a n d  for raising an 
exception in the main p rog ram ' s  envi ronment  without  
first passing it up to the main program.  No t  providing 
such a c o m m a n d  is too  restrictive, since p rog ramming  
by stepwise refinement or levels o f  abstract ion implies 
tha t  top level p rograms  will be unaware  o f  many  excep- 
tions raised at lower levels. I f  a lower level is unable to 
dispose of  some exception and is also unable to pass this 
exception meaningfully to a higher level, then raising 
the exception directly in the main p rogram ' s  environ- 
ment  should be possible. Doing  so is useful and will 
drastically reduce the number  of  exceptions that  would 
otherwise have to be passed up to the main program.  

4. Conclusions 

In  this paper  I have discussed the issues posed by 
exception conditions.  I have proposed a new exception 
handl ing nota t ion that  solves exception handling prob-  
lems in a more  uni form and reliable way than any 
existing method.  The proposed  nota t ion succeeds in 
abolishing nonlocal  goto  statements to deal with excep- 
t ions and subsumes the by-now-famil iar  device of  
" b r e a k "  or " leave"  statements for multilevel loop 
exiting. The proposed  nota t ion is not  complete,  since 
it does not  satisfy the need for parameters  associated 
with exceptions. Nonetheless,  the analysis shows that  
the wide variety of  exception handl ing approaches  that  
exist today  can be replaced with a single uni form ap- 
p roach  that  satisfies the needs of  failure, result classifi- 
cation, and moni tor ing  exceptions equally well with 
reasonable efficiency. 
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