
#1

Automated Automated
Program RepairProgram Repair

#2

Motivation
• Software maintenance is expensive

– Up to 90% of the cost of software
• [Seacord]

– Up to $70 Billion per year in US
• [Jorgensen, Sutherland]

– Bug repair is the majority of maintenance
• [Erlikh, Ramamoothy, Williamson]

• Bugs are ubiquitous
– Outstanding bugs exceed the resources available

to address them
• [Anvik, Liblit]

#3

Fixing Bugs Early Would Help

• The cost of a defect is $25 during the coding
phase, $100 during the build phase, $450
during the QA/testing phase, and $16,000
once released as a product.
– Leigh Williamson, IBM Distinguished

Engineer
• On average, a software vendor loses 0.63% of

its market value on the day of any
vulnerability announcement.
– [Telang and Wattal]

#4

Fixing Many Bugs Would Help

•“Everyday, almost 300
bugs appear ... far too
much for only the Mozilla
programmers to handle.”
–Mozilla Developer [Anvik]

#5

Central Claim

• We can automatically repair certain
classes of bugs in off-the-shelf,
unannotated legacy software.
– We can automatically repair many

types of high-impact security bugs.
– We can automatically repair many

“general software engineering” bugs.

#6

Insights
• Given a buggy program, search the space of

nearby programs until a valid repair is found.
• Use test cases to encode the program

specification and the defect
• Find nearby programs by mimicking human

edits and leveraging existing human insight
• Reduce the search space by restricting

attention to areas likely to contain the bug
• Genetic programming guides the search,

tolerating noise and admitting parallelism

#7

Correctness

• Testing gives confidence that a program
implementation adheres to its specification
(as refined from its requirements).

• Loosely, in the Oracle-Comparator model, a
test case includes:
– A Test Input
– An Oracle Answer (expected answer)
– A Comparator (is an answer close enough?)

• The current bug is demonstrated by a test
case that currently fails

#8

Fault Localization

• Even in large programs, not every component
is equally likely to contribute to a given fault

• Given a program, a bug, and a test suite,
fault localization produces a mapping from
program components to weights
– “High weight” means “likely related to the bug”

• Many techniques exist
– [Renieris and Reiss, Jones and Harrold]

• Loosely: print statement debugging, note all
statements only visited on bug test case

#9

Fix Localization

• There are a large number of ways to change a
given statement
– e.g., deleting it, adding more code to it, replacing

it with something completely different, etc.

• When inserting, we leverage human insight
by using code from elsewhere in the program
– Program is probably correct elsewhere [Engler]

• Simple Operations: Insert, Replace, Delete
• Fix localization is the set of things to insert

#10

Genetic Algorithm Overview

• Genetic Programming is a search heuristic
– Based on a computational analog of biology
– Represent solutions to the problem (genotypes)
– Uses a population of variant solutions
– Applies simple mutations
– Evaluate the fitness of a variant (phenotype)
– High-fitness variants survive and mate (crossover)
– Repeat until a solution is found

#11

Patch Representation

• A patch is represented as a list of edits
• Edits are statement-level operations

– Example: < Delete(5), Insert(33,2) >

• Mutation: add to edit list
– Choose a statement X from Fault Localization
– Choose: Delete X or Insert(X,FixLocalization(X)) or

Replace(X,FixLocalization(X))

• Crossover: random sublist of parent lists
• Fitness: print out patched program, run tests

#12

Overall Repair Algorithm

• Input: Program P, Test Suite T
• Loc := Compute Fault and Fix Localizations
• Population := n random mutants of P
• Repeat Until Solution Found:

– HighFit := Select(Population, n, T)
– Offspring := Crossover(HighFit)
– Population := Mutate(HighFit + Offspring, Loc)

#13

Example: GCD
void print_gcd(int a, int b) {

if (a == 0)
printf(“%d”, b);

while (b != 0) {
if (a > b)

a = a – b;
else

b = b – a;
}

 printf(“%d”, a);
return;

}

Bug: when
a==0 and b>0,
it loops forever!

#14

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Representation

#15

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Fault Location

(printf ...b)

Fault Localization:

#16

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (1/2)

#17

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (2/2)

return

#18

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Final Repair

return

#19

Initial Program Repair Results

#20

Research Questions

• Your results may not generalize to my
situation because the programs and bugs I
deal with ...
– Have huge, long-running test suites (scalability)
– Require high quality repairs (expressive power,

overfitting)
– Do not have source code (input assumptions,

expressive power)
– Are large and indicative (overfitting)
– Require an economic business case

#21

Large Test Suites and Fitness

• Thus far, test cases both
– Validate a variant as a final repair
– and also Determine which variants are retained

• What if there are 100+ test cases?
• Idea:

– Use all tests to validate final repairs
– Sample some tests to decide which variants are

retained into the next iteration

#22

Large Test Suites

• Use test suite selection techniques
– Or random sampling

• Sampling reduces repair time by 81%
– First evaluation on 10 bugs, 1200+ test cases

• “leukocyte was repaired in 6 minutes
instead of over 90 minutes ... and
imagemagick was repaired in 3 minutes
instead of 36”

• Helps performance and correctness

#23

Repair Quality

• Produced repairs pass all tests + minimization
• Objective measures

– Retains required functionality
– Does not introduce new bugs
– Is not a “fragile memorization” of buggy input

• Subjective measures
– Code review
– Assurance argument

#24

Repair Quality Benchmarks

• Two webservers with buffer overflows
– nullhttpd, lighttpd

– 138,226 held-out requests from 12,743 clients

• One web app language interpreter
– php (integer overflow vulnerability)

– 15 kLOC secure reservation system web app
– 12,375 requests (held out)

#25

Repair Quality Experiments

• Conduct repairs
– Using ~10 test cases

• Evaluate repairs
– Using all held-out test cases
– Need same result bit-for-bit in same time or less
– Also evaluate using held-out fuzz testing

#26

Repair Quality Results
Program Requests Lost

Making Repair
Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

#27

Repair Quality Results
Program Requests Lost

Making Repair
Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

#28

Repair Quality Results
Program Requests Lost

Making Repair
Requests Lost to
Repair Quality

General Fuzz
Tests Failed

Exploit Fuzz
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a

#29

Cherry Picking

• Thus far, all repaired programs were chosen
arbitrarily by the authors
– That is, the benchmark set may not be a

representative sample of real-world programs

• Let's address that and program size concerns
in one fell swoop with a systematic study
– Use version control, take entire ranges of versions
– Find all reproducible bugs within that range
– Must be important enough for devs to fix and test
– Try to repair them all

#30

“Many Bugs” Benchmarks

#31

“Many Bugs” Results

Results can be reproduced for $403; successful repairs cost $7.32 on average.

#32

Repair Quality and Bug Bounties

• All patches pass all available tests (e.g., 8471)

• Humans can still inspect patches [Weimer]

– If this cuts developer time in half, the economic
argument still holds ($25 vs. $25/2 + $7.32)

• One commercial developer paid $1,625 for
• 63 repairs to “harmless” severity bugs
• 11 repairs to “minor” severity bugs, 1 repair to “major”
• 125 “false positive” candidate patches
• Avg: $21 per non-trivial repair, one every 40 hours
• “Worth the money? Every penny.”
• http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-bugs.html

http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-bugs.html

#33

Project Scope

• Two workshop paper (FoSER, SBST)

• Two journal paper (TSE, Comm. ACM)

• Four conference papers (ASE, ASE, GECCO, ICSE)

• Three best paper awards (ICSE, GECCO, SBST)

• Some associated papers (SIGGRAPH, etc.)

• IFIP TC2 Manfred Paul Award (1024 Euros)

• Gold Human Competitive Award ($5000)

• Four grant proposal awards
• ... since 2009.

#34

Discussion Section

• Possible stories:
• Boring grant meeting
• Fail Early
• Bug finding fatigue
• Early experimental result problems
• Don't be all things to all people
• Dagstuhl Seminar
• Tom Ball predictions

#35

Homework

• Project Writeup Due!
– Need help? Stop by my office or send email.

• Project Presentation Due

	Type Systems for Resource Management
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Homework

