
cs1120: Exam 2
Due: Monday, 29 November at 3:30pm (in class)

Directions
Work alone. You may not discuss these problems or anything related to the material covered by
this exam with anyone except for the course staff between receiving this exam and turning it in.

Open resources. You may use any books you want, lecture notes, slides, your notes, and problem
sets. You may not use DrScheme or IDLE (or PLT Scheme or Racket or Python), but it is not
necessary to do so. You may also use external non-human sources including books and web sites.
If you use anything other than the course books, slides, and notes, cite what you used. You may
not obtain any help from other humans other than the course staff.

Answer well. Answer all questions 1-9 (question 0 is your UVA ID in two places, which
hopefully everyone will receive full credit for), and optionally answer questions 10-11.

You may either: (1) print out this exam and write your answers on it or (2) write your answers
directly into the provided Word template and print the result out. Whichever one you choose, you
must turn in your answers printed on paper and they must be clear enough for us to read and
understand. You should not need more space than is provided to write good answers, but if you
want more space you may attach extra sheets. If you do, make sure they are clearly marked.

The questions are not necessarily in order of increasing difficulty, so if you get stuck on one
question you should continue on to the next question. There is no time limit on this exam, but it
should not take a well-prepared student more than a few hours to complete. It may take you
longer, though, so please do not delay starting the exam. There is no valid excuse (other than a
medical or personal emergency) for running out of time on this exam.

No "snow jobs". If you leave a question blank, you will receive ~30% of the points for it. If you
have no idea and waste our time with long-winded guessing, we will be less sanguine and the
grading will be more sanguine. :-)

Use any procedure from class. In your answers, you may use any Scheme or Python procedure
that appears in the lecture notes or in the book without redefining it (e.g., length, filter, sort, map,
etc.). If there are multiple similar names (e.g., map vs. list-map, len vs. length), use whichever
you like.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your
answers should be as short and simple as possible, but not simpler. Your programs will be judged
for correctness, clarity and elegance, but you will not lose points for trivial errors (such as
missing a closing parenthesis).

UVA ID (e.g., wrw6y) :

Your Scores
0 1 2 3 4 5 6 7 8 9 EC Total

 (Your scores are recorded on the second page so that they are not visible to other
students when tests are distributed or passed back. We always use cover sheets on our
TPS reports. Didn't you get that memo?)

Question 0: Write your UVA ID on this page and the previous one and ensure that your exam is
stapled cleanly. Non-staple attachments will lose points.

UVA ID again (e.g., wrw6y) :

Question 1. Latency and Bandwidth.

Suppose we have a network in which each packet sent contains only a single bit. If the first
packet arrives after 10 seconds, the second at 12, and the third at 15, the latency would be 10
seconds and the bandwidth would be 3/15 = 1/5 bits per second. We might represent such a
sequence of packet arrival times as a list of numbers:

(list 10 12 15)
Define a procedure make-latency that takes two arguments: a latency in seconds and a number of
packets. Your procedure should return a sequence of packet arrival times that have the given
latency. The arrival times must be in non-decreasing order. Also, indicate the expected output of
(make-latency 10 3) for your code. Hint: this is more of a thought puzzle than a tricky
programming puzzle. Many answers are possible! For example:

> (make-latency 10 3)
(10 12 15) # other answers are possible
> (make-latency 5 6)
(5 6 7 8 9 10) # other answers are possible
> (make-latency 2 3)
(2 2.5 2.5) # other answers are possible

Now define a procedure make-bandwidth that takes two arguments: a bandwidth in bits per
second and a number of packets. It must produce a sequence of non-decreasing packet arrival
times that has the given overall average bandwidth. Also, indicate the expected output of (make-
bandwidth 2 2) for your code. Examples:

> (make-bandwidth 2.0 4)
(0.5 1.0 1.5 2.0) # other answers are possible
> (make-bandwidth 2.0 4)
(1 1 2 2) # other answers are possible
> (make-bandwidth 1 1)
(1)

(define (make-latency latency numpackets)

For my code, (make-latency 10 3) will output:

(define (make-bandwidth bandwidth numpackets)

For my code, (make-bandwidth 2 2) will output:

Question 2. Static Type Checking

Suppose we change the way Lambda works in StaticCharme. In the class notes, statically-typed
lambda looks like this:

(lambda (x : Number y : Number) (* x y))

But now we want to add another typing annotation for the return type! Examples of well-typed
lambdas in this brave new world:

(lambda (x : Number y : Number) (< x y) : Bool)
(lambda (s : String) (string-length s) : Number)
(lambda (s : String x: Number) (= x (string-length s)) : Number)

The added return type annotation is underlined. Here is an example of a badly-typed lambda:

(lambda (x : Number y : Number) (+ x y) : Bool) # Number does not match Bool

Complete the following code to typecheck this brave new lambda:

def typeLambda(expr,env):
assert isLambda(expr)
if len(expr) != 5: evalError(“Bad lambda expression: %s” % str(expr))
fill in code here

Question 3. Is It Computable?

Consider the not-so-famous Program-Contains-Lolcat problem:

Input: Program source code S.
Output: True if S contains the literal textual string “Lolcat”, False otherwise.

Is Program-Contains-Local computable or not? Why or why not?

Question 4. Is It Computable?

Consider the even-less-famous Program-Produces-Lol-Before-Cat problem:

Input: Program source code S.
Output: True if S produces the string “lol” and then later the string “cat” when run on

the input 0. False otherwise.

Example: If (S 0) is “lol” “wes” 55 “cat”, then the output should be True.
Example: If (S 0) is “Seneca” “Falls”, then the output should be False.
Example: If (S 0) is “lol” “falls”, them tje output should be False.

Is Program-Produces-Lol-Before-Cat computable or not? Why or why not?

Question 5. Object Oriented Coding: Functional Python Trees

We want to implement trees using Python, similar to the trees mentioned in Class #10 and Class
#12. We will have an EmptyTree class, similar to null or the empty list, and a Tree subclass that
contains a left child, a number value, and a right child.

Both Tree and EmptyTree must support an insert() method that returns a new tree object just like
the old one but with the new value inserted. This insert() method is very similar to the insert-one-
tree method in Class #12. Example:

>>> a = EmptyTree()
>>> print a
Empty

>>> b = a.insert(5)
>>> print b
Tree(Empty,5,Empty)

>>> c = b.insert(4)
>>> print c
Tree(Tree(Empty,4,Empty),5,Empty)

>>> d = c.insert(6)
>>> print d
Tree(Tree(Empty,4,Empty),5,Tree(Empty,6,Empty))

>>> e = d.insert(1)
>>> print e
Tree(Tree(Tree(Empty,1,Empty),4,Empty),5,Tree(Empty,6,Empty))

(continued on next page)

Complete the following code:

class EmptyTree:

 def __init__(self):
 return

 def __str__(self):
 return "Empty"

 def insert(self, newValue):
 return Tree(EmptyTree(), newValue, EmptyTree())

class Tree (EmptyTree):

 def __init__(self, leftChild, myValue, rightChild):
 self.leftChild = leftChild
 self.rightChild = rightChild
 self.value = myValue

 def __str__(self):
 return "Tree(%s,%d,%s)" % (self.leftChild , self.value , self.rightChild)

 # write your code here #

Question 6. Lambda and the Environment Model

Draw the relevant portions of the environment model diagram when evaluating this code:

Scheme> (define x 5)
Scheme> ((lambda (x y) (+ (x 2) y)) (lambda (w) (+ x 4)) 6)
15

In particular, be sure to write each lambda body next to the environment in which it is being
evaluated.

Hint 1: There is only one define here, so most of the work will be done by “anonymous” or
“nameless” functions. They will still show up in various ways in your environment model
diagram.

Hint 2: Pay careful attention to the evaluation rules for lambda expressions and application
expressions.

Hint 3: Draw the global environment, but leave room outside of it to draw other environments.

Question 7. Running Times & Evaluation

Consider the following Charme code. The parameters a and b are lists of numbers.

(define (fox x y)
(if (null? x) 0

(+ (car x) (fox (cdr x) y))))

(define (hound a b)
(fox a (list-length b)))

(define (tortoise a b)
(if (null? a)

#f
(if (list-contains-element? b (car a)) # is the element (car a) in the list b?

#t
(tortoise (cdr a) b))))

(define (hare a b)
(if (null? a)

0
(+ (fox b 0)

(hare (cdr a) b))))

For each of the following questions, give the running time in Big Theta notation in terms of the
length of a and/or b. Do not give an answer like Θ(N) – you must give answers like Θ(ab2)
instead.

7.a. What is the running time of hound in Charme?

7.b. What is the running time of hound in MemoCharme?

7.c. What is the running time of hound in LazyCharme?

7.d. What is the running time of tortoise in Charme?

7.e. What is the running time of tortoise in MemoCharme?

7.f. What is the running time of tortoise in LazyCharme?

7.g. What is the running time of hare in Charme?

7.hi. What is the running time of hare in MemoCharme?

7.j. What is the running time of hare in LazyCharme?

Question 8. Databases

Suppose we are going to implement a simpler version of the auction from Problem Set 5. In this
version, we have only a single bids table. Each bid is a three-element list containing the bidder,
the bid amount, and the desired object. Example:

(define bids (list (list “richard-castle” 1000 “library”)
(list “kate-beckett” 2000 “rotunda”)
(list “alexis-castle” 50 “library”)
(list “richard-castle” 789 “rotunda”)
(list “alexis-castle” 10 “rotunda”)
(list “kate-beckett” 1500 “library”)

))

You must write a procedure library-over-rotunda that returns all bid amounts for bids on the
library that were placed by a person who bid on both the library and the rotunda, but bid more on
the library. Example:

> (library-over-rotunda bids)
(1000 50) # 1000 from “richard-castle” is more than 789

50 from “alexis-castle” is more than 10
the answer (50 1000) is also acceptable

Although the examples here use Scheme, you may write your answer in Python if you prefer.

Hint for Scheme:
> (car (list 1 2 3))

1

> (cadr (list 1 2 3))

2

> (caddr (list 1 2 3))

3

General hint: You may use ideas like table-select, but the bids table format for this question is
not the same as the bids table format for PS5, so table-select won't work “out of the box”.

(continued on next page)

Fill in your definition for library-over-rotunda here:

Question 9. Security and Cryptography

From Wikipedia: In cryptography, the one-time pad (OTP) is a type of encryption, which has
been proven to be impossible to crack if used correctly. Each bit or character from the plaintext is
encrypted by a modular addition with a bit or character from a secret random key (or pad) of the
same length as the plaintext, resulting in a ciphertext. If the key is truly random, as large as or
greater than the plaintext, never reused in whole or part, and kept secret, the ciphertext will be
impossible to decrypt or break without knowing the key. It has also been proven that any cipher
with the perfect secrecy property must use keys with effectively the same requirements as OTP
keys. However, practical problems have prevented one-time pads from being widely used.

For this question, you will be implementing one-time pad encryption for lists of bits. You will
write a function called otp that takes as input two lists: a list of bits (the text) and another list of
bits (the pad). The pad list will be at least as long as the text list. The output will be a list of bits –
the text encrypted via the pad. We will represent bits using the numbers 0 and 1. You may write
in Scheme or Python – whichever you prefer. Modular addition on bits is carried out using the
XOR operator. (Feel free to search around for more hints on one-time pads if you need them.)
Examples:

Python>>> 1 ^ 1 # ^ is XOR in Python
0
Scheme> (xor 1 1) ; xor is XOR in Scheme
0

What is the running-time, in Big Theta notation, of the best possible implementation of otp?

Could a Turing machine compute the otp function? Why or why not?

Question 10a. (1 point of extra credit max) Did you complete the API Examples Study on or
before midnight Friday November 19th? What was your completion code?

Question 10b. Zero points. Do you think your performance on this Exam will fairly reflect your
understanding of the material in the second half of the course? If not, explain why.

