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Previously, in grad PL… 

•  We’ve studied a variety of  type systems. 

•  We have made the type system more expressive over time: 
new errors, better programs, happier programmers. 
•  Examples: exceptions, polymorphism, recursion… 

•  But! We have avoided undecidable systems. 
•  Implication: there are many errors that cannot be caught by the type 

systems we’ve discussed so far. 



And now, in grad PL… 

•  More complex type systems that bring type checking 
closer to program verification: 

1.  Dependent types 

2.  Types for data abstraction and modularity 
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Proximate cause/recent review 

•  Theorem proving is Wicked Useful and can 
determine if  things are true or false: “your file 
system can seg fault”, “this formula is satisfiable.” 

•  However, we also want theorem provers to provide 
checkable proofs to back up what they decide. 

•  Fortunately, “proof  checking is equivalent to type 
checking in a dependent type system.” 
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A dependent type is a type 
that depends on a value. 

(A somewhat-circular one-sentence spoiler) 



•  Consider functions that manipulate vectors: 

•  Consider code that uses these functions: 

(Simpler) Motivating Example 

zero : nat  vector!
dotprod : vector  vector  real!

let v1 = zero 5!
let v2 = zero 15!
  dotprod v1 v2!
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Dependent type-based solution 

•  Plan: make vector a type family that is annotated by a 
natural number corresponding to a length.  

•  vector n is the type of  vectors of  length n!
•  Example: <2,3,4> : vector 3!

•  Now our example functions look like:  

dotprod : vector n  vector n  real!
zero : nat  vector ???!
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Notation FGJ Part 1 
-or- 

Dependent Product 
Types 



•  Lets us model functions whose result type may vary based on 
the input value (like new-and-improved zero!). 

•  Given sets A and B: 

•  The latter is the cartesian product of  B with itself  as many 
times as there are elements in A. 
•  Also written as:  

!x : A.B

Dependent Product Types 

A! B " B
X#A$

These two things are isomorphic! 
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is the type of  functions with arguments in A 
and the result type B (where B possibly depends 
on type x in A).  

•  We can now write zero as:  

•  When x is not in B we can just write A  B; we play “fast 
and loose” with the binding of      . 

!x : A.B

Product type: Definition 

dotprod : vector n  vector n  real!
zero : nat    x:nat.vector x!!

!



New Static Semantics 

•  Note that expressions are now part of  types. 
•  Ex: types like “vector 5” and “vector (2+3)”  

•  We need type equivalence: 

!, x :! 2 |" e :!
! |""x :! 2.e :#x :! 2.!

! |" e1 :#x :! 2.! ! |" e2 :! 2
! |" e1e2 :[e2 / x]!

! |" e :! ! |"! # ! '
! |" e :! '

! |" e1 # e2
! |" vector e1 # vector e2



Dependent Types and Program 
Specifications 

•  Types act as specifications 

•  We can specify any property (assuming appropriate typing 
rules for the new types). Examples: 
•  eq e or sng e: the type of  values equal to e (the singleton type). 
•  ge e, lt e: the type of  values ≥, < e.  
•  and τ1τ2: the type of  values having both type τ1 and τ2 

•  Vector-accessing: 

•  The type checker does program verification. 

read: Πn:nat.vector n  (and (ge 0)(lt n))  int !



Additional Commentary 

•  Type checking with Π types can be as hard as full program 
verification. 

•  Type equivalence – and checking – can be undecidable, if  types 
depend on expressions drawn from a powerful language (e.g., 
arithmetic). 

•  Dependent types play an important role in the formalization of  
logics. 
•  Started with Per Martin-Lof  
•  Proof  checking via type checking 
•  Proof-carrying code uses a dependent type checker. 
•  There are program specification tools based on Π types 



Notation FGJ Part 2 
-or- 

Dependent Sum Types 



Dependent Sum Types: Vectors, Take 2 

•  Alternative: pack a vector with its length. 
•  e=(n,v), where v : vector n!
•  Type: e : nat x vector ??!

•  Dependent sum types: the type of  a pair where one element 
depends on the value of  another element of  the pair.  

•  Given sets A and B: 

•  The latter is the disjoint union of  B with itself  as many times 
as there are elements in A. 

•  Alternative notation.  Again, x plays no role, 
but now we can make B depend on it. 

A!B " #x$AB

!x : A.B

(also an isomorphism!) 
 



is the type of  pairs with first element of  type A 
and second element of  type B (possibly 
depending on the value of  first element x).  

•  We can now write e’s type as e : Σx:nat.vector x!

•  Old functions to compute the length of  a vector: 

 

!x : A.B

Sum type: Definition 

vlength : Πn:nat.vector n  nat!
slength: Πn:nat.vector n  sng n!

pvlength : Σn:nat.vector n  nat!
pslength: Σn:nat.vector n  sng n!

•  Packed with its length: 



More Static Semantics 

•  Note: the second rule reduces to the usual rules for tuples 
when there is no dependency 

•  The evaluation rules are unchanged 

! |" e1 :!1 ! |" e2 :[e1 / x]! 2
! |" (e1,e2 ) :#x :!1.! 2

! |" e :#x :!1.! 2
! |" snd e :[ fst e / x]! 2



What did this all have to 
do with proofs, again? 



Reminder: Proof  Representation 

•  Proofs are trees; leaves are hypotheses/axioms; internal 
nodes are inference rules. 

•  Problem: andel truei: pf  this only says that and 
elimination has type proof, but not whether it is proving 
something true in a valid way.  

•  The type of  the proof  has nothing to do with the values of  the thing 
that’s being proven. 
•  Fortunately, we just discussed a solution to this problem. 



Dependent type solution 

•  pf is now a family of  types indexed by (or dependent on, if  
you prefer) formulas. 
•  f : Type  (type of  encodings of  formulas) 
•  e : Type  (type of  encodings of  expressions) 
•  pf : f  Type (type of  proofs indexed by formulas: a proof  

that f  is true) 

•  Examples (that may make more sense now): 

•  D 
true : f!
and : f  f  f!
truei : pf true !
andi : pf A  pf B  pf (and A B)!
andi: ΠA:f.ΠB:f.pf A  pf B  pf (and A B)!



Proof  Checking 

•  We validate proof  trees by type-checking them: given a proof  
tree X claiming to prove A Λ B,  we check X : pf (and 
A B)!

•  Thus Type Checking = Proof Checking (…dependent 
types) 
•  Type checking your types involves additional fancy math 

(including kinds). I am helpfully eliding, though I assert it’s fun. 



“Weimeric Commentary” 

•  Dependent types seem obscure: why care?  

•  Grand Unified Theory: Type Checking = Verification (= 
Model Checking = Proof  Checking = Abstract 
Interpretation ...) 

•  Also, useful: rumor has it the CCured Project was successful.  
Turns out the whole thing is dependent sum types: 
•  SEQ = (pointer + lower bound + upper bound)  

•  FSEQ = (pointer + upper bound)  

•  WILD = (pointer + lower bound + upper bound + rtti) 



Q: Games (540/842) 

• This seminal 1991 turn-based 
strategy computer game by 
Sid Meier of  Microprose 
spawned an entire genre about 
micromanaging exploration, 
expansion and conflict.   



Q: Games (543/842) 

• His genre-spawning 1993 game, 
"affectionately" referred to as "crack 
for gamers", was later inducted into 
the GAMES Magazine and Origins 
Halls of  Fame. Name this game, game 
designer, and/or the field in which the 
designer holds a doctorate. 
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Data Abstraction 

•  Ability to hide (abstract) concrete implementation details. 

•  Modularity builds on data abstraction. 

•  Improves program structure and minimizes dependencies 

•  One of  the most influential developments of  the 1970’s 

•  Key element for much of  the success of  object orientation in 
the 1980’s. 
•  Note: abstract data types and objects are not actually the same 

thing, but the underlying concepts are similar.  



An abstract data type has 
a public name, a hidden 

representation, and 
operations to create, 

combine, and observe 
values of  the abstraction.  

(Another circular one-sentence spoiler) 



Example: Cartesian Points 

•  Introduce the abstype construct for creating abstract types.   

•  This is a concrete 
implementation.  

•  The rest of  the program 
accesses the 
implementation through 
an abstract interface 

•  Only the interface need to be publicized; allows separate 
compilation 

abstype point implements!
mk : real x real  point!
xc : point  real!
yc : point  real!

is!
<point = real x real,!
 mk = λx.x,!
 xc = fst,!
 yc = snd >!
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Existential Types 

•  Ifσ is the type: { mk : real x real  point !
xc : point  real !
yc : point  real } 

•  Notice!  C : [real x real/point] σ!

•  Expression A = <point = real x real, C : σ> 
has abstract type    point.σ!

•  We want clients to access the second component of  A and 
just use the abstract name point for the first component: 

open A as point, P : σ in …!



Data Abstraction 

•  New syntax  (t = implementation, σ = interface):  
Types ::= ... |  t.σ!
Terms ::= ... | <t=τ,e:σ >!

| open ea as t, x:σ in eb !

•  The expression <t=τ, e : σ> takes the concrete 
implementation e and “packs it” as a value of  an abstract 
type. 
•   Alternative notation: pack e as  t.σ with t = τ 

•  The open expression allows eb to access the abstract type 
expression ea using the name x, the unknown type of  the 
concrete implementation t, and the interface σ. 



Typing rules for existential types 

•  The restriction in the rule for open ensures that t does not 
escape its scope 

! |"[! / t]e :[! / t]"
! |" < t = ! ,e :" >:#t."

! |" ea :#t.! !, t, p :! |" eb :"
! |"open ea as t, p :! in eb :"

t ! FV ("!! )



Evaluation rules for abstract types 

•  We add a new form of  value:  v ::= … | <t=τ, v:σ>!
•  This is just like v, but with type decorations that give it an 

existential type. 

•  At the time eb is evaluated, abstract-type variables are 
replaced with concrete values 

•  If  we ignore the type issues,  open ea as t,x:σ in eb 
is just like let x:σ= ea in eb!
•  Difference: eb cannot statically know the concrete type of  x, so it 

cannot take advantage of  it. 

ea !< t = ! ,v :" > [v / x][! / t]eb ! v '
open ea as t, x :" in eb ! v '



Abstract types as a specification 
mechanism 

•  Just like polymorphism, existential types are mostly a type 
checking mechanism. 

•  A function of  type    t.t List  int does not statically 
know the type of  the list elements; no operations are allowed 
on them. 

•  But the actual value of  t is eventually available; “there are no 
type variables at run-time.” The same goes for existentials.  

•  These type mechanisms are a very powerful (and widely 
used!) form of  static checking  
•  Recall Wadler’s “Theorems for Free” 

!



Real world example: file descriptors 

•  Solution 1: Represent file descriptors as int and export the 
interface 

{open:string  int, read:int  data}!

•  How can we know that read is invoked by untrusted clients 
with a file descriptor that was obtained from open?  
•  We must track all integers representing file descriptors. 

•  Design the interface such that all such integers are small so we 
can essentially keep a bitmap for run-time tracking. 

•  This becomes expensive with more complex (e.g. pointer-
based) representations. 



File descriptors with static checking 

•  Solution 2: Use the same representation but export an 
abstraction of  it. 
 fd.File, or    fd.{open : string  fd, !

read : fd  data} !
•  A possible value: 
 F=<fd=int,{open=…,read=…}:File>:  fd.File!

•  The untrusted client can do: open Fd as fd,x:File in 
e!
•  At run-time, e can see that file descriptors are integers, but still 

can’t cast 7 as a file descriptor. Checking, but no run-time costs!  
•  Catch: you must be able to type check e!



A module is a program 
fragment along with 
visibility constraints.  

(this one isn’t circular, actually) 



Modularity 

•  Visibility of: 
•  functions and data: specify the function interface but hide its 

implementation. 
•  type definitions: more complicated because the type might 

appear in specifications of  the visible functions and data, but we 
can use data abstraction to handle this 

•  A module is represented as a type component and an 
implementation component <t=τ,e:σ> (where t can 
occur in e andσ)  
•  We kind hide the implementation type even though the 

specification (σ) may refers to it. 



But there are 
problems… 



Problems with existentials 

•   The good: 
•  Allow representation (type) hiding 

•  Allow separate compilation. Need to know only the type of  a 
module to compile its client 

•  First-class modules that can be selected at run-time. (cf. OO 
interface subtyping) 

•  The bad: 
•  Closed scope. Must open an existential before using it! 

•  Poor support for module hierarchies 



•  There is an inherent tension between handling modules in 
isolation (good for separate compilation, interchangeability) 
and the need to integrate them 

 

•  Solution 1: open point at top level  
•  Inversion of  program structure  
•  The most basic construct has the widest scope 

Problems, continued 

(the arrow means “depends on”) 



Give up abstraction? 

•  Solution 2: incorporate point in rect and circle  
R = <point = …, <rect = point x point,…> …> !

C = <point = …, <circle = point x real, …> …>!

•  BUT: when we open R and C we get two distinct notions of  
point! We will not be able to combine them. 
•  No drawing circles around rectangles.  Sad. 

•  Another option: allow the type checker to see the 
representation type. 
•  (give up representation hiding) 



Solution: strong sums 

•  New way to open a package:  
Types ::= ... | Σt.τ | Typ(e)!
Terms ::= ... | Ops(e) 

•  Use Typ and Ops to decompose modules.  
•  Operationally just like fst and snd 

•  Σt.τis the dependent sum type 

•  Like   t.τ, except we can look at the type: 

! |" e :#t.!
! |"Ops(e) :![Typ(e) / t]



Modularity with strong sums 

•  Consider the R and C defined as before: 
Pt = <point=real x real, …> : Σpoint.τP!

R = <point=Typ(Pt), !

<rect=point x point, …> : Σrect. τR!

C = <point=Typ(Pt), !

<circle=point x real, …> : Σcircle. τC!

•  The use of  strong-sums means that the type checker sees that 
the two point types are the same. 



Real-world strong sums modules 

•   ML’s module system is based on strong sums. 
•  Reasonable compromise in practice. 
•  Downsides: 
•  Poorer data abstraction 
•  Expressions appear in types (Typ(e)) 
•  Types might not be known until at run time 
•  Lost separate compilation 

•  Trouble if  e has side-effects. We get around this with value 
restrictions – e.g., IntSet.t) – but this means that modules are 
second-class. 

•  Translucent sums can combine existentials with strong sums: 
partially visible 
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From Wes: Homework 

•  Project! 

•  You have ~14 days (including Thanksgiving) to complete it. 

•  Need help? Stop by Wes’s office or send email. 



Fireside	
  Chat	
  
Thursday,	
  Nov	
  17	
  
5:00	
  pm	
  
Thornton	
  D221	
  
	
  
Meet	
  and	
  ask	
  them	
  questions	
  in	
  a	
  
non-­‐academic	
  setting.	
  	
  
	
  
Learn	
  what	
  they	
  wish	
  they	
  had	
  
known	
  when	
  they	
  were	
  students,	
  
and	
  what	
  their	
  lives	
  are	
  like	
  
outside	
  of	
  the	
  of<ice.	
  	
  
	
  
Ask	
  them	
  anything!	
  
All	
  are	
  welcome.	
  

ACM-­‐W	
  

with	
  …	
  

One was a standup comic,  

the other runs marathons.  

Neither has had a haircut! 

Jason	
  Lawrence	
  

abhi	
  shelat	
  


