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Motivation
• Software maintenance is expensive

– Up to 90% of the cost of software 
• [Seacord]

– Up to $70 Billion per year in US 
• [Jorgensen, Sutherland]

– Bug repair is the majority of maintenance
• [Erlikh, Ramamoothy, Williamson]

• Bugs are ubiquitous
– Outstanding bugs exceed the resources available 

to address them 
• [Anvik, Liblit]
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Fixing Bugs Early Would Help

• The cost of a defect is $25 during the coding 
phase, $100 during the build phase, $450 
during the QA/testing phase, and $16,000 
once released as a product.
– Leigh Williamson, IBM Distinguished 

Engineer
• On average, a software vendor loses 0.63% of 

its market value on the day of any 
vulnerability announcement.
– [Telang and Wattal]
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Fixing Many Bugs Would Help

•“Everyday, almost 300 
bugs appear ... far too 
much for only the Mozilla 
programmers to handle.”
–Mozilla Developer [Anvik]
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Central Claim

• We can automatically repair certain 
classes of bugs in off-the-shelf, 
unannotated legacy software. 
– We can automatically repair many 

types of high-impact security bugs. 
– We can automatically repair many 

“general software engineering” bugs. 
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Insights
• Given a buggy program, search the space of 

nearby programs until a valid repair is found.
• Use test cases to encode the program 

specification and the defect
• Find nearby programs by mimicking human 

edits and leveraging existing human insight
• Reduce the search space by restricting 

attention to areas likely to contain the bug
• Genetic programming guides the search, 

tolerating noise and admitting parallelism
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Correctness

• Testing gives confidence that a program 
implementation adheres to its specification 
(as refined from its requirements).

• Loosely, in the Oracle-Comparator model, a 
test case includes:
– A Test Input
– An Oracle Answer (expected answer)
– A Comparator (is an answer close enough?)

• The current bug is demonstrated by a test 
case that currently fails
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Fault Localization

• Even in large programs, not every component 
is equally likely to contribute to a given fault

• Given a program, a bug, and a test suite, 
fault localization produces a mapping from 
program components to weights
– “High weight” means “likely related to the bug”

• Many techniques exist 
– [Renieris and Reiss, Jones and Harrold]

• Loosely: print statement debugging, note all 
statements only visited on bug test case
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Fix Localization

• There are a large number of ways to change a 
given statement
– e.g., deleting it, adding more code to it, replacing 

it with something completely different, etc.

• When inserting, we leverage human insight 
by using code from elsewhere in the program
– Program is probably correct elsewhere [Engler]

• Simple Operations: Insert, Replace, Delete
• Fix localization is the set of things to insert
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Genetic Algorithm Overview

• Genetic Programming is a search heuristic
– Based on a computational analog of biology
– Represent solutions to the problem (genotypes)
– Uses a population of variant solutions 
– Applies simple mutations
– Evaluate the fitness of a variant (phenotype)
– High-fitness variants survive and mate (crossover)
– Repeat until a solution is found
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Patch Representation

• A patch is represented as a list of edits
• Edits are statement-level operations

– Example: < Delete(5), Insert(33,2) > 

• Mutation: add to edit list
– Choose a statement X from Fault Localization
– Choose: Delete X or Insert(X,FixLocalization(X)) or 

Replace(X,FixLocalization(X))

• Crossover: random sublist of parent lists
• Fitness: print out patched program, run tests
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Overall Repair Algorithm

• Input: Program P, Test Suite T
• Loc := Compute Fault and Fix Localizations
• Population := n random mutants of P
• Repeat Until Solution Found: 

– HighFit := Select(Population, n, T)
– Offspring := Crossover(HighFit)
– Population := Mutate(HighFit + Offspring, Loc)
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Example: GCD
void print_gcd(int a, int b) {

if (a == 0)
printf(“%d”, b); 

while (b != 0) {
if (a > b)

a = a – b;
else

b = b – a;
}

  printf(“%d”, a); 
return;

}

Bug: when 
a==0 and b>0,
it loops forever!
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Representation
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Fault Location

(printf ...b)

Fault Localization:
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (1/2)
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (2/2)

return
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Final Repair

return
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Initial Program Repair Results
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Research Questions

• Your results may not generalize to my 
situation because the programs and bugs I 
deal with ...
– Have huge, long-running test suites (scalability)
– Require high quality repairs (expressive power, 

overfitting)
– Do not have source code (input assumptions, 

expressive power)
– Are large and indicative (overfitting)
– Require an economic business case
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Large Test Suites and Fitness

• Thus far, test cases both
– Validate a variant as a final repair
– and also Determine which variants are retained

• What if there are 100+ test cases?
• Idea:

– Use all tests to validate final repairs
– Sample some tests to decide which variants are 

retained into the next iteration
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Large Test Suites

• Use test suite selection techniques
– Or random sampling

• Sampling reduces repair time by 81%
– First evaluation on 10 bugs, 1200+ test cases

• “leukocyte was repaired in 6 minutes 
instead of over 90 minutes ... and 
imagemagick was repaired in 3 minutes 
instead of 36”

• Helps performance and correctness 
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Repair Quality

• Produced repairs pass all tests + minimization
• Objective measures

– Retains required functionality
– Does not introduce new bugs
– Is not a “fragile memorization” of buggy input

• Subjective measures
– Code review
– Assurance argument



#24

Repair Quality Benchmarks

• Two webservers with buffer overflows
– nullhttpd, lighttpd

– 138,226 held-out requests from 12,743 clients

• One web app language interpreter
– php (integer overflow vulnerability)

– 15 kLOC secure reservation system web app
– 12,375 requests (held out)
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Repair Quality Experiments

• Conduct repairs
– Using ~10 test cases

• Evaluate repairs
– Using all held-out test cases
– Need same result bit-for-bit in same time or less
– Also evaluate using held-out fuzz testing
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Repair Quality Results
Program Requests Lost 

Making Repair 
Requests Lost to 
Repair Quality

General Fuzz 
Tests Failed

Exploit Fuzz 
Tests Failed

nullhttpd 2.38% ± 0.83% 0.00% ± 0.25% 0 → 0 10 → 0

lighttpd 0.98% ± 0.11% 0.03% ± 1.53% 1410 → 1410 9 → 0

php 0.12% ± 0.00% 0.02% ± 0.02% 3 → 3 5 → 0

nullhttpd
False Pos #1

7.83% ± 0.49% 0.00% ± 2.22% 0 → 0 n/a

nullhttpd
False Pos #2

3.04% ± 0.29% 0.57% ± 3.91% 0 → 0 n/a

nullhttpd
False Pos #3

6.92% ± 0.09%
(no repair!)

n/a n/a n/a
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Cherry Picking

• Thus far, all repaired programs were chosen 
arbitrarily by the authors
– That is, the benchmark set may not be a 

representative sample of real-world programs

• Let's address that and program size concerns 
in one fell swoop with a systematic study
– Use version control, take entire ranges of versions
– Find all reproducible bugs within that range
– Must be important enough for devs to fix and test
– Try to repair them all
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“Many Bugs” Benchmarks
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“Many Bugs” Results

Results can be reproduced for $403; successful repairs cost $7.32 on average.
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Repair Quality and Bug Bounties

• All patches pass all available tests (e.g., 8471)

• Humans can still inspect patches [Weimer]

– If this cuts developer time in half, the economic 
argument still holds ($25 vs. $25/2 + $7.32)

• One commercial developer paid $1,625 for 
• 63 repairs to “harmless” severity bugs
• 11 repairs to “minor” severity bugs, 1 repair to “major”
• 125 “false positive” candidate patches
• Avg: $21 per non-trivial repair, one every 40 hours
• “Worth the money? Every penny.” 
• http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-bugs.html 

http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-bugs.html
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Project Scope

• Two workshop paper (FoSER, SBST)

• Two journal paper (TSE, Comm. ACM)

• Four conference papers (ASE, ASE, GECCO, ICSE)

• Three best paper awards (ICSE, GECCO, SBST)

• Some associated papers (SIGGRAPH, etc.)

• IFIP TC2 Manfred Paul Award (1024 Euros)

• Gold Human Competitive Award ($5000)

• Four grant proposal awards 
• ... since 2009. 
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Discussion Section

• Possible stories:
• Boring grant meeting
• Fail Early
• Bug finding fatigue
• Early experimental result problems
• Don't be all things to all people
• Dagstuhl Seminar
• Tom Ball predictions
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Homework

• Project Writeup Due!
– Need help? Stop by my office or send email.

• Project Presentation Due 
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