
LazinessLaziness #2

One-Slide Summary
• Building an interpreter is a fundamental idea in

computing. Eval and Apply are mutually recursive.
• The most complicated parts of meval are the

handling of function abstraction (lambda) and
function application.

• The most complicated part of mapply is handling a
non-primitive procedure: create a new environment,
add variables to that environment corresponding to
the arguments, and then apply the procedure body
in that new environment.

• In lazy evaluation, a value is not computed until it is
needed. A thunk is a piece of code that performs a
delayed computation.

#3

Outline

• Eval
• Apply
• Lazy
• Thunk

#4

Problem Set 7

• You will be writing an interpreter for Charme
– Charme is a simple version of Scheme

• Your interpreter will be written in Python
• This demonstrates that Python is at least as

powerful as Scheme
– Why?

• It turns out that Scheme is also at least as
powerful as Python
– Why?

#5

def meval(expr, env):
 if isPrimitive(expr):
 return evalPrimitive(expr)
 elif isConditional(expr):
 return evalConditional(expr, env)
 elif isLambda(expr):
 return evalLambda(expr, env)
 elif isDefinition(expr):
 evalDefinition(expr, env)
 elif isName(expr):
 return evalName(expr, env)
 elif isApplication(expr):
 return evalApplication(expr, env)
 else:
 evalError ("Unknown expression type: " + str(expr))

#6

def evalConditional(expr, env):
 assert isConditional(expr)
 if len(expr) <= 2:
 evalError ("Bad ...”)
 for clause in expr[1:]:
 if len(clause) != 2:
 evalError ("Bad ...”)
 predicate = clause[0]
 result = meval(predicate, env)
 if not result == False:
 return meval(clause[1], env)
 evalError ("No ...”)
 return None

Conditionals

Recall the conditional:
(cond ((< x 5) “small”)
 (< x 10) “medium”)
 (< x 99) “large”)))

#7

Implementing Procedures

What do we need to record?

Environment
pointer

x (+ x x)
Input parameters
(in mouth) Procedure Body

#8

class Procedure:
 def __init__(self, params, body, env):
 self._params = params
 self._body = body
 self._env = env
 def getParams(self):
 return self._params
 def getBody(self):
 return self._body
 def getEnvironment(self):
 return self._env

Procedure Class

#9

Evaluating Lambda Expressions

def evalLambda(expr,env):
 assert isLambda(expr)
 if len(expr) != 3:
 evalError ("Bad lambda ...”)
 return Procedure(expr[1], expr[2], env)

#10

Evaluating Applications

def meval(expr, env):
 ...
 elif isApplication(expr):
 return evalApplication(expr, env)
 else:
 evalError (...) mevalmeval

mapplymapply

#11

evalApplication

def evalApplication(expr, env):
 # To evaluate an application
 # evaluate all the subexpressions
 subexprvals = map (lambda subexpr:

meval(subexpr, env), expr)
 # then, apply the value of the
 # first subexpression to the rest
 return mapply(subexprvals[0], subexprvals[1:])

#12

Liberal Arts Trivia: Geography

• This island nation in southeast Asia is located
about 20 miles off the southern coast of India.
It is home to 20 million people (mostly
Sinhalese and Tamils), is a center of the
Buddhist religion, and possesses rich tropical
forests. during WWII it was used as a base for
Allied forces against the Japanese Empire. It
was known as Ceylon before 1972.

#13

Liberal Arts Trivia:
Italian Literature

• This Florentine poet of the Middle Ages is called
il Sommo Poeta. His central work, the Divinia
Commedia, is often considered the greatest
literary work composed in the Italian language
and is a masterpiece of world literature. He is
often called the Father of the Italian Language:
he wrote the Commedia in th early 14th century
in a new language he called “Italian” based on
the regional dialect of Tuscany with some Latin
and other bits thrown in.

• Bonus: Who guides him in Hell and Purgatory?
#14

mapply
def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = ???
 if len(params) != len(operands):
 evalError ("Parameter length mismatch ... ")
 for i in range(0, len(params)):
 ???
 return ???
 else:
 evalError("Application of non-procedure: %s" % (proc))

#15

mapply
def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = Environment(proc.getEnvironment())
 if len(params) != len(operands):
 evalError ("Parameter length mismatch ... ")
 for i in range(0, len(params)):
 ???
 return ???
 else:
 evalError("Application of non-procedure: %s" % (proc))

#16

mapply
def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = Environment(proc.getEnvironment())
 if len(params) != len(operands):
 evalError ("Parameter length mismatch ... ")
 for i in range(0, len(params)):
 newenv.addVariable(params[i], operands[i])
 return ???
 else:
 evalError("Application of non-procedure: %s" % (proc))

#17

mapply
def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 return proc(operands)
 elif isinstance(proc, Procedure):
 params = proc.getParams()
 newenv = Environment(proc.getEnvironment())
 if len(params) != len(operands):
 evalError ("Parameter length mismatch ... ")
 for i in range(0, len(params)):
 newenv.addVariable(params[i], operands[i])
 return meval(proc.getBody(), newenv)
 else:
 evalError("Application of non-procedure: %s" % (proc))

#18

Implemented
Interpreter! mevalmeval

mapplymapply

What’s missing?

Special forms:
 if, begin, set!
Primitive procedures:
 lots and lots
Built-in types:
 floating point numbers,
 strings, lists, etc.

#19

Lazy Evaluation

• Lazy Evaluation: don’t evaluate
expressions until their value is really
needed
– We might save work this way, since sometimes

we don’t need the value of an expression
– We might change the meaning of some

expressions, since the order of evaluation
matters

• Not a wise policy for problem sets (all
answer values will always be needed!)

#20

Lazy Examples
Charme> ((lambda (x) 3) (* 2 2))
3
LazyCharme> ((lambda (x) 3) (* 2 2))
3
Charme>((lambda (x) 3) (car 3))
error: car expects a pair, applied to 3
LazyCharme> ((lambda (x) 3) (car 3))
3
Charme> ((lambda (x) 3) (loop-forever))
no value – loops forever
LazyCharme> ((lambda (x) 3) (loop-forever))
3

Laziness can be useful!

(Assumes extensions
from ps7)

#21

Ordinary men and women, having the opportunity of a happy
life, will become more kindly and less persecuting and less
inclined to view others with suspicion. The taste for war will die
out, partly for this reason, and partly because it will involve long
and severe work for all. Good nature is, of all moral qualities,
the one that the world needs most, and good nature is the result
of ease and security, not of a life of arduous struggle. Modern
methods of production have given us the possibility of ease and
security for all; we have chosen, instead, to have overwork for
some and starvation for others. Hitherto we have continued to
be as energetic as we were before there were machines; in this
we have been foolish, but there is no reason to go on being
foolish forever.

Bertrand Russell, In Praise of Idleness, 1932
(co-author of Principia Mathematica,

proved wrong by Gödel’s proof)

#22

Original Evaluation Rule 3: Application.
To evaluate an application,
 a. evaluate all the subexpressions
 b. apply the value of the first subexpression to

the values of the other subexpressions.

How do we make
our evaluation
rules lazier?

#23

Evaluation Rule 3: Application.
To evaluate an application,
 a. evaluate all the subexpressions
 b. apply the value of the first subexpression to

the values of the other subexpressions.

How do we make our
evaluation rules lazier?

• evaluate the first subexpression, and delay evaluating
 the operand subexpressions until their values are needed.

#24

Liberal Arts Trivia:
Canadian Literature

• In this 1908 book, the title character is a
talkative red-haired orphan. She moves to the
village of Avonlea to live with farmers
Matthew and Marilla Cuthbert. She becomes
bosom friends with Diana Barry and has a
complex relationship with Gilbert Blythe. Her
vivid imagination and cheerful outlook often
land her in trouble.

• Bonus: Name the setting's Canadian Province.

#25

Liberal Arts Trivia: Biology
• This generic term is used for many plants in the genus

Allium. The plant is edible, grown underground as a
vertical shoot that is used for food storage. It is one of the
oldest vegetables, and is available fresh, frozen, canned,
carmelized, pickled, powdered, chopped, and dehydrated.
They are rarely eaten alone, and can be sharp, spicy,
tangy, pungent, mild or sweet. Tissue from this plant is
often used in science education to demonstrate
microscope usage because it has large cells. In Bronze age
settlements, traces have been found near the fig and date
going back to 5000 BCE. The ancient Egyptians worshiped
it, believing that its spherical shape and concentric rings
symbolized eternal life; it was used in Egyptian burial
rituals (e.g., placed in the eye sockets of Ramesses IV).

#26

Liberal Arts Trivia:
Neuroscience

• This medical visualization technique is most
commonly used to visualize the internal
structure and function fo the body. Notably,
it uses no ionizing radiation, but instead uses
powerful fields to align the hydrogen atoms in
water in the body. Radiofrequency fields are
used to alter the alignment of the hydrogen
atoms, which can then be detected by a
scanner. The process was first used on
humans in 1977.

#27

Evaluation of Arguments

• Applicative Order (“eager evaluation”)
– Evaluate all subexpressions before apply
– Scheme, original Charme, Java

• Normal Order (“lazy evaluation”)
– Evaluate arguments when the value is needed
– Algol60 (sort of), Haskell, Miranda, LazyCharme

“Normal” Scheme order is not “Normal Order”!

#28

Delaying Evaluation

• Need to record everything we will need to
evaluate the expression later

• After evaluating the expression, record
the result for reuse

• A thunk is a piece of code that performs a
delayed computation

#29

I Thunk I Can

class Thunk:
 def __init__(self, expr, env):
 self._expr = expr
 self._env = env
 self._evaluated = False
 def value(self):
 if not self._evaluated:
 self._value = forceeval(self._expr, self._env)
 self._evaluated = True
 return self._value

#30

Lazy Application

def evalApplication(expr, env):
 # make Thunk object for each operand expression
 ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])
 return mapply(forceeval(expr[0], env), ops)

def evalApplication(expr, env):
 subexprvals = map (lambda sexpr: meval(sexpr, env), expr)
 return mapply(subexprvals[0], subexprvals[1:])

#31

Forcing Evaluation
class Thunk:
 def __init__(self, expr, env):
 self._expr = expr
 self._env = env
 self._evaluated = False
 def value(self):
 if not self._evaluated:
 self._value = forceeval(self._expr, self._env)
 self._evaluated = True
 return self._value def forceeval(expr, env):

 value = meval(expr, env)
 if isinstance(value, Thunk):
 return value.value()
 else:
 return value

#32

What else needs
to change?

Hint: where do we need real values,
instead of Thunks?

#33

Primitive Procedures

• Option 1: redefine
primitives to work on
thunks

• Option 2: assume
primitives need values of
all their arguments

#34

Primitive Procedures
def deThunk(expr):
 # how am I different from forceeval?
 if isThunk(expr):
 return expr.value()
 else:
 return expr

def mapply(proc, operands):
 if (isPrimitiveProcedure(proc)):
 operands = map (lambda op: deThunk(op), operands)
 return proc(operands)
 elif ...

We need the deThunk procedure because Python’s
lambda construct can only have an expression as
its body (not an if statement)

#35

Lazy Conditionals

•We need to know
the actual value of
the predicate
expression, to know
how to evaluate
the rest of the
conditional.

#36

def evalConditional(expr, env):
 assert isConditional(expr)
 if len(expr) <= 2:
 evalError ("Bad conditional expression: %s" % str(expr))
 for clause in expr[1:]:
 if len(clause) != 2:
 evalError ("Bad conditional clause: %s" % str(clause))
 predicate = clause[0]
 result = meval(predicate, env)
 if not result == False:
 return meval(clause[1], env)
 evalError (...)
 return None

What do we need to change?

#37

def evalConditional(expr, env):
 assert isConditional(expr)
 if len(expr) <= 2:
 evalError ("Bad conditional expression: %s" % str(expr))
 for clause in expr[1:]:
 if len(clause) != 2:
 evalError ("Bad conditional clause: %s" % str(clause))
 predicate = clause[0]
 result = meval(predicate, env)
 if not result == False:
 return meval(clause[1], env)
 evalError (...)
 return None

result = forceeval(predicate, env)

#38

Homework

• Read Chapter 13
• PS 7 due shortly

