
cs1120: Exam 1
Due: Wednesday, 06 October at 3:30pm (in class)

Directions
Work alone. You may not discuss these problems or anything related to the material covered by
this exam with anyone except for the course staff between receiving this exam and turning it in.

Open resources. You may use any books you want, lecture notes, slides, your notes, and
problem sets. You may not use DrScheme or DrRacket, but it is not necessary to do so. You may
also use external non-human sources including books and web sites. If you use anything other
than the course books, slides, and notes, cite what you used. You may not obtain any help from
other humans other than the course staff.

Answer well. Answer all questions 1-9 (question 0 is your UVA ID in two places, which
hopefully everyone will receive full credit for), and optionally answer questions 10-11.

You may either: (1) print out this exam and write your answers on it or (2) write your answers
directly into the provided Word template and print the result out. Whichever one you choose, you
must turn in your answers printed on paper and they must be clear enough for us to read and
understand. You should not need more space than is provided to write good answers, but if you
want more space you may attach extra sheets. If you do, make sure they are clearly marked.

The questions are not necessarily in order of increasing difficulty, so if you get stuck on one
question you should continue on to the next question. There is no time limit on this exam, but it
should not take a well-prepared student more than a few hours to complete. It may take you
longer, though, so please do not delay starting the exam. There is no valid excuse (other than a
medical or personal emergency) for running out of time on this exam.

No "snow jobs". If you leave a question blank, you will receive three points for it. If you have
no idea and waste our time with long-winded guessing, we will be less sanguine and the grading
will be more sanguine. :-)

Use any Scheme procedure from class. In your answers, you may use any Scheme procedure
that appears in the lecture notes or in the book without redefining it (e.g., length, filter, sort, find-
best, etc.). If there are multiple similar names (e.g., map vs. list-map), use whichever you like.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your
answers should be as short and simple as possible, but not simpler. Your programs will be judged
for correctness, clarity and elegance, but you will not lose points for trivial errors (such as
missing a closing parenthesis).

UVA ID (e.g., wrw6y) :

Your Scores
0 1 2 3 4 5 6 7 8 9 EC Total

10 10 10 10 10 10 10 10 10 10 2 100

 (Your scores are recorded on the second page so that they are not visible to other students
when tests are distributed or passed back.)

UVA ID again (e.g., wrw6y) :

1. Consider the following grammar:
S ::= N | N and S
N ::= A B C | D E F
A ::= randall | simon
B ::= darius | phillip | ε
C ::= jackson | cowell
D ::= paula
E ::= julie | ε
F ::= abdul

The start symbol is S. The symbol ε denotes the empty string.
(a) Is the language of this grammar infinite or finite?
(b) Give a string of length six (i.e., six words) that is in the language of the grammar.

2. Consider the following Scheme definition.

(define (territory worker-fun lst)

(if (null? lst) null

(append (territory worker-fun (cdr lst))

(cons (worker-fun (car lst)) null))))

Provide a convincing argument that territory is not equivalent to map. (Hint: provide inputs
on which they behave differently.)

3

(a)

(b)

3. Write a Scheme procedure no-homework that accepts a list of strings as input. It should return
the same list of strings in the same order, but with all instances of “homework” replaced by
“none”. For example:

> (no-homework (list “locke” “ben” “homework” “sawyer” “homework”)
(“locke” “ben” “none” “sawyer” “none”)
> (no-homework (cons (“claire” null))
(“claire”)

4. Define a make-list-remover procedure that takes one input, an element, and produces a
procedure as output. The output procedure is a procedure that takes a list of numbers as input, and
produces as output that same list but with all entries matching the original element removed.
(Hint: besides "define", how do we make procedures in Scheme?)

For example:
> (make-list-remover 5)
#<procedure>
> ((make-list-remover 2) (list 1 2 3))
(1 3)
> ((make-list-remover 7) (list 10 -2 13))
(10 -2 13)

4

(define (no-homework lst)

(define (make-list-remover n)

5. Define a procedure nested-sum that takes one input: a list. The list may contain integer
elements, but it may also contain other lists (which may themselves contain other lists, hence
"nested"). The procedure should return the sum total of the elements anywhere in the list. For
example:

> (list? (list 1 2 3))
#t
> (nested-sum (list -9 -8 -7 0 4 5 6))
-9
> (nested-sum (list 1 2 (list 0 (list 4 5)) 7 (list -3 0)))
16
> (nested-sum (list))
0
> (nested-sum (list -1 (list) -3))
-4

(Hint 1: rewrite-lcommands. Hint 2: There are three cases. The list may be empty, its first
element may itself be a list, or its first element may be an integer. Two of those three cases
involve recursive calls.)

5

(define (nested-sum lst)

6. Answer each of the following questions about function growth. Give an argument that explains
each answer. For example, to prove that n is in O(n/2) you might demonstrate the constants n0 = 1
and c = 2. If there is any ambiguity, use the definitions from Chapter 7 of the course book.

6

Is n+8 in O(n) ? Why or why not?

Is n4 in O(n3) ? Why or why not?

Is n in Ω(4 n - 3) ? Why or why not?

Is log n in Ω(n3) ? Why or why not?

Is 5n2 in Θ(n3) ? Why or why not?

7. Consider the following four procedures:

(define (map f lst)
(if (null? lst) null

(cons (f (car lst)) (map f (cdr lst)))))

(define (my-reverse lst)
(define (reverse-helper x y)

(if (null? x) y
(reverse-helper (cdr x) (cons (car x) y))))

(reverse-helper lst null))

(define (revmap-alpha f lst)
(my-reverse (map f lst)))

(define (revmap-beta f lst)
(if (null? lst) null

(append (revmap-beta f (cdr lst))
(list (f (car lst))))))

Give the running time of my-reverse and revmap-alpha and revmap-beta in Big
Theta Θ notation. Assume f runs in constant time. Which of revmap-alpha and revmap-
beta is faster? Can there be an asymptotically faster revmap procedure? (Hint: either
demonstrate "yes" by giving the procedure, or argue that no such faster procedure is possible.)

7

(a) my-reverse is Θ

(b) revmap-alpha is Θ

(c) revmap-beta is Θ

(d) The faster procedure is

(e)

8. Consider the task of sorting a music playlist for a portable music player or cell phone. We will
represent each song as a cons pair of its artist and its title. We wish to sort the playlist by title
first, and then by artist. Write a procedure sort-playlist that accepts one argument, a list of
songs, and returns that same list of songs, but sorted as per the description above. Example:

> (define song1 (cons "ABBA" "Mamma Mia")
> (define song2 (cons "Taylor Swift" "Love Story")
> (define song3 (cons "Beyonce" "Single Ladies")
> (define song4 (cons "Randy Newman" "Love Story")
> (define song5 (cons "Lonely Island" "I'm On A Boat"))
> (sort-playlist (list song1 song2 song3 song4 song5))
(("Lonely Island" . "I'm On A Boat")

("Randy Newman" . "Love Story")
("Taylor Swift" . "Love Story")
("ABBA" . "Mamma Mia")
("Beyonce" . "Single Ladies"))

> (string<? "ABBA" "Beyonce")
#t
> (eq? "ABBA" "Beyonce")
#f

(No points off if you sort Z-A instead of A-Z. All points off if you sort by artist first.)

8

(define (sort-playlist lst)

9. In the not too distant future (next Sunday
A.D.), YouTube, Twitter and Facebook
have merged together to form
YouTwitFace, one social networking site to
rule them all and in the darkness bind them. You have been asked to write a friend analysis
procedure for this site. Lists of friends are available. Given such a list, you are to find the person
with the most friends.

You should write two procedures. The first, number-of-friends, takes as input a lists of pairs
of strings (representing friends) and a particular string (the person under consideration) returns an
integer (the number of friends of that person). The second, most-friends, takes as input a list
of pairs of strings (representing friends, as before). It should return the name of the person with
the most friends. (This can be done in under 10 lines total.) Example:

> (define friends (list (cons “rachel” “monica”)
(cons “phoebe” “rachel”)
(cons “rachel” “joey”)
(cons “monica” “joey”)
(cons “monica” “chandler”)))

> (number-of-friends friends “rachel”)
3
> (number-of-friends friends “chandler”)
1
> (most-friends friends)
“rachel”

9

(define (number-of-friends lst who)

(define (most-friends lst)

10. (Extra credit, two points max, no points for leaving this blank.) Give the running time for
your implementation of most-friends using Θ notation (or a hypothetical implementation if
you did not complete #9). Assume that the friend list contains F friend pairs.

11. (Zero points.) Do you feel your performance on this exam will fairly reflect your
understanding of the course material so far? If not, explain why. You will not lose any points for
your answer.

10

