
1) Dependent Type Systems
2) Data Abstraction and
modularity

Claire Le Goues
Grad PL, 11/15/11

Previously, in grad PL…

•  We’ve studied a variety of type systems.

•  We have made the type system more expressive over time:
new errors, better programs, happier programmers.
•  Examples: exceptions, polymorphism, recursion…

•  But! We have avoided undecidable systems.
•  Implication: there are many errors that cannot be caught by the type

systems we’ve discussed so far.

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.  Dependent types

2.  Types for data abstraction and modularity

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.   Dependent types
2.  Types for data abstraction and modularity

Proximate cause/recent review

•  Theorem proving is Wicked Useful and can
determine if things are true or false: “your file
system can seg fault”, “this formula is satisfiable.”

•  However, we also want theorem provers to provide
checkable proofs to back up what they decide.

•  Fortunately, “proof checking is equivalent to type
checking in a dependent type system.”

Proximate cause/recent review

•  Theorem proving is Wicked Useful and can
determine if things are true or false: “your file
system can seg fault”, “this formula is satisfiable.”

•  However, we also want theorem provers to provide
checkable proofs to back up what they decide.

•  Fortunately, “proof checking is equivalent to type
checking in a dependent type system.”

A dependent type is a type
that depends on a value.

(A somewhat-circular one-sentence spoiler)

•  Consider functions that manipulate vectors:

•  Consider code that uses these functions:

(Simpler) Motivating Example

zero : nat  vector!
dotprod : vector  vector  real!

let v1 = zero 5!
let v2 = zero 15!
 dotprod v1 v2!

•  Consider functions that manipulate vectors:

•  Consider code that uses these functions:

(Simpler) Motivating Example

zero : nat  vector!
dotprod : vector  vector  real!

let v1 = zero 5!
let v2 = zero 15!
 dotprod v1 v2!

•  Consider functions that manipulate vectors:

•  Consider code that uses these functions:

(Simpler) Motivating Example

zero : nat  vector!
dotprod : vector  vector  real!

let v1 = zero 5!
let v2 = zero 15!
 dotprod v1 v2!

Dependent type-based solution

•  Plan: make vector a type family that is annotated by a
natural number corresponding to a length.

•  vector n is the type of vectors of length n!
•  Example: <2,3,4> : vector 3!

•  Now our example functions look like:

dotprod : vector n  vector n  real!
zero : nat  vector ???!

Dependent type-based solution

•  Plan: make vector a type family that is annotated by a
natural number corresponding to a length.

•  vector n is the type of vectors of length n!
•  Example: <2,3,4> : vector 3!

•  Now our example functions look like:

dotprod : vector n  vector n  real!
zero : nat  vector ???!

Notation FGJ Part 1
-or-

Dependent Product
Types

•  Lets us model functions whose result type may vary based on
the input value (like new-and-improved zero!).

•  Given sets A and B:

•  The latter is the cartesian product of B with itself as many
times as there are elements in A.
•  Also written as:

!x : A.B

Dependent Product Types

A! B " B
X#A$

These two things are isomorphic!

•  Lets us model functions whose result type may vary based on
the input value (like new-and-improved zero!).

•  Given sets A and B:

•  The latter is the cartesian product of B with itself as many
times as there are elements in A.
•  Also written as:

!x : A.B

Dependent Product Types

A! B " B
X#A$

These two things are isomorphic!

•  Lets us model functions whose result type may vary based on
the input value (like new-and-improved zero!).

•  Given sets A and B:

•  The latter is the cartesian product of B with itself as many
times as there are elements in A.
•  Also written as:

!x : A.B

Dependent Product Types

A! B " B
X#A$

These two things are isomorphic!

is the type of functions with arguments in A
and the result type B (where B possibly depends
on type x in A).

•  We can now write zero as:

•  When x is not in B we can just write A  B; we play “fast
and loose” with the binding of .

!x : A.B

Product type: Definition

dotprod : vector n  vector n  real!
zero : nat  x:nat.vector x!!

!

New Static Semantics

•  Note that expressions are now part of types.
•  Ex: types like “vector 5” and “vector (2+3)”

•  We need type equivalence:

!, x :! 2 |" e :!
! |""x :! 2.e :#x :! 2.!

! |" e1 :#x :! 2.! ! |" e2 :! 2
! |" e1e2 :[e2 / x]!

! |" e :! ! |"! # ! '
! |" e :! '

! |" e1 # e2
! |" vector e1 # vector e2

Dependent Types and Program
Specifications

•  Types act as specifications

•  We can specify any property (assuming appropriate typing
rules for the new types). Examples:
•  eq e or sng e: the type of values equal to e (the singleton type).
•  ge e, lt e: the type of values ≥, < e.
•  and τ1τ2: the type of values having both type τ1 and τ2

•  Vector-accessing:

•  The type checker does program verification.

read: Πn:nat.vector n  (and (ge 0)(lt n))  int !

Additional Commentary

•  Type checking with Π types can be as hard as full program
verification.

•  Type equivalence – and checking – can be undecidable, if types
depend on expressions drawn from a powerful language (e.g.,
arithmetic).

•  Dependent types play an important role in the formalization of
logics.
•  Started with Per Martin-Lof
•  Proof checking via type checking
•  Proof-carrying code uses a dependent type checker.
•  There are program specification tools based on Π types

Notation FGJ Part 2
-or-

Dependent Sum Types

Dependent Sum Types: Vectors, Take 2

•  Alternative: pack a vector with its length.
•  e=(n,v), where v : vector n!
•  Type: e : nat x vector ??!

•  Dependent sum types: the type of a pair where one element
depends on the value of another element of the pair.

•  Given sets A and B:

•  The latter is the disjoint union of B with itself as many times
as there are elements in A.

•  Alternative notation. Again, x plays no role,
but now we can make B depend on it.

A!B " #x$AB

!x : A.B

(also an isomorphism!)

is the type of pairs with first element of type A
and second element of type B (possibly
depending on the value of first element x).

•  We can now write e’s type as e : Σx:nat.vector x!

•  Old functions to compute the length of a vector:

!x : A.B

Sum type: Definition

vlength : Πn:nat.vector n  nat!
slength: Πn:nat.vector n  sng n!

pvlength : Σn:nat.vector n  nat!
pslength: Σn:nat.vector n  sng n!

•  Packed with its length:

More Static Semantics

•  Note: the second rule reduces to the usual rules for tuples
when there is no dependency

•  The evaluation rules are unchanged

! |" e1 :!1 ! |" e2 :[e1 / x]! 2
! |" (e1,e2) :#x :!1.! 2

! |" e :#x :!1.! 2
! |" snd e :[fst e / x]! 2

What did this all have to
do with proofs, again?

Reminder: Proof Representation

•  Proofs are trees; leaves are hypotheses/axioms; internal
nodes are inference rules.

•  Problem: andel truei: pf  this only says that and
elimination has type proof, but not whether it is proving
something true in a valid way.

•  The type of the proof has nothing to do with the values of the thing
that’s being proven.
•  Fortunately, we just discussed a solution to this problem.

Dependent type solution

•  pf is now a family of types indexed by (or dependent on, if
you prefer) formulas.
•  f : Type (type of encodings of formulas)
•  e : Type (type of encodings of expressions)
•  pf : f  Type (type of proofs indexed by formulas: a proof

that f is true)

•  Examples (that may make more sense now):

•  D
true : f!
and : f  f  f!
truei : pf true !
andi : pf A  pf B  pf (and A B)!
andi: ΠA:f.ΠB:f.pf A  pf B  pf (and A B)!

Proof Checking

•  We validate proof trees by type-checking them: given a proof
tree X claiming to prove A Λ B, we check X : pf (and
A B)!

•  Thus Type Checking = Proof Checking (…dependent
types)
•  Type checking your types involves additional fancy math

(including kinds). I am helpfully eliding, though I assert it’s fun.

“Weimeric Commentary”

•  Dependent types seem obscure: why care?

•  Grand Unified Theory: Type Checking = Verification (=
Model Checking = Proof Checking = Abstract
Interpretation ...)

•  Also, useful: rumor has it the CCured Project was successful.
Turns out the whole thing is dependent sum types:
•  SEQ = (pointer + lower bound + upper bound)

•  FSEQ = (pointer + upper bound)

•  WILD = (pointer + lower bound + upper bound + rtti)

Q: Games (540/842)

• This seminal 1991 turn-based
strategy computer game by
Sid Meier of Microprose
spawned an entire genre about
micromanaging exploration,
expansion and conflict.

Q: Games (543/842)

• His genre-spawning 1993 game,
"affectionately" referred to as "crack
for gamers", was later inducted into
the GAMES Magazine and Origins
Halls of Fame. Name this game, game
designer, and/or the field in which the
designer holds a doctorate.

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.   Dependent types
2.  Types for data abstraction and modularity

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.  Dependent types

2.  Types for data abstraction and modularity

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.  Dependent types

2.   Types for data abstraction and modularity

Data Abstraction

•  Ability to hide (abstract) concrete implementation details.

•  Modularity builds on data abstraction.

•  Improves program structure and minimizes dependencies

•  One of the most influential developments of the 1970’s

•  Key element for much of the success of object orientation in
the 1980’s.
•  Note: abstract data types and objects are not actually the same

thing, but the underlying concepts are similar.

An abstract data type has
a public name, a hidden

representation, and
operations to create,

combine, and observe
values of the abstraction.

(Another circular one-sentence spoiler)

Example: Cartesian Points

•  Introduce the abstype construct for creating abstract types.

•  This is a concrete
implementation.

•  The rest of the program
accesses the
implementation through
an abstract interface

•  Only the interface need to be publicized; allows separate
compilation

abstype point implements!
mk : real x real  point!
xc : point  real!
yc : point  real!

is!
<point = real x real,!
 mk = λx.x,!
 xc = fst,!
 yc = snd >!

Example: Cartesian Points

•  Introduce the abstype construct for creating abstract types.

•  This is a concrete
implementation.

•  The rest of the program
accesses the
implementation through
an abstract interface

•  Only the interface need to be publicized; allows separate
compilation

abstype point implements!
mk : real x real  point!
xc : point  real!
yc : point  real!

is!
<point = real x real,!
 mk = λx.x,!
 xc = fst,!
 yc = snd >!

Example: Cartesian Points

•  Introduce the abstype construct for creating abstract types.

•  This is a concrete
implementation.

•  The rest of the program
accesses the
implementation through
an abstract interface

•  Only the interface need to be publicized; allows separate
compilation

abstype point implements!
mk : real x real  point!
xc : point  real!
yc : point  real!

is!
<point = real x real,!
 mk = λx.x,!
 xc = fst,!
 yc = snd >!

Example: Cartesian Points

•  Introduce the abstype construct for creating abstract types.

•  This is a concrete
implementation.

•  The rest of the program
accesses the
implementation through
an abstract interface

•  Only the interface need to be publicized; allows separate
compilation

abstype point implements!
mk : real x real  point!
xc : point  real!
yc : point  real!

is!
<point = real x real,!
 mk = λx.x,!
 xc = fst,!
 yc = snd >!

Existential Types

•  Ifσ is the type: { mk : real x real  point !
xc : point  real !
yc : point  real }

•  Notice! C : [real x real/point] σ!

•  Expression A = <point = real x real, C : σ>
has abstract type point.σ!

•  We want clients to access the second component of A and
just use the abstract name point for the first component:

open A as point, P : σ in …!

Data Abstraction

•  New syntax (t = implementation, σ = interface):
Types ::= ... | t.σ!
Terms ::= ... | <t=τ,e:σ >!

| open ea as t, x:σ in eb !

•  The expression <t=τ, e : σ> takes the concrete
implementation e and “packs it” as a value of an abstract
type.
•  Alternative notation: pack e as t.σ with t = τ

•  The open expression allows eb to access the abstract type
expression ea using the name x, the unknown type of the
concrete implementation t, and the interface σ.

Typing rules for existential types

•  The restriction in the rule for open ensures that t does not
escape its scope

! |"[! / t]e :[! / t]"
! |" < t = ! ,e :" >:#t."

! |" ea :#t.! !, t, p :! |" eb :"
! |"open ea as t, p :! in eb :"

t ! FV ("!!)

Evaluation rules for abstract types

•  We add a new form of value: v ::= … | <t=τ, v:σ>!
•  This is just like v, but with type decorations that give it an

existential type.

•  At the time eb is evaluated, abstract-type variables are
replaced with concrete values

•  If we ignore the type issues, open ea as t,x:σ in eb
is just like let x:σ= ea in eb!
•  Difference: eb cannot statically know the concrete type of x, so it

cannot take advantage of it.

ea !< t = ! ,v :" > [v / x][! / t]eb ! v '
open ea as t, x :" in eb ! v '

Abstract types as a specification
mechanism

•  Just like polymorphism, existential types are mostly a type
checking mechanism.

•  A function of type t.t List  int does not statically
know the type of the list elements; no operations are allowed
on them.

•  But the actual value of t is eventually available; “there are no
type variables at run-time.” The same goes for existentials.

•  These type mechanisms are a very powerful (and widely
used!) form of static checking
•  Recall Wadler’s “Theorems for Free”

!

Real world example: file descriptors

•  Solution 1: Represent file descriptors as int and export the
interface

{open:string  int, read:int  data}!

•  How can we know that read is invoked by untrusted clients
with a file descriptor that was obtained from open?
•  We must track all integers representing file descriptors.

•  Design the interface such that all such integers are small so we
can essentially keep a bitmap for run-time tracking.

•  This becomes expensive with more complex (e.g. pointer-
based) representations.

File descriptors with static checking

•  Solution 2: Use the same representation but export an
abstraction of it.
 fd.File, or fd.{open : string  fd, !

read : fd  data} !
•  A possible value:
 F=<fd=int,{open=…,read=…}:File>: fd.File!

•  The untrusted client can do: open Fd as fd,x:File in
e!
•  At run-time, e can see that file descriptors are integers, but still

can’t cast 7 as a file descriptor. Checking, but no run-time costs!
•  Catch: you must be able to type check e!

A module is a program
fragment along with
visibility constraints.

(this one isn’t circular, actually)

Modularity

•  Visibility of:
•  functions and data: specify the function interface but hide its

implementation.
•  type definitions: more complicated because the type might

appear in specifications of the visible functions and data, but we
can use data abstraction to handle this

•  A module is represented as a type component and an
implementation component <t=τ,e:σ> (where t can
occur in e andσ)
•  We kind hide the implementation type even though the

specification (σ) may refers to it.

But there are
problems…

Problems with existentials

•  The good:
•  Allow representation (type) hiding

•  Allow separate compilation. Need to know only the type of a
module to compile its client

•  First-class modules that can be selected at run-time. (cf. OO
interface subtyping)

•  The bad:
•  Closed scope. Must open an existential before using it!

•  Poor support for module hierarchies

•  There is an inherent tension between handling modules in
isolation (good for separate compilation, interchangeability)
and the need to integrate them

•  Solution 1: open point at top level
•  Inversion of program structure
•  The most basic construct has the widest scope

Problems, continued

(the arrow means “depends on”)

Give up abstraction?

•  Solution 2: incorporate point in rect and circle
R = <point = …, <rect = point x point,…> …> !

C = <point = …, <circle = point x real, …> …>!

•  BUT: when we open R and C we get two distinct notions of
point! We will not be able to combine them.
•  No drawing circles around rectangles. Sad.

•  Another option: allow the type checker to see the
representation type.
•  (give up representation hiding)

Solution: strong sums

•  New way to open a package:
Types ::= ... | Σt.τ | Typ(e)!
Terms ::= ... | Ops(e)

•  Use Typ and Ops to decompose modules.
•  Operationally just like fst and snd

•  Σt.τis the dependent sum type

•  Like t.τ, except we can look at the type:

! |" e :#t.!
! |"Ops(e) :![Typ(e) / t]

Modularity with strong sums

•  Consider the R and C defined as before:
Pt = <point=real x real, …> : Σpoint.τP!

R = <point=Typ(Pt), !

<rect=point x point, …> : Σrect. τR!

C = <point=Typ(Pt), !

<circle=point x real, …> : Σcircle. τC!

•  The use of strong-sums means that the type checker sees that
the two point types are the same.

Real-world strong sums modules

•  ML’s module system is based on strong sums.
•  Reasonable compromise in practice.
•  Downsides:
•  Poorer data abstraction
•  Expressions appear in types (Typ(e))
•  Types might not be known until at run time
•  Lost separate compilation

•  Trouble if e has side-effects. We get around this with value
restrictions – e.g., IntSet.t) – but this means that modules are
second-class.

•  Translucent sums can combine existentials with strong sums:
partially visible

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.  Dependent types

2.   Types for data abstraction and modularity

And now, in grad PL…

•  More complex type systems that bring type checking
closer to program verification:

1.  Dependent types

2.  Types for data abstraction and modularity

From Wes: Homework

•  Project!

•  You have ~14 days (including Thanksgiving) to complete it.

•  Need help? Stop by Wes’s office or send email.

Fireside	
 Chat	

Thursday,	
 Nov	
 17	

5:00	
 pm	

Thornton	
 D221	

	

Meet	
 and	
 ask	
 them	
 questions	
 in	
 a	

non-­‐academic	
 setting.	
 	

	

Learn	
 what	
 they	
 wish	
 they	
 had	

known	
 when	
 they	
 were	
 students,	

and	
 what	
 their	
 lives	
 are	
 like	

outside	
 of	
 the	
 of<ice.	
 	

	

Ask	
 them	
 anything!	

All	
 are	
 welcome.	

ACM-­‐W	

with	
 …	

One was a standup comic,

the other runs marathons.

Neither has had a haircut!

Jason	
 Lawrence	

abhi	
 shelat	

